一种改进的基于线性有限元并行计算的追赶算法

一种改进的基于线性有限元并行计算的追赶算法
一种改进的基于线性有限元并行计算的追赶算法

并行计算综述

并行计算综述 姓名:尹航学号:S131020012 专业:计算机科学与技术摘要:本文对并行计算的基本概念和基本理论进行了分析和研究。主要内容有:并行计算提出的背景,目前国内外的研究现状,并行计算概念和并行计算机类型,并行计算的性能评价,并行计算模型,并行编程环境与并行编程语言。 关键词:并行计算;性能评价;并行计算模型;并行编程 1. 前言 网络并行计算是近几年国际上并行计算新出现的一个重要研究方向,也是热门课题。网络并行计算就是利用互联网上的计算机资源实现其它问题的计算,这种并行计算环境的显著优点是投资少、见效快、灵活性强等。由于科学计算的要求,越来越多的用户希望能具有并行计算的环境,但除了少数计算机大户(石油、天气预报等)外,很多用户由于工业资金的不足而不能使用并行计算机。一旦实现并行计算,就可以通过网络实现超级计算。这样,就不必要购买昂贵的并行计算机。 目前,国内一般的应用单位都具有局域网或广域网的结点,基本上具备网络计算的硬件环境。其次,网络并行计算的系统软件PVM是当前国际上公认的一种消息传递标准软件系统。有了该软件系统,可以在不具备并行机的情况下进行并行计算。该软件是美国国家基金资助的开放软件,没有版权问题。可以从国际互联网上获得其源代码及其相应的辅助工具程序。这无疑给人们对计算大问题带来了良好的机遇。这种计算环境特别适合我国国情。 近几年国内一些高校和科研院所投入了一些力量来进行并行计算软件的应用理论和方法的研究,并取得了可喜的成绩。到目前为止,网络并行计算已经在勘探地球物理、机械制造、计算数学、石油资源、数字模拟等许多应用领域开展研究。这将在计算机的应用的各应用领域科学开创一个崭新的环境。 2. 并行计算简介[1] 2.1并行计算与科学计算 并行计算(Parallel Computing),简单地讲,就是在并行计算机上所作的计算,它和常说的高性能计算(High Performance Computing)、超级计算(Super Computing)是同义词,因为任何高性能计算和超级计算都离不开并行技术。

大数据与并行计算

西安科技大学 计算机科学与技术学院 实习报告 课程:大数据和并行计算 班级:网络工程 姓名: 学号:

前言 大数据技术(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。 特点具体有: 大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。《计算机学报》刊登的“架构大数据:挑战、现状与展望”一文列举了大数据分析平台需要具备的几个重要特性,对当前的主流实现平台——并行数据库、MapReduce及基于两者的混合架构进行了分析归纳,指出了各自的优势及不足,同时也对各个方向的研究现状及作者在大数据分析方面的努力进行了介绍,对未来研究做了展望。 大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,处理速度快,1秒定律,可从各种类型的数据中快速获得高价值的信息,这一点也是和传统的数据挖掘技术有着本质的不同。第四,只要合理利用数据并对其进行正确、准确的分析,将会带来很高的价值回报。业界将其归纳为4个“V”——Volume(数据体量大)、Variety(数据类型繁多)、Velocity(处理速度快)、Value(价值密度低)。 从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。 1.大数据概念及分析 毫无疑问,世界上所有关注开发技术的人都意识到“大数据”对企业商务所蕴含的潜在价值,其目的都在于解决在企业发展过程中各种业务数据增长所带来的痛苦。 现实是,许多问题阻碍了大数据技术的发展和实际应用。 因为一种成功的技术,需要一些衡量的标准。现在我们可以通过几个基本要素来衡量一下大数据技术,这就是——流处理、并行性、摘要索引和可视化。 大数据技术涵盖哪些内容? 1.1流处理 伴随着业务发展的步调,以及业务流程的复杂化,我们的注意力越来越集中在“数据流”而非“数据集”上面。 决策者感兴趣的是紧扣其组织机构的命脉,并获取实时的结果。他们需要的是能够处理随时发生的数据流的架构,当前的数据库技术并不适合数据流处理。 1.2并行化 大数据的定义有许多种,以下这种相对有用。“小数据”的情形类似于桌面环境,磁盘存储能力在1GB到10GB之间,“中数据”的数据量在100GB到1TB之间,“大数据”分布式的存储在多台机器上,包含1TB到多个PB的数据。 如果你在分布式数据环境中工作,并且想在很短的时间内处理数据,这就需要分布式处理。 1.3摘要索引 摘要索引是一个对数据创建预计算摘要,以加速查询运行的过程。摘要索引的问题是,你必须为要执行的查询做好计划,因此它有所限制。 数据增长飞速,对摘要索引的要求远不会停止,不论是长期考虑还是短期,供应商必须对摘要索引的制定有一个确定的策略。 1.4数据可视化 可视化工具有两大类。

汽车成功案例

汽车成功案例 安全性问题 竞争优势 全球汽车工业对汽车安全性越来越重视,与安全强制法规相关的试验也在大量增加。目前碰撞安全问题在碰撞前、碰撞中和碰撞后阶段同时展开研究。在碰撞前阶段利用主动避撞系统;在碰撞中阶段利用车身结构、气囊展开、安全带张紧等措施减小伤害;在碰撞后阶段,主要关心油箱是否破裂以防止爆炸或起火。MSC.Software虚拟产品开发设计能够对每一个阶段进行设计研究。 碰撞前阶段 避免碰撞发生当然是车辆交通中最有效的降低伤亡的方法。而车辆的行为,例如车辆打滑、侧翻、或者车轮遇到冰路面将会发生何种状况等等可以利用虚拟样机来预测。在ADAMS/Car中结合多刚体和控制的仿真可以模拟从主动悬架到ABS制动器等系统的试验来增加主动安全性。通过同步调整机械、控制系统对车辆进行优化,可以大大缩短设计周期。 碰撞中阶段 一旦碰撞不可避免,气囊展开和座椅安全带的预张紧就成为减小伤害的关键因素,虚拟产品开发能够对这些系统进行优化。气囊展开可以利用SimOffice中的MSC Dytran,安全带约束系统的力可以利用多体仿真分析软件。在样车建造和法规试验之前进行虚拟试验可以大大地降低开发费用。法规试验中车辆各种性能可以用SimOffice中提供的有限元方法来进行精确地预测和研究。

碰撞仿真流程通常需要大量人力,管理仿真产生的海量数据也是一个挑战。模型组装、质量检查、定义工况、报告准备等方面如果引入流程自动化和数据管理则可以节省大量的人力。MSC.Software是领先的流程管理和自动化工具供应商,其产品MSC SOFY 和MSC SimManager都提供了汽车碰撞流程自动化的环境。将工作流程确定下来并进行客户化配置后,软件工具可以自动地生成代码来指导用户完成工作流程。例如,德国宝马(BMW)公司利用MSC SimManager建立碰撞仿真自动化流程,管理海量仿真数据,并且可以和供应商合作,使供应商可以上载各自相关的部件。 LSTC公司的领先的碰撞求解器LS-Dyna可以通过MSC Nastran(Sol700)的标准格式来调用。因此,适撞性和显著非线性问题都可以采用和NVH部门同样的模型,这样通过不同部门的协作可以节省大量的时间和费用。 碰撞后阶段 避免碰撞后起火取决于供油系统的完整性,该项安全要求 已在美国安全法规FMVSS301中有明确规定。车辆碰撞 后的燃油泄漏必须避免,MSC.Dytran采用拉格朗日和欧 拉技术,可以模拟碰撞中和碰撞后油箱的液固作用、结构 大变形、结构接触等问题。 MSC.SimManager也可以集成到碰撞后开发流程中,一 级供应商TI汽车公司采用MSC.SimManager管理油箱 开发过程中的冲击、压力真空、跌落、下陷等试验。 车辆动力学问题 矛盾 汽车工业需要在开发过程中减少时间和费用,同时推出创 新的产品。当前比较通用的策略是利用通用的开发平台、 共享部件开发众多系列车型。这就导致出现两个相互矛盾 的目标:一个是新系统的开发,另一个是通过共用平台和 零部件减少系统的变型。借助于虚拟产品开发可以有效地 满足这两个目标。

非线性有限元方法及实例分析

非线性有限元方法及实例分析 梁军 河海大学水利水电工程学院,南京(210098) 摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。 关键词:非线性有限元,方程组求解,实例分析 1引 言 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。有限元的线性分析已经设计工具被广泛采用。但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。根据产生非线性的原因,非线性问题主要有3种类型[1]: 1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题 3.接触非线性问题(简称接触非线性或边界非线性) 2 非线性方程组的求解 在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]: ()()()00 021212211=… …==n n n n δδδψδδδψδδδψΛΛΛ (1.1) 其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记 号 []T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3) 上述方程组(1.1)可表示为 ()0=δψ (1.4) 可以将它改写为 ()()()0=?≡?≡R K R F δδδδψ (1.5) 其中()δK 是一个的矩阵,其元素 是矢量的函数,n n ×ij k R 为已知矢量。在位移有限 元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。 在线弹性有限元中,线性方程组

(完整版)国内外主要有限元分析软件比较

有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司。 常见软件 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 软件对比 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1.在世界范围内的知名度 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域

并行计算-练习题

2014年《并行计算系统》复习题 (15分)给出五种并行计算机体系结构的名称,并分别画出其典型结构。 ①并行向量处理机(PVP) ②对称多机系统(SMP) ③大规模并行处理机(MPP) ④分布式共享存储器多机系统(DSM) ⑤工作站机群(COW) (10分)给出五种典型的访存模型,并分别简要描述其特点。 ①均匀访存模型(UMA): 物理存储器被所有处理机均匀共享 所有处理机访存时间相同 适于通用的或分时的应用程序类型 ②非均匀访存模型(NUMA): 是所有处理机的本地存储器的集合 访问本地LM的访存时间较短 访问远程LM的访存时间较长 ③Cache一致性非均匀访存模型(CC-NUMA): DSM结构 ④全局Cache访存模型(COMA): 是NUMA的一种特例,是采用各处理机的Cache组成的全局地址空间 远程Cache的访问是由Cache目录支持的 ⑤非远程访存模型(NORMA): 在分布式存储器多机系统中,如果所有存储器都是专用的,而且只能被本地存储机访问,则这种访问模型称为NORAM 绝大多数的NUMA支持NORAM 在DSM中,NORAM的特性被隐匿的 3. (15分)对于如下的静态互连网络,给出其网络直径、节点的度数、对剖宽度,说明该网络是否是一个对称网络。 网络直径:8 节点的度数:2 对剖宽度:2 该网络是一个对称网络 4. (15分)设一个计算任务,在一个处理机上执行需10个小时完成,其中可并行化的部分为9个小时,不可并行化的部分为1个小时。问: (1)该程序的串行比例因子是多少,并行比例因子是多少? 串行比例因子:1/10

并行比例因子:9/10 如果有10个处理机并行执行该程序,可达到的加速比是多少? 10/(9/10 + 1) = 5.263 (3)如果有20个处理机并行执行该程序,可达到的加速比是多少? 10/(9/20 + 1)= 6.897 (15分)什么是并行计算系统的可扩放性?可放性包括哪些方面?可扩放性研究的目的是什么? 一个计算机系统(硬件、软件、算法、程序等)被称为可扩放的,是指其性能随处理机数目的增加而按比例提高。例如,工作负载能力和加速比都可随处理机的数目的增加而增加。可扩放性包括: 1.机器规模的可扩放性 系统性能是如何随着处理机数目的增加而改善的 2.问题规模的可扩放性 系统的性能是如何随着数据规模和负载规模的增加而改善 3.技术的可扩放性 系统的性能上如何随着技术的改变而改善 可扩放性研究的目的: 确定解决某类问题时何种并行算法与何种并行体系结构的组合,可以有效的利用大量的处理器; 对于运用于某种并行机上的某种算法,根据在小规模处理机的运行性能预测移植到大规模处理机上的运行性能; 对固定问题规模,确定最优处理机数和可获得的最大的加速比 (15分)给出五个基本的并行计算模型,并说明其各自的优缺点。 ①PRAM:SIMD-SM 优点: 适于表示和分析并行计算的复杂性; 隐匿了并行计算机的大部底层细节(如通信、同步),从而易于使用。 缺点: 不适于MIMD计算机,存在存储器竞争和通信延迟问题。 ②APRAM:MIMD-SM 优点: 保存了PRAM的简单性; 可编程性和可调试性(correctness)好; 易于进行程序复杂性分析。 缺点: 不适于具有分布式存储器的MIMD计算机。 ③BSP:MIMD-DM 优点: 把计算和通信分割开来; 使用hashing自动进行存储器和通信管理; 提供了一个编程环境。 缺点: 显式的同步机制限制并行计算机数据的增加; 在一个Superstep中最多只能传递h各报文。

有限元仿真技术的发展及其应用

有限元仿真技术的发展及其应用 许荣昌 孙会朝(技术研发中心) 摘 要:介绍了目前常用的大型有限元分析软件的现状与发展,对其各自的优势进行了分析,简述了有限元软件在冶金生产过程中的主要应用领域及其发展趋势,对仿真技术在莱钢的应用进行了展望。 关键词:有限元仿真 冶金生产 发展趋势 0 前言 自主创新,方法先行,创新方法是自主创新的根本之源,同时,随着市场竞争的日益激烈,冶金企业的产品设计、工艺优化也由经验试错型向精益研发方向发展,而有限元仿真技术正是这种重要的创新方法。近年来随着计算机运行速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的应用,比如,有限元分析在冶金、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域正在发挥着重要的作用,主要表现在以下几个方面:增加产品和工程的可靠性;在产品的设计阶段发现潜在的问题;经过分析计算,采用优化设计方案,降低原材料成本;缩短产品研发时间;模拟试验方案,减少试验次数,从而减少试验成本。与传统设计相比,利用仿真技术,可以变经验设计为科学设计、变实测手段为仿真手段、变规范标准为分析标准、变传统分析技术为现代的计算机仿真分析技术,从而提高产品质量、缩短新产品开发周期、降低产品整体成本、增强产品系统可靠性,也就是增强创新能力、应变能力和竞争力(如图1、2) 。 图1 传统创新产品(工艺优化)设计过程为大循环 作者简介:许荣昌(1971-),男,1994年毕业于武汉钢铁学院钢铁冶金专业,博士,高级工程师。主要从事钢铁工艺技术研究工 作。 图2 现代CA E 创新产品(工艺优化)设计过程为小循环 1 主要有限元分析软件简介 目前,根据市场需求相继出现了各种类型的应用软件,其中NASTRAN 、ADI N A 、ANSYS 、 ABAQUS 、MARC 、MAGSOFT 、COS MOS 等功能强大的CAE 软件应用广泛,为实际工程中解决复杂的理论计算提供了非常有力的工具。但是,各种软件均有各自的优势,其应用领域也不尽相同。本文将就有限元的应用范围及当今国际国内C AE 软件的发展趋势做具体的阐述,并对与冶金企业生产过程密切相关的主要有限元软件ANSYS 、AB AQUS 、MARC 的应用领域进行分析。 M SC So ft w are 公司创建于1963年,总部设在美国洛杉矶,M SC M arc 是M SC Soft w are 公司于1999年收购的MARC 公司的产品。MARC 公司始创于1967年,是全球首家非线性有限元软件公司。经过三十余年的发展,MARC 软件得到学术界和工业界的大力推崇和广泛应用,建立了它在全球非线性有限元软件行业的领导者地位。随着M arc 软件功能的不断扩展,软件的应用领域也从开发初期的核电行业迅速扩展到航空、航天、汽车、造船、铁 道、石油化工、能源、电子元件、机械制造、材料工程、土木建筑、医疗器材、冶金工艺和家用电器等,成为许多知名公司和研究机构研发新产品和新技术的重要工具。在航空业M SC N astran 软件被美国联邦航空管理局(F AA )认证为领取飞行器适 13

PCC性能改进

淮阴工学院 毕业设计外文资料翻译 学院:建筑工程学院 专业:土木工程房建方向 姓名:王玮 学号:1091401422 外文出处:MBTC DOT 3022 August 16 2012 附件: 1.外文资料翻译译文;2.外文原文。 指导教师评语: 签名: 年月日

以纳米技术为基础对硅酸盐 水泥混凝土的性能改进——第一阶段 Dr. R. Panneer Selvam ,Dr. Kevin Hall ,Sayantan Bhadra 摘要:对硅酸盐水泥混凝土(PCC)的纳米结构的基本认识是实现高性能和可持续性相关重大突破的关键。MBTC-研究(MBTC 2095/3004)使用分子动力学(MD)提供了对于水化硅酸钙(CSH)结构的新的理解(提供PCC强度和耐久性的主要成分);然而,由于MD方法能够考虑的原子数量,这项研究是有局限性的,特别是关于PCC中纳米水平上的力学性能。在这篇论文中为了断定CSH凝胶结构提出了离散元素法(DEM),报告了三个阶段中第一阶段所取得的进展。给出了DEM研究所用的现有的免费软件和商法典。制定了一种内部的DEM规范,对粘性材料采用压痕式加载。样本模型计算合理的说明了DEM规范的发展及应用。 关键词:纳米技术,硅酸盐水泥混凝土,离散单元法 第一章:引言 混凝土是使用最多的建筑材料,同时也是科学了解最少的材料。混凝土的寿命由于收缩裂缝、拉伸裂缝等受到限制。这主要是由于水泥浆复杂的无定形的结构。对于铜或铁来说很容易从实验中发现原子结构。由于超过5个不同的原子结合在一起形成水泥浆或CSH(Murray等人,2010& Janikiram Subramaniam等人2009),很难从实验来了解原子结构。对硅酸盐水泥混凝土(PCC)的纳米结构的基本认识是实现高性能和可持续性相关重大突破的关键。最近通过MBTC 2095/3004项目,使用分子动力学(MD)得出CSH原子结构的一些理解。Selvam教授和他的团队(2009 -2011)使用分子动力学(MD)建模提出了可能的CSH原子结构。从纳米水平到宏观水平进一步的相关性能的研究由于考量纳米长度变化时需要考虑的原子数量的限制而受到局限。 Nonat(2004)和Gauffinet(1998)等人观察到C-S-H凝胶有片晶型形态,薄片的大小约为60 ×30×5nm。从Dagleish拍摄的AFM图像(如图1.1)看出,CSH纤维可能的大小为60 nm x 300μm。为了理解这些纤维之间的相互作用,需要的计算尺

蒙特卡罗方法并行计算

Monte Carlo Methods in Parallel Computing Chuanyi Ding ding@https://www.360docs.net/doc/e111506812.html, Eric Haskin haskin@https://www.360docs.net/doc/e111506812.html, Copyright by UNM/ARC November 1995 Outline What Is Monte Carlo? Example 1 - Monte Carlo Integration To Estimate Pi Example 2 - Monte Carlo solutions of Poisson's Equation Example 3 - Monte Carlo Estimates of Thermodynamic Properties General Remarks on Parallel Monte Carlo What is Monte Carlo? ? A powerful method that can be applied to otherwise intractable problems ? A game of chance devised so that the outcome from a large number of plays is the value of the quantity sought ?On computers random number generators let us play the game ?The game of chance can be a direct analog of the process being studied or artificial ?Different games can often be devised to solve the same problem ?The art of Monte Carlo is in devising a suitably efficient game.

并行计算环境搭建

并行计算环境搭建 一.搭建并调试并行计算环境MPI的详细过程。 1.首先,我们选择在Windows XP平台下安装MPICH。第一步确保Windows平台下安装上了.net框架。 2.在并行环境的每台机子上创建相同的用户名和密码,并使该平台下的各台主机在相同的工作组中。 3.登陆到新创建的帐号下,安装MPICH软件,在选择安装路径时,每台机子的安装路径要确保一致。安装过程中,需要输入一致的passphrase,也即本机的用户名。 4.安装好软件后,要对并行环境进行配置(分为两步): 第一步:注册。在每台机器上运行wmpiregister,按照提示输入帐号和密码,即 本机的登录用户名和密码。 第二步:配置主机。在并行环境下,我们只有一台主机,其他机子作为端结点。 运行主机上的wmpiconfig,在界面左侧栏目中选择TNP工作组,点击“select”按 钮,此时主机会在网络中搜索配置好并行环境的其他机子。配置好并行环境的其他 机子会出现绿色状态,点击“apply”按钮,最后点击“OK”按钮。 5.在并行环境下运行的必须是.exe文件,所以我们必须要对并行程序进行编译并生成.exe文件。为此我们选择Visual C++6.0编译器对我们的C语言程序进行编译, 在编译过程中,主要要配置编译器环境: (1)在编译器环境下选择“工程”,在“link”选项卡的“object/library modules” 中输入mpi.lib,然后点击“OK”按钮。 (2)选择“选项”,点击“路径”选项卡,在“show directories for”下选择“Include files”,在“Directories”中输入MPICH软件中“Include”文件夹的路径; 在“show directories for”下选择“Library files”,在“Directories”中输入 MPICH软件中Library文件夹的路径,点击“OK”。 (3)对并行程序进行编译、链接,并生成.exe文件。 6.将生成的.exe文件拷贝到并行环境下的各台机子上,并确保每台机子的存放路径要相同。 7.在主机上运行“wmpiexec”,在Application中选择生成的.exe文件;输入要执行此程序的进程数,选中“more options”选项卡,在“host”栏中输入主机和各个端结 点的计算机名,点击“execute”执行程序。 二.搭建并调试并行计算环境MPI的详细过程。 1.以管理员身份登录每台计算机,在所有连接的计算机上建立一个同样的工作组,命名为Mshome,并在该工作组下建立相同的帐户,名为GM,密码为GM。 2.安装文件Microsoft NET Framwork1.1,将.NET框架安装到每台计算机上,再安装MPI到每台主机。在安装MPI的过程中,必须输入相同的passphrase,在此输 入之前已建好的帐户名GM。 3.安装好MPI后,再对每台计算机进行注册和配置,其中注册必须每台计算机都要进行,配置只在主控计算机进行: (1)注册:将先前在每台计算机上申请的帐号和密码注册到MPI中去,这样

求解温度场的非线性有限元方法

Ξ 求解温度场的非线性有限元方法 刘福来1, 杜瑞燕2 (1.东北大学信息科学与工程学院,辽宁沈阳 110004;2.河北青年干部管理学院教务处,河北石家庄 050031) 摘要:从G alerkin 有限元方法出发,对自由表面上的辐射换热的数学表达式不作线性化处理,而是把温 度场的求解问题转化为非线性代数方程组的求解问题,并且用Newton 迭代法计算了温度场. 关键词:温度场;有限元方法;Newton 迭代法 中图分类号:O 242.21 文献标识码:A 文章编号:100025854(2005)0120021204 由文献[1]知,求解二维待轧过程的温度场,就是要求下面微分方程和初值问题的解: 52T 5 x 2+52T 5y 2=1α5T 5t ;(1) -k 5T 5n =0,(x ,y )∈S 2; (2) -k 5T 5n =σεA (T 4-T 4 ∞),(x ,y )∈S 3; (3) T (x ,y ,0)=T 0(x ,y ). (4)其中:α=λ ρc 称为导温系数,λ,ρ和c 分别为热导系数、密度和比热;S 2为给出热流强度Q 的边界面; T ∞为环境温度;S 3为给出热损失的边界面.对轧制问题的温度场,常常考虑的几种边界面[1] 是:对称 面、自由表面和轧件与轧辊的接触面.在辐射面上,边界条件的数学表达式为σεA (T 4-T 4 ∞)(其中:σ为 Stefan 2Boltzmann 常数,ε为物体表面黑度,A 为辐射面积,T ∞为环境温度)是温度T 的4次幂,具有强 烈的非线性.以往在实际计算中有2种处理方法[2],一种是简化问题的物理模型,有时将表达式看成常 数,有时将边界条件转化成h r A (T -T ∞)(其中h r =σ ε(T 2+T 2∞)(T +T ∞)),在轧制问题中求解温度场时文献[1,3]都采用了这一方法;另一种是处理问题的数学方法,即用近似方法求解非线性的偏微分方程问题.例如,用数值分析的方法,文献[4]中利用了差分方法. 本文中,笔者从G alerkin 有限元法出发,对自由表面上辐射换热的数学表达式不作线性处理,而是直接对非线性代数方程组用Newton 迭代法计算温度场,以二维待轧过程温度场的有限元解析进行讨论.1 G alerkin 有限元方法简介 将待求解区域Ω剖分为E 个单元,每个单元4个节点.设N i 是形函数(i =1,2,3,4),用4节点线性等参单元,则单元内的温度为 T e =N 1T 1+N 2T 2+N 3T 3+N 4T 4={N }T {T}e , (5) 其中:{N }=(N 1,N 2,N 3,N 4)T ;{T}e =(T 1,T 2,T 3,T 4)T .设ω1,ω2,…,ωn 是一组基函数,用 G alerkin 方法求方程(1)~(4)的解,实际上是求c 1,c 2,…,c n ,使T n =c 1ω1+c 2ω2+…+c n ωn 满足 κ Ω ρc 5T n 5t -k 52T n 5x 2+ 52T n 5y 2 ωi d x d y =0,i =1,2,…,n. (6) 对式(6)应用Green 公式,有 Ξ收稿日期:2004 0105;修回日期:20040420 作者简介:刘福来(1975),男,河北省唐山市人,东北大学博士研究生. 第29卷第1期2005年 1月河北师范大学学报(自然科学版) Journal of Hebei Normal University (Natural Science Edition )Vol.29No.1Jan.2005

大规模并行计算

计算机学院 课程设计 课程名称高性能计算设计 题目名称大规模并行计算 专业__ 软件工程 _ __ _ 年级班别 2012级 学号 学生姓名 指导教师 联系方式 2015年12月18日

结构化数据访问注释对于大规模并 行计算 马可aldinucci1索尼亚营,2,基尔帕特里克3,和马西莫torquati2p.kilpatrick@https://www.360docs.net/doc/e111506812.html, 1计算机科学系,大学都灵,意大利 aldinuc@di.unito.it 2比萨大学计算机科学系,意大利 {营,torquati}@di.unipi。它 3女王大学计算机科学系,贝尔法斯特 p.kilpatrick@https://www.360docs.net/doc/e111506812.html, 摘要。我们描述了一种方法,旨在解决的问题控制联合开发(流)和一个数据并行骨架吨并行编程环境,基于注释重构。注解驱动一个并行计算的高效实现。重构是用来改造相关联的骨架树到一个更高效,功能上相当于骨架树。在大多数情况下成本模型是用来驱动的重构过程。我们展示了如何示例用例应用程序/内核可以被优化,讨论初步的实验评估结果归属理论。 克-词:算法的骨架,并行设计模式,重构,数据并行性,成本模型。 1我新台币 结构化并行程序设计方法已抽象出概念控制和数据并行通过骨骼上的[ 10 ],这是众所周知的PA T控制[ 8 ]燕鸥。控制并行的设想,设计和实施作为一个图的节点(骨架),每个节点代表一个函数。一股流独立的任务流经图:当每个节点的输入是有效的,它可以计算产生的输出被发送到它的连接节点。在另一方面,数据并行的kelet的描述一个计算模式定义如何在并行数据中访问数据,并将其应用于数据的功能分区以获得最终结果。传统上,控制之间的正交性并行和数据并行解决了采用双层模型控制流驱动的方法进行数据的并行能力增强,可能与并行数据结构暴露出集体行动[ 13 ]反之亦然。然而,控制并行和数据并行的方法。 这项工作已经由欧盟框架7批 ist-2011-288570”释义:自适应异构多核系统的并行模式” 我caragiannis 冯湛华。(E DS。):E尿PAR 2012个车间,LNCS 7640,pp. 381–390,2013。他是cspringe r-ve rlag用IDE L B E RG 2013382米aldinucci等人。 往往缺乏有效的应用程序,在这两个问题的能力被利用,因为本质上不同的手段,通过并行表示,有时,优化。一种高效的任务分配控制驱动的环境,可我nvalidated由糟糕的数据访问策略,反之亦然[ 14 ]。 在本文中,我们勾勒出一个新的方法来面对的控制与基于数据并行二分法的思想,即:数据与控制并行关注需要独立表达因为他们描述正交方面的并行性,和II)的数据访问和控制的并行模式的需要becoordin ED为了有效地支持并行应用的实现。虽然利用并行模式是不是一个新的方法[ 11 ]和协调工作在过去的语言方面作出了努力[ 17,12 ]或框架,本文提出的想法是,这样的协调可以通过对控制定义的图形表示关于数据访问的骨架。此外,我们将展示如何这样的注释可以用来驱动优化的实施图的执行。 2他骨骼框架 考虑骨骼系统包括控制(即流)和数据并行骨架,造型更一般的并行开发模式。我们的骨架是由下面的语法定义的 这些骷髅代表著名的并行开发模式[ 4 ]:序列把现有的序列码,管/农场流并行骨架处理流项

联想网御的多核并行计算网络安全平台

龙源期刊网 https://www.360docs.net/doc/e111506812.html, 联想网御的多核并行计算网络安全平台 作者:李江力王智民 来源:《中国计算机报》2008年第44期 随着网络带宽的不断发展,网络如何安全、高效地运行逐渐成为人们关注的焦点。上期文章《多核技术开创万兆时代》指出,经过多年不断的努力探索,在历经了高主频CPU、FPGA、ASIC、NP后,我们迎来了多核时代。是不是有了多核,就能够满足当前人们对网络安全处理能力的需求呢?答案也许并非那么简单。 本文将从多核处理器带来的机遇与挑战、多核编程的困境、联想网御的解决方案三个方面来详细阐述多核并行计算相关的技术问题。 多核处理器带来机遇与挑战 通常我们所说的多核处理器是指CMP(ChipMulti-processors)的芯片结构。CMP是由美国斯坦福大学提出的,其思想是将大规模并行处理器中的SMP(Symmetric Multi-processors,对称多处理器)集成到同一芯片内,各个处理器并行执行,在同一个时刻同时有多条指令在执行。 多核处理器的出现使得人们从以前的单纯靠提高CPU主频的“死胡同”走了出来,同时又使得软件开发人员能够采用高级语言进行编程,看似是一个比较完美的技术方案,但同时我们也应该看到多核处理器也给业界带来了一系列的挑战。 同构与异构 CMP的构成分成同构和异构两类,同构是指内部核的结构是相同的,而异构是指内部的核结构是不同的。核内是同构还是异构,对不同的应用,带来的性能影响是不同的。 核间通信 多核处理器各个核之间通信是必然的事情,高效的核间通信机制将是多核处理器性能的重要保障。目前主流的芯片内部高效通信机制有两种,一种是基于总线共享的Cache结构,一种是基于片上的互连结构。采用第一种还是第二种,也是设计多核处理器的时候必须考虑的问题。 并行编程

显式有限元和隐式有限元

按照计算每一时刻动力反应是否需要求解线性方程组,可将直接积分法分为隐式积分方法和显式积分方法两类。 隐式积分法是根据当前时刻及前几时刻体系的动力反应值建立以下一时刻动力反应值为未知量的线性方程组,通过求解方程组确定下一时刻动力反应。隐式方法的研究和应用由来已久,常用的方法有线性加速度法、常平均加速度法、Newmark方法、Wilson-θ法、Houbolt 方法等。 显式积分法可由当前时刻及前几时刻的体系动力反应值直接外推下一时刻的动力反应值,不需要求解线性方程组,实现了时间离散的解耦。解方程组一般占整个有限元求解程序耗时的70%左右,因此,这一解耦技术对计算量的节省是可观的。 隐式方法大部分是无条件稳定的,显式方法为条件稳定。显式方法的稳定性可以按满足精度要求的空间步距确定满足数值积分稳定性要求的时问步距来实现。显式方法受条件稳定的限制,时间积分步长将取得较小,但计算经验表明,对于一些自由度数巨大且介质呈非线性的问题,显式法比隐式法所需的计算量要小得多。 因此,随着所考虑问题复杂性的增加,显式积分法得到重视。 对于显式与隐式有限元的理解 关键字: 有限元显式隐式 显式算法和隐式算法,有时也称为显式解法和隐式解法,是计算力学中常见的两个概念,但是它们并没有普遍认可的定义,下面只是我的一些个人理解。 一、两种算法的比较 1、显式算法 基于动力学方程,因此无需迭代;而静态隐式算法基于虚功原理,一般需要迭代计算。显式算法,最大优点是有较好的稳定性。 动态显式算法采用动力学方程的一些差分格式(如广泛使用的中心差分法、线性加速度法、Newmark法和wilson法等),不用直接求解切线刚度,不需要进行平衡迭代,计算速度快,时间步长只要取的足够小,一般不存在收敛性问题。因此需要的内存也比隐式算法要少。并且数值计算过程可以很容易地进行并行计算,程序编制也相对简单。但显式算法要求质量矩阵为对角矩阵,而且只有在单元积分点计算尽可能少时速度优势才能发挥, 因而往往采用减缩积分方法,容易激发沙漏模式,影响应力和应变的计算精度。 静态显式法基于率形式的平衡方程组与Euler向前差分法,不需要迭代求解。由于平衡方程式仅在率形式上得到满足,所以得出的结果会慢慢偏离正确值。为了减少相关误差,必须每步使用很小的增量。 除了欧拉向前差分法外,其它的差分格式都是隐式的方法,需要求解线性方程组。 2、隐式算法 隐式算法中,在每一增量步内都需要对静态平衡方程进行迭代求解,并且每次迭代都需要求解大型的线性方程组,这以过程需要占用相当数量的计算资源、磁盘空间和内存。该算法中的增量步可以比较大,至少可以比显式算法大得多,但是实际运算中上要受到迭代次数及非线性程度的限制,需要取一个合理值。 二、求解时间

第10章(非线性有限元) (1)分解

第10章 非线性动力有限元法 (1) 10.1 几何非线性问题的有限元法 (2) 10.1.1 几何非线性问题的牛顿迭代法 ........................................................................... 2 10.1.2 典型单元的切线刚度矩阵 ................................................................................. 4 10.2 材料非线性问题的有限元法 (8) 10.2.1 弹/粘塑性问题的基本表达式 .............................................................................. 8 10.2.2 粘塑性应变增量和应力增量 ............................................................................... 9 10.2.3 弹/粘塑性平衡方程 ............................................................................................ 10 10.3 材料非线性问题的动力有限元法 ................................................................................ 11 10.4 应用举例 (14) 10.4.1 粘弹粘塑性动力有限元分析举例 ................................................................... 14 习题.. (15) 第10章 非线性动力有限元法 当机械结构受到较大的外载荷,或受到持续时间较短的冲击载荷作用时,结构会产生过大的变形, 以至于必须考虑结构几何大变形对结构整体刚度及固有频率的影响,即所谓的几何非线性影响。另外, 对于多数非线性动力学问题,还需要考虑材料非线性、接触非线性等方面的影响。 非线性动力学分析求解的基本方程有如下形式 0=-+P I u M (4.141) 式中,Ku u C I += 为粘性效应项,考虑阻尼、粘塑、粘弹等效应。P 为外部激励。 对于考虑各种非线性效应的动力学问题求解,需要对动力学方程进行直接时间积分。即非线性动力有限元分析具有如下特点:(1)问题分析过程需要考虑时间积分效应,不必做模态分析,不必提取固有频率;(2)采用直接积分方法求解非线性动力学方程,需要对时间作积分计算,因此计算量远远大于线性模态动力学方法;(3)非线性动力学分析中可以施加不同类型的载荷,包括结点力、非零位移、单元载荷;(4)在每个时间步上,进行质量、阻尼、及刚度的集成,采用完整矩阵,不涉及质量矩阵的近似;(5)可以同时考虑几何、材料和接触等多种非线性效应。 非线性动力有限元分析程序常采用隐式Hilber-Hughes-Taylor 法进行时间积分运算。这种方法适于模拟非线性结构的动态问题,对于冲击、地震等激发的结构动态响应以及一些由于塑性或粘性阻尼造成的能量耗散,隐式算法特别有效。隐式积分方法需要对刚度矩阵求逆计算,并通过多次迭代求解增量步平衡方程。隐式Hilber-Hughes-Taylor 时间积分算法为无条件稳定,对时间步长没有特别的限制。 采用子空间法也可以对动力学平衡方程作时间积分运算。子空间法是提取模态分析得到的各阶特征模态,并采用与线性模态动力学分析方法相近的分析方式进行求解。对于带有微小非线性效应的问题,如材料小范围进行入屈服、结点转角不大的情况,子空间法效率比进接积分法要高。

并行计算大纲

附件二: 成都信息工程学院 硕士研究生课程教学大纲 课程名称(中):并行计算 课程名称(英):Parallel Computing 课程编号: 开课单位:软件工程系 预修课程:C语言,Linux操作系统 适用专业:计算机,电子类,大气类1年级研究生 课程性质:学位课 学时:32学时 学分:2学分 考核方式:考试 一、教学目的与要求(说明本课程同专业培养目标、研究方向、培养要求的关 系,及与前后相关课程的联系) 通过本课程的学习,使学生可以对并行程序设计有一个具体的基本的概念,对MPI有比较全面的了解,掌握MPI的基本功能,并且可以编写基本的MPI程序,可以用MPI来解决实际的比较基本的并行计算问题。具体如下: 从内容上,使学生了解并行计算的基本发展过程及现在的发展水平,掌握并行系统的组织结构,并行机群系统的构建方法。掌握MPI并行编程知识,了解并行技术的遗传算法迭代算法中的应用,了解并行监控系统的构成。 从能力方面,要求学生掌握并行机群系统的实际配置方法,能用MPI编制一般难度的并行算法程序并在机群系统上实现。 从教学方法上,采用启发、引导的教学方法,结合多媒体教学方式,提高学生学习兴趣。 二、课程内容简介 本课程以并行计算为主题,对并行计算技术的发展,应用以及并行计算机模型进行概述,与此同时系统介绍了MPI并行编程环境的使用与搭建,旨在帮助学生完成简单的并行程序设计,掌握并行计算平台的搭建,为深入学习并行计算技术打下坚实的基础。

三、主要章节和学时分(含相应章节内容的教学方式,如理论教学、实验教学、 上机、自学、综述文献等) 主要章节章节主要内容简述教学方式学时备注 第1章并行计算的发展及应用1.并行计算技术的发展过 程 2.并行系统在现代技术中 的应用 理论教学2学时 第2章并行计算机系统与结构1、典型并行计算机系统简 介 2、当代并行计算机体系结 构 理论教学2学时 第3章 PC机群系统的搭建1、机群系统概述 2、机群系统的搭建方法 3、机群系统的性能测试方 法 理论教学4学时 第4章机群系统的MPI编程1、MPI语言概述 2、MPI的六个基本函数 3、MPI的消息 4、点对点通讯 5、群集通讯 6、MPI的扩展 理论教学8学时 第5章实践环节上机完成并行机群系统的 配置。 实现简单并行计算程序的 编写。上机16学 时 (此页可附页) 四、采用教材(正式出版教材要求注明教材名称、作者姓名、出版社、出版时间;自编教材要求注明是否成册、编写者姓名、编写者职称、字数等) 《并行计算应用及实战》机械工业出版社王鹏主编 2008

相关文档
最新文档