2014年广东高考数学试卷

合集下载

2014年高考真题(文科数学)广东卷 纯Word版解析可编辑

2014年高考真题(文科数学)广东卷 纯Word版解析可编辑

2014·广东卷(文科数学)1.[2014·广东卷] 已知集合M ={2,3,4},N ={0,2,3,5},则M ∩N =( ) A .{0,2} B .{2,3} C .{3,4} D .{3,5}1.B [解析] ∵M ={2,3,4},N ={0,2,3,5},∴M ∩N ={2,3}. 2.[2014·广东卷] 已知复数z 满足(3-4i)z =25,则z =( ) A .-3-4i B .-3+4i C .3-4i D .3+4i2.D [解析] ∵(3-4i)z =25,∴z =253-4i =25(3+4i )(3-4i )(3+4i )=3+4i. 3.[2014·广东卷] 已知向量a =(1,2),b =(3,1),则b -a =( ) A .(-2,1) B .(2,-1) C .(2,0) D .(4,3)3.B [解析] b -a =(3,1)-(1,2)=(2,-1).4.[2014·广东卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤8,0≤x ≤4,0≤y ≤3,则z =2x +y 的最大值等于( )A .7B .8C .10D .114.D [解析] 作出不等式组所表示的平面区域,如图中阴影部分所示.作出直线l :2x +y =0,平移该直线,当直线经过点A (4,3)时,直线l 的截距最大,此时z =zx +y 取得最大值,最大值是11 .5.[2014·广东卷] 下列函数为奇函数的是( ) A .2x -12x B .x 3sin xC .2cos x +1D .x 2+2x5.A [解析] 对于A 选项,令f (x )=2x -12x =2x -2-x ,其定义域是R ,f (-x )=2-x -2x=-f (x ),所以A 正确;对于B 选项,根据奇函数乘奇函数是偶函数,所以x 3sin x 是偶函数;C 显然也是偶函数;对于D 选项,根据奇偶性的定义,该函数显然是非奇非偶函数.6.[2014·广东卷] 为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .206.C [解析] 由题意得,分段间隔是100040=25.7.、[2014·广东卷] 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件 7.A [解析] 设R 是三角形外切圆的半径,R >0,由正弦定理,得a =2R sin A ,b =2R sin B .故选A.∵sin ≤A sin B ,∴2R sin A ≤2R sin B ,∴a ≤b .同理也可以由a ≤b 推出sin A ≤sin B .8.[2014·广东卷] 若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( )A .实半轴长相等B .虚半轴长相等C .离心率相等D .焦距相等8.D [解析] ∵0<k <5,∴5-k >0,16-k >0.对于双曲线:x 216-y 25-k =1,其焦距是25-k +16=221-k ;对于双曲线:x 216-k -y 25=1,其焦距是216-k +5=221-k .故焦距相等.9.、[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定9.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.10.、[2014·广东卷] 对任意复数ω1,ω2,定义ω1*ω2=ω1ω2,其中ω2是ω2的共轭复数,对任意复数z 1,z 2,z 3有如下四个命题:①(z 1+z 2)*z 3=(z 1*z 3)+(z 2*z 3); ②z 1*(z 2+z 3)=(z 1*z 2)+(z 1*z 3); ③(z 1*z 2)*z 3=z 1*(z 2*z 3); ④z 1*z 2=z 2*z 1.则真命题的个数是( ) A .1 B .2 C .3 D .410.B [解析] 根据新定义知,(z 1+z 2)*z 3=(z 1+z 2)z 3=(z 1*z 3)+(z 2*z 3),所以①正确;对于②,z 1*(z 2+z 3)=z 1z 2+z 3=z 1z 2+z 1z 3=(z 1*z 2)+(z 1*z 3),所以正确;对于③,左边=(z 1z 2)*z 3=z 1z 2 z 3;右边=z 1*(z 23)=z 1z 2 z 3=z 1z 2z 3=z 1z 2z 3→,不正确;对于④,可以通过举特殊例子进行判断,z 1=1+i ,z 2=2+i ,左边=z 1*z 2=z 1z 2=(1+i)(2+i)=3+i ,右边=z 2*z 1=z 2z 1=(2+i)(1-i)=3-i ,所以④不正确.11.、[2014·广东卷] 曲线y =-5e x +3在点(0,-2)处的切线方程为________.11.5x +y +2=0 [解析] ∵y ′=-5e x ,∴所求切线斜是k =-5e 0=-5,∴切线方程是y -(-2)=-5(x -0),即5x +y +2=0.12.[2014·广东卷] 从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为________.12.25 [解析] 所有事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e ),共10个,其中含有字母a 的基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),共4个,所以所求事件的概率是P =410=25.13.、[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.13.5 [解析] 在等比数列中,a 1a 5=a 2a 4=a 23=4.因为a n >0,所以a 3=2,所以a 1a 2a 3a 4a 5=(a 1a 5)(a 2a 4)a 3=a 53=25,所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5. 14.[2014·广东卷] (坐标系与参数方程选做题)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________.14.(1,2) [解析] 本题考查极坐标方程与直角坐标方程的转化以及曲线交点坐标的求解.曲线C 1的直角坐标方程是2x 2=y ,曲线C 2的直角坐标是x =1.联立方程C 1与C 2得⎩⎪⎨⎪⎧2x 2=y ,x =1,解得⎩⎪⎨⎪⎧y =2,x =1,所以交点的直角坐标是(1,2). 15.[2014·广东卷] (几何证明选讲选做题)如图1-1所示,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则△CDF 的周长△AEF 的周长=________.图1-115.3 [解析] 本题考查相似三角形的性质定理,周长比等于相似比.∵EB =2AE ,∴AE =13AB =13CD .又∵四边形ABCD 是平行四边形,∴△AEF ~△CDF ,∴△CDF 的周长△AEF 的周长=CD AE =3.16.、[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322.(1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ.17.[2014·广东卷] 某车间20名工人年龄数据如下表:年龄(岁) 工人数(人)19 1 28 3 29 3 30 5 31 4 32 3 40 1 合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差. 18.、[2014·广东卷] 如图1-2所示,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC =PC =2,作如图1-3折叠:折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ; (2)求三棱锥M - CDE 的体积.图1-2 图1-319.[2014·广东卷] 设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.20.、[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.21.[2014·广东卷] 已知函数f (x )=13x 3+x 2+ax +1(a ∈R ).(1)求函数f (x )的单调区间;(2)当a <0时,试讨论是否存在x 0∈⎝⎛⎭⎫0,12∪⎝⎛⎭⎫12,1,使得f (x 0)=f ⎝⎛⎭⎫12.。

2014高考数学(理科)真题-广东

2014高考数学(理科)真题-广东

2014高考数学(理科)真题-广东1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A.{1,0,1}-B.{1,0,1,2}-C.{1,0,2}-D.{0,1} 【答案】B2.已知复数Z 满足(34)25,i z +=则Z=A.34i -B.34i +C.34i --D.34i -+ 【答案】A【解析】2525(34):=34(34)(34)25(34)34,.25i z i i i i i -=++--==-提示故选A3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A.8B.7C.6D.5【答案】C 【解析】:(),(2,1)(1,1)3,3,6,.C M m M m C --==-∴-=答案:提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选4.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的 A.离心率相等 B.虚半轴长相等 C.实半轴长相等 D.焦距相等【答案】D【解析】09,90,250,(9)34(25)9,k k k k k k <<∴->->+-=-=-+从 而 两 曲 线 均 为 双曲线,又:25故 两 双 曲 线 的焦 距 相 等,选 D.5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是 A.(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)【答案】B【解析】01,21,260,.B =∴即 这 两 向 量 的 夹 角 余 弦 值 为 从 而 夹 角 为 选6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A.200,20B.100,20C.200,10D.100,10【答案】A 【解析】(350045002000)2%200,20002%50%20,.A ++⋅=⋅⋅=∴样本容量为抽取的高中生近视人数为:选7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定 【答案】D8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A.60 B..90 C.120 D.130 【答案】D【解析】12345112512225513112252541,2,31:C 10;:C 40;:C C C 80.104080130,D.x x x x x C C A C C ++++=+=+=++=可取和为的元素个数为和为2的元素个数为和为3的元素个数为故满足条件的元素总的个数为选9.不等式521≥++-x x 的解集为. 【答案】(-∞,-3]∪[2,+∞)10.曲线25+=-xey 在点)3,0(处的切线方程为【答案】035=-+y x【解析】'5'5,5,35,530xx y e y y x x y -==-∴=-∴-=-+-=所求切线方程为即11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.【答案】61 【解析】3671067,36,136,.6C C =要使为取出的个数中的中位数则取出的数中必有个不大于另外个不小于故所求概率为12.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+,则=b a .【答案】2 【解析】2222222:cos cos ,2, 2.sin cos sin cos 2sin ,sin()2sin ,sin 2sin ,2, 2.::2,2224,2,2b C c B a aa b bB C C B B B C B A B aa b ba b c a c b b b ab ac a ab aa b b+==∴=+=+=∴==∴=+-+-⋅+==∴==解法一由射影定理知从而解法二:由上弦定理得:即即解法三由余弦定理得即即13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++=.【答案】50 【解析】51011912101112202019151201011,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100,50.a a a a a a e S a a a S a a a S a a a a e S =∴==+++=+++∴====∴=设则14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sincos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__ 【答案】(1,1) 【解析】221212(sin )cos ,,:1,(1,1)C y x C y C C ρθρθ===∴即故其直角坐标方程为:的直角坐标方程为与的交点的直角坐标为15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___【答案】9 【解析】22,()()9CDF AEF CDF CD EB AE AEF AE AE∆∆∴∆+===∆显然的面积的面积16、(12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf , (1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f . 【答案】5523(1)()sin()sin ,121243232(2)(1):()sin(),4()()))44coscos sin )(sin()cos cos()sin )44443cos sin 42cos (0,),2s f A A Af x x f fπππππππθθθθππππθθθθπθθπθθ=+==∴===+∴+-=++-+=+-+-===∴=∈∴由得in 33()sin()444)f θπππθθπθθ=∴-=-+=-===17、(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.【答案】121272(1)7,2,0.28,0.08;2525(2):n n f f ======频率分布直方图如下所示(](](]0044(3),30,350.2,30,35(4,0.2),130,35:1(0.2)(0.8)10.40960.5904.B C ξξ-=-=根据频率分布直方图可得工人们日加工零件数落在区间的概率为设日加工零件数落在区间的人数为随机变量,则故4人中,至少有人的日加工零件数落在区间的概率为18.(13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =030,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E.(1)证明:CF ⊥平面ADF ;(2)求二面角D -AF -E 的余弦值. 【答案】:(1):,,,,A ,,解证明平面平面平面平面平面平面⊥⊂∴⊥=⊂⊥PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD,,,,,,,,.(2):E EG//CF DF G,平面平面又平面平面解法一过作交于∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥AD PCD CF PCD CF AD AF PC CF AF AD AF ADF AD AF A CF ADF00,,G GH AF H,EH,,CD 2,30,130,==1,2平面A 平面A 过作于连则为二面角的平面角设从而⊥∴⊥⊥∠--=∠=∴∠=CF DF EG DF EHG D AF E DPC CDF CF CD4,,,12,23,2233EG .4∥还易求得EF=从而=∴=∴==⋅===DE CFCP EF DC DP CPDE DF DE EF DF3,223cos 易得故===⋅∴=====∴∠==AE AF EF AE EF EH AF HG GH EHGEH 19=:,,,,,2,(0,0,2),C(0,2,0),,,22,0),解法二分别以为轴建立空间直角坐标系设则设则λλ==-DP DC DA x y z DC A CF CP F11,,43,0),222ADF 1CP (3,1,0),2AEF 可得从而易得取面的一个法向量为设面的一个法向量为λ⊥===-DF CF F E n22221212(x,y,z),0,0,||||2利用且得可以是从而所求二面角的余弦值为=⋅=⋅=⋅==⋅⨯n n AE n AF n n n n n19.(14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=--∈,且315S =.(1)求123,,a a a 的值; (2)求数列{}n a 的通项公式; 【答案】211222122331212121233121232112(1)2314127+=432424()204(15)20,+83,,51587,3,5,7,(2)2342,2(1)3(1)4(1)n n n na S a a a a S a S a a a a a a a a a S a a a a a S na n n n S n a n n +-==-⨯-⨯=-=-⨯-⨯=---=---∴==⎧⎨=⎩∴=--=-=====--∴≥=-----①②联立①②解得综上③当时11122161,22(1)21,:()(1),1,3211,;(),,21,1,216122211(21)322411322232(1)11,n n n k k k n n a a n na n i n a ii n k a k n k k k a a k k k k k k k k k k k n k ++--+=+=+===⨯+==+=+-+=+-=⋅+++-=++=+=++=+④③④并整理得:由猜想以下用数学归纳法证明由知当时猜想成立假设当时猜想成立即则当时这就是说时,,2 1.n n N a n *∈=+猜想也成立从而对一切20.(14分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【答案】22222:(1)33,954, 1.94解椭圆的标准方程为:====∴==-=-=∴+=c c e a a a b a c x y C00(2),,4(3,2),(3,2).(),若一切线垂直轴则另一切线垂直于轴则这样的点P 共个,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为-±±-=-x y y y k x x00222200200(),194(94)18()9()40,,0,即将之代入椭圆方程中并整理得:依题意=-++=++-⎡⎤+--=⎣⎦∆=y k x x y x y k x k y kx xy kx220022002200222000012(18)()36()4(94)0,4()4(94)0,(9)240,,1,即:即两切线相互垂直-⎡⎤---+=⎣⎦--+=∴--+-=∴=-k y kx y kx k y kx k x k x y k y k k20202200224:1,913,(3,2),(3,2),13.即显然这四点也满足以上方程点的轨迹方程为-=--∴+=-±±∴+=y x x y P x y21.(本题14分)设函数()f x =2k <-,(1)求函数()f x 的定义域D (用区间表示);(2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).【答案】2222221:(1)(2)2(2)30,2123:210,44(1)4(2)0(2)解则①或②由①得+++++->++>++<-++->∆=--=-><-x x k x x k x x k x x k x x k k k k22222,21=01210:11230,23044(3)4(2)0(2),方程的解为由得由②得:方程的判别式∴++--±∴++-><->-++++<+++=∆=-+=--><-x x k x x k x x x x k x x k k k k21230:112,11111(,1(121(12).该方程的解为由得∴-±+++<-<<-+<-∴--<-<-<-+-+∴=-∞-----+-++∞x x k x k D23'23222'(2)0,2(2)1()2(22)2(22)2(1)(21)()(,1,10,21110,()0;()(11),设则当时当时--=>⎡⎤++=-⋅⋅⎢⎥⋅+++⎣⎦=-+⋅+++∈-∞-+<+++>+>∴>∈--u x x k f x u x x u x x x k i x x x x k f x ii x 2'2'2'10,21310,()0;()(1,1,10,21310,()0;()(1),10,21110,()0.,():(,11,1,当时当时综上在上的单调增区间为+<+++<-+<∴<∈--++>+++<-+<∴>∈-++∞+>+++>+>∴<-∞---+x x x k f x iii x x x x k f x iv x x x x k f x f x D ():(11),(1).在上的单调减区间为----++∞f x D2222(3)g(x)(2)2(2)3,(1),x D ,g(x)0;g(1)(3k)2(3)3(6)(2),,6,(1)0,设由知当时又显然当时从而不等式=+++++-∈>=+++-=++<->x x k x x k k k k k g 22222222()(1)()(1),()(1)[(2)2(2)3][(3k)2(3)3][(2)(3k)]2[(2)(3)]>⇔<-=+++++--+++-=++-++++-+f x f g x g g x g x x k x x k k x x k x x k k26,1113(3)(1)(225)1111,<-∴--<-<-<-<<-<--+=+-+++k x x k x x2()(3)(1)0,()(1),()(11,11),2250,11当欲使即亦即即<+->∴><++--<<-+∴--<-+<<i x x x f x f g x g x x x x k22(3)(1)0,225(2()(5)3(5)0,()(1),()(1);)13,此时时即--<+->+++=++++<-++<<><-x x x x k x x k k k g x g f x f ii x22(iii)31,(3)(1)0,2253(5)0,()(1),;(iv)1(3)(1)0,2253(1,时不合题意--<<+-<+++<-++<∴><<+->+++<-+x x x x x k k g x g x x x x k x25)0,()(1),;(v)(3)(1)0,()(1),2250,(1,1111)(1),从而综上所述合题意欲使则即的解集为:+<∴<>+->∴<+++-+--<<-+-+<<-+<>k g x g x x x g x g x x x x k f x f11(13)(1(11.(1,---⋃--⋃-⋃-+-。

2014年高考数学广东卷(理科B卷)和参考答案

2014年高考数学广东卷(理科B卷)和参考答案

2014年普通高等学校招生全国统一考试(广东卷)理科数学(B 卷)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =−=则M N ∪=A .{1,0,1}−B . {1,0,1,2}−C . {1,0,2}−D . {0,1} 2.已知复数z 满足(34)25,i z +=则z = A .34i − B . 34i + C . 34i −−D . 34i −+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥−⎩且的最大值和最小值分别为m 和n ,则m n −=A .8B .7C .6D .54.若实数k 满足09,k <<则曲线221259x y k −=−与曲线221259x y k −=−的A .离心率相等B .虚半轴长相等C . 实半轴长相等D .焦距相等 5.已知向量()1,0,1,a =−则下列向量中与a 成60°夹角的是 A .(-1,1,0)B . (1,-1,0)C . (0,-1,1)D . (-1,0,1)6.已知某地区中小学学生人数和近视情况分别如图1和如图2所示,为了解该地区中下学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A . 100,10B . 200,10C . 100,20D . 200,207.若空间中四条两两不同的直线1234,,,,l l l l 满足122334,,,l l l l l l ⊥⊥⊥则下面结论一定正确的是 A .14l l ⊥ B .14//l l C .14,l l 既不垂直也不平行 D .14,l l 的位置关系不确定初中高中年级O8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5iA x x x x x x i ∈−=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A .130 B .120 C .90 D .60二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分. (一)必做题(9~13题)9.不等式125x x −++≥的解集为10.曲线52x y e −=+在点(0,3)处的切线方程为11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 12.在ABC Δ中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+, 则ab= 13、若等比数列{}n a 的各项均为正数,且512911102e a a a a =+, 则1220ln ln ln a a a +++=(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,则曲线1C 和2C 交点的直角坐标为_________15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且AE EB 2=,AC 与DE 交于点F , 则=ΔΔ的面积的面积AEF CDFCAFD三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数R x x A x f ∈+=),4sin()(π,且53122f π⎛⎞=⎜⎟⎝⎠, (1)求A 的值; (2)若23)()(=−+θθf f ,2,0(πθ∈,求)43(θπ−f .17.(本小题满分13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下: 30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0.12 (30,35] 5 0.20 (35,40] 8 0.32 (40,45] 1n 1f (45,50]2n2f(1)确定样本频率分布表中121,,n n f 和2f 的值; (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.18.(本小题满分13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,030DPC ∠=,AF PC ⊥于点F ,//FE CD ,交PD 于点E .(1)证明:CF ADF ⊥平面 (2)求二面角D AF E −−的余弦值19.(本小题满分14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=−−∈,且315S =. (1)求123,,a a a 的值;(2)求数列{}n a 的通项公式.20.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为,离心率为3,(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.21.(本小题满分14分)设函数()f x =,其中2k <−,(1)求函数()f x 的定义域D ;(用区间表示) (2)讨论()f x 在区间D 上的单调性;(3)若6k <−,求D 上满足条件()(1)f x f >的x 的集合.A BCD EFp2014年普通高等学校招生全国统一考试(广东卷)理科数学(B 卷)参考答案一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 题次 1 2 3 4 5 6 7 8 答案B ACD B D D A第8题解析:(1)含有4个“0”的情形:①4个0,1个1:155C =;②4个0,1个-1:155C =(2)含有3个“0”的情形: ①3个0,2个1:2510C =;②3个0,1个1,1个-1:115420=C C ⋅;③3个0,2个-1:2510C =(3)含有2个“0”的情形:①2个0,3个1:3510C =;②2个0,2个1,1个-1:215330C C ⋅=;③2个0,1个1,2个-1:215330C C ⋅=;④2个0,3个-1:3510C =. 综上所述,所有的情况数为:5510201010303010130N =++++++++=种. 二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分. (一)必做题(9~13题)9、(][),32,−∞−∪+∞; 10、530x y +−=; 11、16; 12、2; 13、50; (二)选做题(14、15题,考生只能从中选做一题)14、(坐标系与参数方程选做题)()1,1. 15、(几何证明选讲选做题)9. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16、解:(1)依题意有5523sin sin 12124322f A A A ππππ⎛⎞⎛⎞=+===⎜⎟⎜⎟⎝⎠⎝⎠,所以A =(2)由(1)得()),4f x x x R π=+∈,()()3sin sin 442f f ππθθθθθ⎡⎤⎛⎞⎛⎞∴+−=++−+==⎜⎟⎜⎟⎢⎥⎝⎠⎝⎠⎣⎦,cos 4θ∴=,(0,sin 24πθθ∈∴===∵,334444fπππθθθ⎛⎞⎛⎞∴−=−+==⎜⎟⎜⎟⎝⎠⎝⎠.17、解:(1)12127,2,0.28,0.08n n f f====;(2)先计算频率/组距;然后作图即可;(3)由(1)知,任取一人,日加工零件数落在区间(30,35]的概率为15,设该厂任取4零件数落在区间(30,35]的事件为A,则()4414155P A⎛⎞⎛⎞=−=⎜⎟⎜⎟⎝⎠⎝⎠,所以()4436915625=P A⎛⎞=−⎜⎟⎝⎠答:在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率为369625.18、解:(1)证明:PD⊥∵平面ABCD,AD⊂平面ABCD,∴PD AD⊥①∵四边形ABCD为正方形,∴AD CD⊥②AD CD∩∵AD∴⊥平面PCD,CF⊂∵平面PCD,AD CF⊥③AF PC⊥∵即AF CF⊥④且AF AD A∩=,CF∴(2)方法1(传统法)过E作EG DF⊥交DF于G,过GH AF⊥交AF于H,连接EH,EDG∠(过程略)方法2(向量法)由(1)可得,,,AD PD AD DC⊥⊥,建立空间直角坐标系D xyz−,如图所示.设DC a=,在Rt PDCΔ中,,30DPCCD a∠== ,则2,PC a PD==,由(1)知PF DF⊥,所以3cos302PF PD a==,因为//FE CD,所以EF PF PEDC PC PD==,所以34EF a=,4PE=,所以4ED=,所以3(0,0,),(,0,0),,,0),(0,,0)444aA a E F C a,则3,0,),(,,),444aAE a AF a=−=−设平面AEF的法向量为(,,)n x y z=,则00n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩,得043044x az a x y az ⎧−=⎪⎪+−=⎩,取1x =,则,04z y ==,所以(1,0,4n = , 由(1)可知,平面ADF的法向量为,,0)44aCF =−,所以cos ,19||||n CF n CF n CF ⋅<>====⋅ ,设二面角D AF E −−为θ,则cos 19θ=. 19、解:(1)当1n =时,1227a a =− ①当2n =时,123420a a a +=− ②312315S a a a =++= ③由①②③解得1233,5,7a a a ===.(2)当1n >时,21234n n S na n n +=−−①()()()21213141n n S n a n n −=−−−−−② ①—②化简得()122161n n na n a n +=−++(当1n =时也成立),方法1:令()()[]121B 21n n n a A n n a An B ++++=−++⎡⎤⎣⎦,求得21A B =−=−,, 即()()[]122112121n n n a n n a n +−+−=−−−⎡⎤⎣⎦, 令21n n b a n =−−,则()1221n n nb n b +=−,即1212n n n b b n+−=, 因为1230,0,0b b b ===,故必有0n b =,即21n a n =+,方法2:(数学归纳法)由(1)1233,5,7a a a ===,猜想21n a n =+, 下面用数学归纳法证明对,21n x N a n +∀∈=+:当1,2,3n n n ===时,成立, 假设当n k =时成立,即有21k a k =+,()122161k k ka k a k +=−++, 当1+n k =时, ()()21221216146k ka k k k k k +=−+++=+,所以()2146232112k k k a k k k++==+=++,成立,综上所述,对,21n x N a n +∀∈=+.20、解:(1)依题意有3,2c a b ===故所求椭圆C 的标准方程为22194x y +=,(2)当两条切线的斜率存在时,设过00(,)P x y 点的切线为()00y y k x x −=−,联立()0022194y y k x x x y ⎧−=−⎪⎨+=⎪⎩,消去y 得()()()222000049189360k x k y kx x y kx ++−+−−=,判别式()()()22222000018364940=ky kx k y kx ⎡⎤Δ−−+−−=⎣⎦,化简得()2200940y kx k −−−=,即()2220000924x k x y k y −−+−,依题意得201220419y k k x −⋅==−−,即220013x y +=, 当两条切线的斜率有一条不存在时,结合图像得P 是直线3,3,2,2x x y y =−===−, 的四个交点,也满足220013x y +=,故点P 的轨迹方程为2213x y +=,法二:(2)当椭圆22194x y +=的切线的斜率存在且不为0时,设切线方程为y kx m =+,代入22194x y +=,整理得222(49)189360k x mkx m +++−=,令判别式0Δ=,得222(18)4(49)(936)0mk k m −+−=,即2294m k =+, 把切线方程化为m y kx =−,平方,得222()94m y kx k =−=+,整理得222(9)240x k xyk y −−+−=,注意到所有斜率为k 的椭圆的切线都满足该方程,设该方程的根为12,k k ,相应的切线为12,l l ,当12,l l 互相垂直时,2122419y k k x −==−−,即2213x y +=.由于满足2213x y +=的点(,)x y 既在1l 上,也在2l 上, 故2213x y +=就是12,l l 交点的轨迹方程;当切线斜率不存在或斜率为0时,易知点P 的坐标为(3,2)−−或(3,2)−或(3,2)−或(3,2),显然都满足2213x y +=,故所求点P 的轨迹方程为2213x y +=.21、解:(1)依题意有222(2)2(2)30x x k x x k +++++−>,()()222+3210xx k x x k ++⋅++−>,2,31,13k k k <−∴+<−<−∵故222+3=021=0x x k x x k ++++−,均有两根记为:12341111x x x x =−+=−=−+=−−注意到3124x x x x >>>,故不等式()()222+3210x x k x x k ++⋅++−>的解集为:()()()4213,,,x x x x −∞∪∪+∞ ,即()()()4213,,,D x x x x =−∞∪∪+∞.(2)令()222=(2)2(2)3,g x x x k x x k x D +++++−∈,则()()()()'22=2(2)222(22)412+1g x x x k x x x x x k ++⋅+++=+⋅++,令()'0g x =,注意到2,11k k <−+<−,故方程2210x x k +++=有两个不相等的实数根记为5611x x =−+=−,且71x =−,注意到3512641x x x x x x >>>−>>>结合图像可知: 在区间()()23,1,,x x −+∞上()'0g x >,()g x 单调递增,在区间()()41,,1,x x −∞−上()'0g x <,()g x 单调递减,故()f x 在区间()()23,1,,x x −+∞上单调递减,在区间()()41,,1,x x −∞−上单调递增. (3)(1)f ==在区间D 上,令()()1f x f =,即2222(2)2(2)3=812x x k x x k k k +++++−++,()()222(2)2(2)350x x k x x k k k +++++−+⋅+=,()()2223250x x k k x x k k ⎡⎤⎡⎤++−+++++=⎣⎦⎣⎦,22232250x x x x k ⎡⎤⎡⎤+−+++=⎣⎦⎣⎦()∗, 方程22250x x k +++=的判别式8160k Δ=−−>,故此方程()∗有4个不相等的实数根,记为8910111,3,11x x x x ==−=−+=−−,注意到6k <−,故,1211,13x x =−+>=−−<−,故89,x x D ∈,(103110x x −=−+−+=>,故10x D ∈,4112420k k x x −−−−−===>,故11x D ∈,结合()()()4213,,,D x x x x =−∞∪∪+∞和函数的图像,可得()(1)f x f >的解集为()()()()1142981310,,,,x x x x x x x x ∪∪∪.。

2014高考文科数学真题及答案解析(广东卷)

2014高考文科数学真题及答案解析(广东卷)

2014高考广东卷文科数学真题及答案解析一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( )A. {}2,0B. {}3,2C. {}4,3D. {}5,3 (2)已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+(3)已知向量)1,3(),2,1(==b a,则=-a b ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4((4)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )A. 7B. 8C. 10D. 11 5.下列函数为奇函数的是( )A.x x 212-B.x x sin 3C.1cos 2+xD.xx 22+ 6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.207.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A s i n s i n ≤”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定 10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*; ③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( ) A.1 B.2 C.3 D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11—13题)11.曲线53x y e =-+在点()0,2-处的切线方程为________.12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABC D 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF三.解答题:本大题共6小题,满分80分 16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且532()122f π=(1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-17(本小题满分13分)某车间20名工人年龄数据如下表: 年龄(岁)工人数(人)19 1 28 3 29 3 30 5 31 4 32 3 40 1 合计20(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3) 求这20名工人年龄的方差.18(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF. (1) 证明:CF ⊥平面MDF (2) 求三棱锥M-CDE 的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222.(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a.3.2232243sin )3125sin()125(.223)125(),3sin()(=∴=⋅==+=∴=+=A A A A f f x A x f ππππππ且 20(本小题满分14分)已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。

2014年高考数学广东卷(理科B卷)+解析

2014年高考数学广东卷(理科B卷)+解析

2014年普通高等学校招生全国统一考试(广东卷)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=( ) A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 答案B2、已知复数z 满足(34)25,i z +=则z =( ) A .34i - B. 34i + C. 34i -- D. 34i -+ 答案A.考查复数的运算,()()()25342534343434i z i i i i ⋅-===-++⋅- 3、若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -= ( )A .8 B.7 C.6 D.5答案 C.考查线性规划,求出三条直线的交点为()111,1,(2,1),,22⎛⎫--- ⎪⎝⎭,故3,36m n m n ==--=,4、若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的( ) A .离心率相等 B.虚半轴长相等C. 实半轴长相等D.焦距相等答案D.考查双曲线,注意到两条双曲线的22234c a b k =+=-相等,故而选D. 5、已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是( ) A .(-1,1,0)B. (1,-1,0)C. (0,-1,1)D. (-1,0,1)答案B.考查向量的夹角与运算,将ABCD 四个选项代入1cos ,cos602a b a b a b⋅===⋅即可选出正确答案6、已知某地区中小学学生人数和近视情况分别如图1和如图2所示,为了解该地区中下学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A. 100,10B. 200,10C. 100,20D. 200,20答案 D.考查分层抽样.总人数为10000人,100002%200⋅=,其中高中生抽取20002004010000=⋅人,故抽取的高中生近视人数为4050%20⋅=人7、若空间中四条两两不同的直线1234,,,,l l l l 满足122334,,,l l l l l l ⊥⊥⊥则下面结论一定正确的是( )A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定 答案D.考查空间直线的位置关系.可利用正方体来判断,易得答案. 8、设集合(){}12345=,,,,1,0,1,1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( ) A.130 B.120 C.90 D.60答案A.考查分类计数原理、排列组合.先分成3类,4个0、3个0、2个0 (1)4个0①4个0,1个1:155C =②4个0,1个-1:155C = (2)3个0:①3个0,2个1:2510C =②3个0,1个1,1个-1:115420=C C ⋅ ③3个0,2个-1:2510C =小学初中高中年级O(3)2个0①2个0,3个1:3510C =②2个0,2个1,1个-1:215330C C ⋅= ③2个0,1个1,2个-1:215330C C ⋅= ④2个0,3个-1:3510C =综上所述,所有的可能性有130种二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分. (一)必做题(9~13题)9、不等式125x x -++≥的解集为答案(][),32,-∞-⋃+∞.考查简单的绝对值不等式,用几何意义很快得出答案. 10、曲线52x y e -=+在点(0,3)处的切线方程为答案53y x =-+.考查复合函数求导、切线方程.'5'05,|5x x y e y -==-=-,故切线方程为53y x =-+.本题易错点在符合函数求导忘记乘以5-.11、从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 答案16.考查分步技术原理和古典概型.基本事件731010120C C ==种,包括6且6为中位数的,前3个数从0—5六个数中选3个,后三个数只能是7、8、9,故满足题意的事件有3620C =种,从而概率为16.本题主要分析准确6为7个数的中位数这个条件就可以很快做出来. 12、在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+,则ab= 答案2.考查正余弦定理,边角互化.222222222a b c a c b b c b ab ac+-+-⋅+⋅=,化简即可.13、若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++=答案50.考查等比数列的基础知识.依题意有51011a a e ⋅=,所求等式左边()10501011ln ln 50a a e =⋅==(二)选做题(14、15题,考生只能从中选做一题)14、(坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,则曲线1C 和2C 交点的直角坐标为_________答案()1,1.考查极坐标方程.212:,:1C y x C y ==,联立方程很快得出结果15、(几何证明选讲选做题)如图3,在平行四边形ABCD中, 点E 在AB 上且AE EB 2=,AC 与DE 交于点F ,则=∆∆的面积的面积AEF CDF 答案9.考查相似三角形面积比等于相似比的平方.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16、(本小题满分12分)已知函数R x x A x f ∈+=),4sin()(π,且53122f π⎛⎫= ⎪⎝⎭, (1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f 。

2014年广东高考数学文科word及答案

2014年广东高考数学文科word及答案

绝密 ★ 启用前2014年普通高等学校招生全国统一考试(广东卷)数学(文)全卷满分150分。

考试用时150分钟。

★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置。

用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔将答题卡上对应题目的答案标明涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( ) A. {}2,0 B. {}3,2 C. {}4,3 D. {}5,3 (2)已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+(3)已知向量)1,3(),2,1(==b a,则=-a b ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4((4)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )A. 7B. 8C. 10D. 115.下列函数为奇函数的是( ) A.xx212-B.x x sin 3C.1cos 2+xD.xx 22+ 6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.207.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是 “B A sin sin ≤”的( ) A.充分必要条件 B.充分非必要条件 C.必要非充分条件 D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定 10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*; ③123123()();z z z z z z **=**④1221z z z z *=*; 则真命题的个数是( ) A.1 B.2 C.3 D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11—13题)11.曲线53x y e =-+在点()0,2-处的切线方程为________.12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF三.解答题:本大题共6小题,满分80分 16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且532()122f π= (1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.18(本小题满分13分)如图2,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2,作如图3折叠,折痕EF∥DC.其中点E,F分别在线段PD,PC上,沿EF折叠后点P在线段AD上的点记为M,并且MF⊥CF.(1)证明:CF⊥平面MDF(2)求三棱锥M-CDE的体积.设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222.(1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a20(本小题满分14分)已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。

2014广东高考数学文科试卷含答案(WORD版).pptx


1
a1 a1
1
1
a2a2
1
1
1
an an
1
. 3
解 : (1)令n 1得 : S 2 (1)S 3 2 0,即S 2 S 6 0,(S 3)(S 2) 0,
1
1
1
1
1
1
Q S1 0,S1 2,即a1 2.
(2)由S 2 n
(n2
n 3)S 3(n2 n
n)
0, 得 : (S
② z1 (z2 z3 ) (z1 z2 ) (z1 z3 ) ;
③ ( z1 z2 ) z3 z1 (z2 z3 ); ④ z1 z2 z2 z1 ;
则真命题的个数是( ) A.1 B.2 C.3 D.4
答案: B 提示:①(z1 z2 )*z3=(z1 z2 )z3 =(z1 z3) (z2 z3)=(z1*z3)+(z2 *z3),故①是真命题;
1 )
3 1
L
1 n1
1 (n 1)
1
4
4
44
4
4
1 4
1
( 1
1
(n
1 1)
1
)
1 3
1 4n
3
1. 3
4
4
学海无 涯
20. 已知椭圆C :
x2 a2
y2 b2
1(a
b 0)的一个焦点为(
5 , 0), 离心率为
5. 3
(1)求椭圆C的标准方程;
(2)若动点P(x0 , y0 )为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.
A. 50 答案: C
B. 40
提示: 分段的间隔为1000 25. 40

2014广东高考真题数学文(含答案)


2013 年普通高等学校招生全国统一考试 数学(文) (广东卷)参考答案与解析 一、 选择题(共 8 小题,每小题 5 分,共 40 分) 1. B 2. D 3. B 4. C 5. A 6. C 7. A 二、填空题(共 6 小题,每小题 5 分,共 30 分) 11. y 5x 3 选做题 14. 1, 2 16.解: (1) f ( 15. 3 三、解答题(共 6 小题,共 80 分) 12.
f ( ) 3sin( ) 3cos 6 6 6 3
17.解: (1)众数是 30,极差是 21.

பைடு நூலகம்


(2)
(3) X
19 28 3 29 3 30 5 31 4 32 3 40 30 20
s2
(19 30) 2 3(28 30)2 3(29 30) 2 5(30 30) 2 4(31 30)2 3(32 30)2 (40 30)2 12.6 20
CDF的周长 = _______ AFE的周长
三.解答题:本大题共 6 小题,满分 80 分.解答须写出文字说明、证明过程和演算步骤. 16. (本小题满分 12 分)
π 5π 3 2 已知函数 f ( x) A sin x , x R ,且 f ( ) 3 12 2 (1)求 A 的值;
2 2


得 9 x0

2
k
2
2 x0 y0 k 4 y0 2 0
设两切线的斜率为 k1 , k2 ,因为两切线垂直,所以 k1k2 1 故 k1k2
4 y0 2 1 ,得 x0 2 y0 2 13 2 9 x0

2014年普通高等学校招生全国统一考试(广东卷)数学试题(文科)解析版


则真命题的个数是 A.1 B.2 C.3 D.4
答案 : B 提示:①(z1 z2 )*z3 =(z1 z2 )z3 =(z1 z3) (z2 z3)=(z1*z3)+(z2 *z3), 故①是真命题;
②z1*(z2 z3 ) z1(z2 z3 ) z1(z2 z3 ) (z1 z2 ) (z1 z3 ) (z1*z2 )+(z1*z3 ), ②对; ③左边=(z1*z2 )z3=z1 z2 z3, 右边 z1 *(z2 z3) z1(z2 z3) z1(z2 z3), 左边 右边, ③错; ④左边=z1*z2 z1 z2 , 右边=z2 *z1 z2 z1, 左边 右边, 故④不是真命题. 综上,只有①②是真命题,故选B.
10、 对任 意复 数 w1, w2 , 定义 w1 w2 w1 w2 , 其中 w2 是 w2 的 共轭 复数 .对 任意 复数 z1, z2 , z3 ,有如下四个命题:
① z1 z2 z3 z1 z3 z2 z3 ② z1 z2 z3 z1 z2 z1 z3 ③ z1 z2 z3 z1 z2 z3 ④ z1 z2 z2 z1
二、填空题:本大题共 5 小题,考生作答 4 小题,每小题 5 分,满分 20 分. (一)必做题(11 13 题) 11.曲线 y 5ex 3 在点 (0, 2) 处的切线方程为
12.从字母 a,b,c, d ,e 中任取两个不同的字母,则取到字母 a 的概率为
13.等比数列 an 的各项均为正数,且 a1a5 4 ,则 log2 a1 log2 a2 log2 a3 log2 a4 log2 a5
2014 年普通高等学校招生全国统一考试(广东卷)
数学(文科)
参考公式:锥体的体积公式V 1 Sh ,其中 S 为锥体的底面面积, h 为锥体的高。 3

2014年高考数学广东卷(文科)和参考答案

2014年普通高等学校招生全国统一考试(广东卷)数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A i B iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.xx212- B.x x sin 3 C.1cos 2+x D.xx 22+答案:A111:()2,(),()22(),222(),A .x xxx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*; ③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且532()122f π=(1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin coscos sin )3(sin()cos cos()sin )33336sin cos 33sin 33sin ,(0,),32f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴--=+--+=+--+-===∴=∈∴解由得26cos 1sin 36()3sin()3sin()3cos 3666323f θθππππθθθθ=-=∴-=-+=-==⨯=某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为(2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)50413210201(121123412100)2012522012.6+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0{}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式 (3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3),()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)(n k k n n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又当时1)1111111()()11111141223(1)444444111111().11434331(1)44n n n n n +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-22220022222520.:1(0)(5,0),.3(1);(2)(,),,.55:(1)5,,3,954,31.94(2),,4x y C a b a b C P x y C P C P c c e a b a c a a x y C x y +=>>====∴==-=-=∴+=已知椭圆的一个焦点为离心率为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x x x y y k x x y k x k y kx x y kx k y kx y kx k y kx -±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即22222000001220220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.k y x k x y k y k k x x y P x y +=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a R f x a x f x f =+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为323200003322000200000020000200111111(2)()()1()()()12332221111()()()3222111111()()()()()3224222111()()23612211()(4122f x f x x ax a x x a x x x x x x a x x x x x a x x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-+00020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,14221487214872148:,0,,8447+2148,01,721484x a x f x f x x a a a a a a ax x a a ++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<<<-<若存在使得必须在上有解方程的两根为只能是依题意即0000025711,492148121,,12127+2148155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)()(1212422a a a a x a a x f x f a x f x f ∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1).2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档