超临界CO2流体萃取分离高纯栀子甙的工艺研究
超临界CO2萃取

基本工艺流程
2.4 超临界二氧化碳萃取的影响因素
压力 温度 流量 夹带剂 粒度
2.4.1 萃取压力的影响
物质处于临界状态时,其密度对压力的变化比较敏感,即当 提取温度T与临界温度Tc的比值在1-1.2(1<T/TC),压力的较小 改变会引起流体密度有较大的变化,而密度的增加将引起溶解度 的提高,因此可调节流体对溶质的溶解能力,以达到分离的目的。
提取和分离一体,提取后马上分离,效率高。
在萃取过程中,SFE的萃取效率是由SCF的溶剂力、溶质的特 性、溶质—基体结合状况决定的。因而在选择萃取条件时,一方 面要考虑溶质在SCF中的溶解度,另一方面也要考虑溶质从样品基 体活性点脱附并扩散到SCF中的能力与速度。
2.2 超临界流体萃取技术的特点
1.超临界流体具有良好的渗透性和溶解性,可从固体或粘稠的原料中快速 萃取有效成分。提取有效成分的效率高,为传统生产工艺的2-10倍。
2.4.2 萃取温度的影响
一方面,温度升高,超临界流体的密度降低,其溶解能力相 应下降,导致萃取数量的减少;
但另一方面,温度升高使被萃取溶质的挥发性增加,这样就增 加了被萃取物在超临界流体中的浓度,从而使萃取数量增大。
通过实验,人们还发现温度对溶解度的影响还与压力有密切的 关系:在压力相对较低时(28MPa以下),温度升高溶解度降低; 而在压力较高时(28MPa以上),温度升高二氧化碳的溶解能力提 高。
超临界二氧化碳萃取的产品必须是“以质取胜”,必 须具备其他提取技术不可替代的优越性。一般说来,超临 界二氧化碳萃取主要是提取一些附加值高和产量大的产品, 在质量领先的前提下,尽量降低成本中的设备折旧费的比 例,以使该技术的优势得到较好的发挥。
超临界萃取三种典型的工艺流程介绍

超临界萃取三种典型的工艺流程介绍下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!超临界萃取是一种利用超临界流体(critical fluid)作为溶剂进行物质分离和提纯的技术,其温度和压力均高于物质的临界点。
超临界CO2流体萃取技术及其应用概述

湖南农业大学研究生课程论文学院:食品科技学院年级专业:07级营养与食品卫生学姓名:邓婷婷学号:s200700293 课程论文题目:超临界CO2流体萃取技术及其应用概述课程名称:现代食品分析技术评阅成绩:评阅意见:成绩评定教师签名:日期:年月日超临界CO2流体萃取技术及其应用概述学生:邓婷婷(07级食品科技学院营养与食品卫生专业,学号s200700293)摘要:本文介绍了超临界CO2流体萃取技术的萃取原理、特点、基本流程及其影响萃取的因素,对此技术在食品、医药、农药残留分析、化工等方面的应用进行了简要概述,并展望了今后的发展。
关键词:超临界CO2流体萃取技术原理特点流程影响因素应用超临界流体萃取(supercritical fluid extraction)简称SCFE,是利用超临界状态的流体具有强溶解能力而对物质进行提取分类的技术。
1897年,Hannay和Hogarth发现了超临界乙醇异乎寻常的溶解特性[1]。
近20年来,超临界流体萃取技术开始应用于工业实践并引起广泛关注,现已应用于食品、医药、化工、石油、和香料等领域。
1 超临界CO2流体萃取基本原理超临界流体是物质处于其临界点(Tc、Pc)以上状态时所呈现出的一种高压、高密度,具有气液两重性的液体。
超临界CO2萃取技术就是以超临界状态的CO2流体为溶剂,利用超临界CO2在临界点附近所具有的高渗透性、高扩散性和高溶解能力,对萃取物中的目标组分进行提取分离,从而达到分离精制的目的[2]。
超临界CO2流体对溶质的溶解度取决于其密度,当在临界点附近,压力和温度发生微小的变化时,密度即发生变化,从而会引起溶解度的变化。
因此,将温度或压力适当变化,可使溶解度在100-1000倍的范围内变化,因而具有较高的溶解性[2]。
一般情况下,超临界CO2流体的密度越大,其溶解能力就越大。
在恒温下随压力升高,溶质的溶解度增大;在恒压下随温度升高,溶质的溶解度减小。
利用这一特性可从物质中萃取某些易溶解的成分。
超临界萃取实验报告

超临界萃取实验报告超临界萃取实验报告摘要:本实验旨在研究超临界萃取技术在提取天然产物中的应用。
通过使用超临界CO2作为溶剂,对某种天然植物中的有效成分进行提取,并对提取效果进行评估。
实验结果表明,超临界萃取技术在提取天然产物中具有高效、环保等优势,对于制备高纯度的天然成分具有重要意义。
引言:超临界萃取是一种基于超临界流体的提取技术,其在分离纯化天然产物中具有广泛应用。
超临界流体是指在临界温度和临界压力下,气体和液体的性质同时存在的状态。
超临界CO2是最常用的超临界流体之一,由于其低毒性、无残留、易回收等特点,成为了天然产物提取的理想溶剂。
实验方法:1. 准备样品:选择某种天然植物作为样品,将其研磨成细粉。
2. 超临界萃取装置:使用超临界萃取设备,将CO2加压至超临界状态。
3. 萃取过程:将样品放入超临界萃取器中,以一定温度和压力下进行萃取。
4. 分离回收:通过减压和降温,将提取物和溶剂分离,并回收溶剂。
实验结果:通过超临界萃取技术,我们成功地从天然植物中提取出目标成分,并对提取物进行了分析。
实验结果显示,超临界CO2对于提取目标成分具有较高的选择性和提取效率。
此外,由于超临界CO2的低温性质,提取物中的热敏性成分得到了有效保护,保持了其活性和稳定性。
讨论:超临界萃取技术相比传统的有机溶剂提取具有许多优势。
首先,超临界CO2是一种无毒、无污染的溶剂,对环境友好。
其次,超临界CO2易于回收,可以循环利用,降低了成本。
此外,超临界CO2的温度和压力可以调节,适用于不同成分的提取。
因此,超临界萃取技术在制备高纯度的天然产物中具有广阔的应用前景。
结论:本实验通过超临界萃取技术成功地提取出了天然植物中的目标成分,并对其进行了分析。
实验结果表明,超临界CO2具有高效、环保等优点,适用于提取天然产物中的有效成分。
超临界萃取技术在制备高纯度的天然产物中具有重要意义,对于开发天然药物、食品添加剂等具有广泛的应用前景。
二氧化碳超临界流体萃取技术

二氧化碳超临界流体萃取技术1. 什么是二氧化碳超临界流体萃取?想象一下,你在厨房里做一道美味的菜,食材新鲜,调料得当,但有一样东西让你的味道更上一层楼,那就是萃取!二氧化碳超临界流体萃取技术,就是一个在化学和食品领域里发挥魔力的“厨艺秘诀”。
好吧,简单来说,它就是利用超临界状态的二氧化碳来提取植物中的精华,比如油、香味或者其他活性成分。
它听起来复杂,但实际上,它就像是在做一道高级的浓汤,把好东西从食材中提取出来。
1.1 超临界流体是什么?超临界流体,这个名字听上去就像科幻电影里的怪物,但其实它是个很乖的家伙。
我们知道,液体和气体有各自的特点,但当物质在高温和高压的环境下,它们就会变得很奇妙,成为“超临界流体”。
在这个状态下,二氧化碳既可以像气体一样流动,又可以像液体一样溶解东西,简直是“水火不容”的完美结合。
就像在派对上,气氛一高涨,大家都融入了一起,开心得不得了。
1.2 为什么选择二氧化碳?有人可能会问,为什么要用二氧化碳呢?其实,二氧化碳是个环保小天使,它的来源广泛,成本也相对低。
而且,提取出来的成分没有残留,有些就像小孩子的作业,干干净净,放心使用。
再说,它提取的产品往往质量更高,口感更好,香味更浓,谁不喜欢呢?2. 二氧化碳超临界流体萃取的过程接下来,咱们聊聊这个神奇的过程。
首先,我们得准备好要萃取的材料,像是香草、咖啡豆或者草药,这些都是“主角”。
然后,把这些材料放进一个密闭的容器里,就像给他们一个舒适的小窝。
接着,我们就开始给这个小窝加压、加热,让二氧化碳变成超临界状态。
这个过程就像是在给材料做个“深层按摩”,把他们里面的精华一股脑地释放出来。
2.1 这个过程的好处说到好处,那可真是不胜枚举。
首先,这个方法非常高效,能够在短时间内提取出大量的成分,节省了时间和成本。
其次,超临界流体的低毒性,让这个萃取过程更安全,更健康。
谁都不想吃到有害物质吧?而且,由于它不使用溶剂,所以最终的产品味道更加纯正,简直就是“无污染”的代名词。
超临界二氧化碳萃取 相关标准

超临界二氧化碳萃取相关标准超临界二氧化碳萃取相关标准超临界二氧化碳萃取是一种绿色、高效的分离技术,已经在多个领域得到了广泛应用。
在这篇文章中,我们将深入探讨超临界二氧化碳萃取的相关标准,以及这些标准对该技术的应用和发展所起到的重要作用。
一、超临界二氧化碳萃取的基本原理超临界二氧化碳萃取是一种利用超临界状态下的二氧化碳对物质进行提取和分离的技术。
在高压和适当温度下,二氧化碳可以达到超临界状态,此时既具有气体的扩散性,又有液体的溶解力,因此可以高效地萃取目标物质。
与传统的有机溶剂相比,超临界二氧化碳具有无毒、无残留、易回收利用等优点,因此备受关注。
二、超临界二氧化碳萃取的相关标准1. 工艺参数标准:包括工艺温度、压力、流速等参数的要求,这些参数对超临界二氧化碳萃取的效果和成本都有重要影响,是保证萃取效果和生产稳定的关键。
2. 萃取物质标准:不同的物质对超临界二氧化碳的萃取条件要求不同,因此对于不同的萃取物质需要有相应的标准来指导操作。
3. 设备标准:超临界二氧化碳萃取设备的设计和制造需要符合一定的标准,以保证设备的安全性、稳定性和效率。
4. 产品质量标准:对于超临界二氧化碳萃取得到的产品,需要有相应的质量标准来保证产品的品质和安全性。
三、超临界二氧化碳萃取标准的重要性超临界二氧化碳萃取标准的制定和执行对于推动该技术的发展和应用具有重要意义。
标准的存在可以保证超临界二氧化碳萃取的安全性和可行性,避免了因为操作不当而造成的安全事故和环境污染。
标准化可以提高超临界二氧化碳萃取的生产效率和产品质量,促进了技术的推广和产业化应用。
标准的建立可以促进超临界二氧化碳萃取技术的国际交流和合作,为技术的不断创新和进步提供了基础和保障。
四、个人观点和理解作为超临界二氧化碳萃取的写手,我对相关标准的制定和执行十分重视。
在这个快速发展的领域,标准化的严格执行和不断完善可以提高技术的可信度和可持续发展性。
通过与专业的技术团队合作,并结合相关行业的实际需求,我们有信心为超临界二氧化碳萃取相关标准的制定和实施贡献自己的力量。
超临界二氧化碳萃取
超临界二氧化碳萃取简介超临界二氧化碳萃取是一种常用于分离和提取有机物质的方法。
它利用超临界状态下的二氧化碳的特殊性质,实现了高效、环保的物质分离和提取过程。
本文将介绍超临界二氧化碳萃取的原理、应用领域以及优势。
原理超临界二氧化碳指的是二氧化碳在临界温度(31.1℃)和临界压力(7.38MPa)以上的状态。
在这种状态下,二氧化碳既有液态的密度和溶解力,又具备气态的扩散性和低表面张力。
这使得超临界二氧化碳具有一定的溶解性,能够溶解非极性或低极性溶质。
同时,超临界二氧化碳的温度和压力可调控,这使得它在分离和提取过程中具备很大的灵活性。
超临界二氧化碳萃取的原理是基于溶质在超临界二氧化碳中的溶解度随温度和压力的改变而变化。
通过调节超临界二氧化碳的温度和压力,可以控制溶质的溶解度,实现对溶质的分离和提取。
当温度和压力降低时,溶质会从超临界二氧化碳中析出,实现分离。
而当温度和压力升高时,溶质在超临界二氧化碳中的溶解度增大,实现提取。
应用领域超临界二氧化碳萃取在许多领域都有广泛的应用,包括食品、药物、化妆品、香料等。
在食品工业中,超临界二氧化碳萃取被用于提取天然色素、香料和食用油。
由于超临界二氧化碳具有良好的可控性和温和的条件,使得提取的产品具有较高的纯度和良好的品质。
在药物工业中,超临界二氧化碳萃取被用于提取草药中的有效成分。
相比传统的有机溶剂提取方法,超临界二氧化碳萃取无毒、无残留,不会对药物的活性产生影响,且对环境友好,因此被广泛应用。
在化妆品工业中,超临界二氧化碳萃取被用于提取植物精华和天然香料。
相比传统的提取方法,超临界二氧化碳萃取能够提取更多维生素和抗氧化剂,使得产品具有更好的保湿和护肤效果。
优势与传统的有机溶剂提取方法相比,超临界二氧化碳萃取具有以下优势:1.环保:超临界二氧化碳是一种天然无毒、无污染的溶剂,使用超临界二氧化碳进行萃取不会对环境产生负面影响。
2.节能:超临界二氧化碳是一种可再生的溶剂,可以循环使用,减少能源消耗。
超临界二氧化碳流体萃取技术五
8.1 SFE-GC联用
这是SFE与色谱技术联用最成功的一 种模式。大多通过一根毛细管限流器对 SFE进行降压,然后低温捕集萃取物,再快 速升温切换进样而实现的。 接口方法有: (1)柱头进样式SFE-GC。 (2)分流式SFE-GC。 (3)使用外接GC的积蓄器。
47
8.2 SFE-SFC联用
于液体状态,使得SF具有良好的动力学特征;
(4)可压缩性:当温度略高于临界点时,SCF的压
缩系数最大,即此时压力发生微小变化就能导致密 度有较大变化。
8
9
3. 常用的超临界流体
10
4. 超临界流体选择原则
用于超临界流体萃取的超临界 流体须稳定、安全、易于操作且对 于被萃取物有一定的溶解度和良好 的选择性。
41
42
7.3.2 在医药保健品方面的应用
在抗生素药品生产中,传统方法常使 用丙酮、甲醇等有机溶剂,但要将溶剂完 全除去,又不使药品变质非常困难,若采 用SFE法则完全可以符合要求。另外,用 SFE法从银杏叶中提取的银杏黄酮, 从鱼 的内脏、骨头中提取的多烯不饱和脂肪 酸(DHA,EPA),从沙棘籽提取的沙棘油,从 蛋黄中提取的卵磷脂等对心脑血管疾病 具有独特的疗效。
在食品方面的应用 在医药保健品方面的应用 天然香精香料的提取 在化工方面的应用
39
7.2.1 在食品方面的应用
目前已可用超临界二氧化碳从葵花籽、 红花籽、花生、小麦胚芽、可可豆中提 取油脂,这种方法比传统的压榨法的回收 率高,而且不存在溶剂法的溶剂分离问题。
40
番茄红素的提取
番茄红素是一类重要的类胡萝卜素,因 其优越的生理功能日益引起人们的关注。超 临界流体萃取技术在其提取中的应用,已取 得了一些成果。 表2是各研究者得出的超临界流体萃取的 最佳条件及萃取率。
超临界流体萃取分离技术综述
超临界流体萃取分离技术综述发布时间:2022-11-08T01:11:19.553Z 来源:《科技新时代》2022年6月第12期作者:洪韦龙[导读] 超临界流体萃取是一种应用广泛的分离技术,被广泛应用于各个领域洪韦龙34082219911112****摘要:超临界流体萃取是一种应用广泛的分离技术,被广泛应用于各个领域。
文章首先从金属化工、医药工业、食品工业和环境工程四大方面,介绍了超临界流体萃取技术的优点与应用,最后又对发展超临界流体萃取技术做出了展望。
关键词:超临界流体;超临界萃取;CO21 超临界流体萃取技术的发展概况20世纪50年间,美国的Todd和Elgin公司,最先对超临界流体中提取分离的能力进行了基础研究。
而德国也成为最早实现产业化的国家。
1978年,国际上的第一个套超临界萃取工业装置建立,并第一次利用设备成功从咖啡豆中提炼咖啡因。
20世纪70时代末至80年代初期,在中国首次进行了超临界水提取工艺的研发实验,并获得了相应的研究成果。
在踏入21世纪之后,已完成了多类产品的工业化生产。
因为反应的温和、效率高、清洁的特性,超临界萃取技术已在石油、制药、食品加工和环保等方面获得了巨大的技术进展和广泛的应用空间。
2 超临界流体萃取技术的简介2.1超临界流体超临界流体,是指某种物质可以达到本身的临界点工作温度和最大临界压力的情况,具有了气态和液态的双重特点,即对溶质有很大的溶解性,而且便于传播和移动,扩散系数约为液态的10~100倍。
超临界流体的溶解能性可透过变化水温和压强加以控制,使之能够实现选择性裂解。
在目前,CO2已经是最常用的超临界流体。
2.2超临界流体萃取的基本原理超临界流体提取技术是指通过将超临界流体与固体或液态物料相互碰撞,使之可置入超临界流体内,从而萃取出目标物料,并通过改变温度和压强,将超临界流体和物料彼此隔离。
2.3超临界流体萃取的影响因素(1)萃取条件。
如萃取压力、萃取温度、萃取时间等。
二氧化碳超临界流体萃取技术简介
常见临界流体萃取辅助剂
被萃取物 咖啡因 单甘酯 亚麻酸
青霉素G钾盐 乙醇 豆油
菜子油 棕榈油 EPA ,DHA
超临界流体
CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2
辅助剂 水
丙酮 正己烷
水 氯化锂 己烷,乙醇
丙烷 乙醇 尿素
超临界流体旳选择性
超临界流体萃取技术
(Supercritical Fluid Extraction,SFE)
物质有三种状态: 气态、液态、固态 流体状态
物质旳第四态:超临界状态
临界温度:每种物质都有一种特定 温度,在这个温度以上,不论怎样 增大压强,虽然密度与液态接近, 气态物质也不会液化。这个温度称 为物质旳临界温度。
④ 化合物旳相对分子量越高,越难萃取。
分子量在200~400范围内旳组分轻易萃 取,有些低相对分子质量、易挥发成份甚 至能够直接用二氧化碳液体提取;高分子 量物质(如树胶、蜡等)则极难萃取。
超临界CO2是非极性溶剂,在许 多方面类似于己烷,对非极性旳脂 溶性成份有很好旳溶解能力,对有 一定极性旳物质(如黄酮、生物碱 等)旳溶解性就较差。其对成份旳 溶解能力差别很大,主要与成份旳 极性有关,其次与沸点、分子量也 有关。
3 扩散系数比气体小,但比液体高一到 两个数量级,具有很强旳渗透能力
4 SCF旳介电常数,极化率和分子行为 都与气液两相都有明显差别
总之,超临界流体不但具有液体 旳溶解能力,也具有气体旳扩散和 传质能力
超临界流体萃取
(Supercritical Fluid Extraction,SFE)
超临界流体萃取是利用超临 界流体作萃取剂,从液体或固体 中萃取出某些成份并进行分离旳 技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b u e ci c lCO2 l i y S p r r ia t ud F
Y hnu L X ̄x n ,M a og, hn ago uSuho, i i i d a a n Zag i u a Dr Jn
( . h c o l f it h ooya d F o n ie r g ee U i r t o e h o g ,H f ,A h i 3 0 9 hn ; 1 T eS h o o o c n l n o d E gn e n ,H fi n es y f c n l y e i n f 2 0 0 ,C i B e g i v i T o e i a
w s mp o e b s d n t e b v ts d n u e t e olw o cu in : L w r s u e a b n f h e a ae f a i r v d a e o h a o e e t a i d c d h fl n o c n ls s o o p e s r c n e e t t e s p rt o i g d n s e a d g r e i e lw; wh n tmp rt r slwe h n 4 C , ic e s g tmp r tr a o e e tte s p r t r a e o i a d na y l d n o e e ea u e i o rt a 0 o n rai n e e au e c n n tb n f e a ae i h o a d na y l w b tg r e o i e T e tmp r tr h c sh g e a 0 o a o e e tet e a d n s e o a d n a fg r e i el u ad n sd ; h o e e au e w ih i ih rt n 4 C c n n t n f i r g e o i rg r e i h b i h r d yl w Fn l e l . i a y, t e b s e h oo ru e i o sr ce o l h et tc n lg o t s c n tu td: te b t s p r t n r s u e i MP , te f s e a a o y h oh e a ai p e s r s o 8 a h rt p r t n i s i
p r c t n d r g t ep o e st a ad n sd a e a ae o t e e h u td s l t n T e u i ai u n r c s t r e o i e w ss p rt d f m h x a se o ui . h n,t e e ta ttc n l g f C i f o i h h g r o h xr c h oo o F e y S
tc n q e i t , i h d e n d tc e r s e t ey t a e n u n e o e eau e a d p e s r n t e g r e o i e e h i u :F r l sy t a b e ee td e p ci l h t t if e c f t mp r t r n r s u e o a d n sd v h l h
中 图 分类 号 :T 0 8 S 0 Q 2 ;T 2 1 文 献 标 志 码 :A
S u yo h t cin T c n lg f g - u l y Gad n s e t d n t eExr t e h oo y o h q ai r e c Fc r,B zo ,A h i 3 80 hn) . ai a a Pout at y ohu n u 2 6 0 ,C i n u o a A sat adns ew set c dadrf e o x as dsltno grei ylwwt prri O u (C ) bt c:G reoi a x at n i df m eh ut ui f a na eo i s eeie C 2 i S F r d r e en r e o o d l h u ta l l fd
第 l 期( 2 总第 17 5 期)
20 年 1 08 2月
农产 品加工 ・ 学刊
Ac d mi ro ia fF r Prd c sPr c s i g a e c Pe d c lo a m o u t o e sn i
No 1 .2
De . c
文章编号 :1 7— 66( 0 8 1— 0 — 3 6 19 4 20 ) 2 06 0 4
超 临界 C 流体 萃取分 离 O2 高纯栀子甙 的工艺研究
余顺火 ,李先祥 ,马道荣 ,章建国
(. 1 合肥工业大学 生物与食品工程学 院,安徽 合肥 2 00 ;2 安徽省毫州市亚强天然产物制 品厂 ,安徽 毫州 30 9 . 26 0 ) 3 80 摘要 :采用超 临界 C O 流体萃取分离技术 ,对栀子黄提取废液 中的栀子甙进行分离精制 。分别考察了分离温度和分 离压力对栀子甙和栀子黄分离效果的影响 ,在 此基 础上对超临界 C O 流体萃取 的分 离工 艺进 行了改进。实验结果表 明 ,降低分离压力有利于对栀子甙和栀子黄的分离 ,分离 温度低于 4 0℃时 ,升高温度有利于栀子甙分离而不利于栀 子黄分离 ;分离温度在高于 4 0℃时 ,对二者分离均不利。改进后 的 “ 一萃两分”工艺最佳分离工艺参数 为:分离压 力均为 8M a P ,第 1 次分离温度为 4 0℃ ,第 2 次分离温度为 2 5℃。 关键词 :超临界 C : O 流体 ;栀子甙 ;分离