SPWM逆变原理及控制方法[1]

合集下载

SPWM,马鞍波,空间矢量逆变原理

SPWM,马鞍波,空间矢量逆变原理

SPWM,马鞍波,空间矢量逆变原理
一.实验目的
(1)理解三种常用的逆变技术原理
(2)熟悉载波与调制波波形
二.实验所需挂件
1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。

2 DJK13三相异步电机变频调速控制
3 示波器
三.实验步骤
1.将S,V,P悬空,观察SPWM的调制波和载波波形,观察中逐渐增加频率
2.将V,P短接,S悬空,观察马鞍波的调制波和载波
3.将S,V短接,P悬空,观察电压空间矢量的调制波和载波
四.预习要求
1.三种逆变器原理
五.实验报告
1.画出SPWM的连线
2.简述采用马鞍波调制的原因
3.简述电压空间矢量的原理
六.注意事项
1. S,P不能短接。

DSP28335实现SPWM

DSP28335实现SPWM

PWM一、什么是PWM?PWM就是根据面积等效原理,通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。

脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,称为SPWM。

调制系数:m=调制波幅度/载波幅度。

在保持载波幅度一定的情况下,通过改变调制波幅度,即改变调制系数,可以在直流侧电压一定的条件下,调节输出交流基波电压有效值大小。

通过改变调制波的幅度,可以实现PWM逆变电路的变压。

载波比:N=载波频率/调制波频率。

根据载频三角波和调制波是否同步及载波比的变化情况,PWM调制方式可分为同步调制、异步调制和分段同步调制。

二、两种常见的PWM波形:1、三点式(单极性、三电平)2、两点式(双极性、两电平)三、实现方法1、硬件调制法用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对开关器件的通断进行控制,就可以生成SPWM波。

2、软件生成法(1)自然采样法以正弦波为调制波,等腰三角波为载波进行比较,在两个波形的自然交点时刻控制开关器件的通断,这就是自然采样法。

其求解复杂,难以在实时控制中在线计算,工程应用不多。

(2)规则采样法(对称)经推导,设一个正弦波周期采样N 个点,则每个采样周期内的脉冲宽度为)2sin 1(2N k a T c πδ+=,k=1,2,3,…,N-1。

若时基计数器工作在向上向下计数模式,设周期寄存器PRD 的值为M ,每个计数脉冲周期为t ,则t M T c ⨯=2,脉冲宽度为)2sin 1(N k a t M πδ+⨯⨯=。

D 点值为)2sin 1(22Nk a M t πδ+⨯=,即为比较寄存器的值。

四、控制电路采用180°导电型方波控制方式,同一相上、下两个桥臂交替通电,互补通断。

五、程序代码1、初始化系统控制2、初始化GPIO3、清除所有中断并初始化中断向量表for(i=0;i<100;i++){SV1V4[i]=(1+sin(2*3.14*i/99))*1000; //采样100个点 }interrupt void epwm1_isr(void){// 更新CMPA和CMPB比较寄存器的值j++;if(j<=99)EPwm1Regs.CMPA.half.CMPA=SV1V4[j];elsej=0;//清除这个定时器的中断标志位EPwm1Regs.ETCLR.bit.INT = 1;//清除PIE应答寄存器的第三位,以响应组3内的其他中断请求;PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;}4、初始化EPWMvoid InitEPwm1Example(){// Setup 时基时钟EPwm1Regs.TBPRD = 2000; // 设置PWM周期为2*2000个时钟周期 EPwm1Regs.TBPHS.half.TBPHS = 0x0000; // 相位寄存器清零EPwm1Regs.TBCTR = 0x0000; //时基计数器清零// Setup 比较寄存器EPwm1Regs.CMPA.half.CMPA = EPWM1_MIN_CMPA; // Set compare A value EPwm1Regs.CMPB = EPWM1_MAX_CMPB; // Set Compare B value// Setup 计数模式EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; //增减计数模式EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; //禁止相位控制EPwm1Regs.TBCTL.bit.HSPCLKDIV = 7; // Clock ratio to SYSCLKOUT EPwm1Regs.TBCTL.bit.CLKDIV = 7;// 设置比较寄存器的阴影寄存器加载条件:时基计数到0EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // Load on ZeroEPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;// Set actionsEPwm1Regs.AQCTLA.bit.CAU = AQ_SET; // CTR=CAU时,置高EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR; // CTR=CAD时,置低EPwm1Regs.AQCTLB.bit.CBU = AQ_CLEAR; // CTR=CBU时,置低EPwm1Regs.AQCTLB.bit.CBD = AQ_SET; // CTR=CBD时,置高// 1次0匹配事件发生时产生一个中断请求;EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; //选择0匹配事件中断 EPwm1Regs.ETSEL.bit.INTEN = 1; // 使能事件触发中断EPwm1Regs.ETPS.bit.INTPRD = 1; // 1次事件产生中断请求//Setup DeadbandEPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;//上升沿和下降沿EPwm1Regs.DBCTL.bit.POLSEL = DB_ACTV_LO;//极性选择控制EPwm1Regs.DBCTL.bit.IN_MODE = DBB_ALL;//ePWMxB是双边沿延时输入源 EPwm1Regs.DBRED = EPWM1_MIN_DB;EPwm1Regs.DBFED = EPWM1_MIN_DB;}。

三相电压型SPWM逆变器仿真分析及应用

三相电压型SPWM逆变器仿真分析及应用

三相电压型SPWM逆变器仿真分析及应用三相电压型SPWM逆变器是一种常见的电力电子装置,用于将直流电能转换为交流电能。

它广泛应用于可再生能源发电系统、电动汽车充电系统、UPS电源等领域。

本文将对三相电压型SPWM逆变器进行仿真分析,并讨论其在实际应用中的一些关键技术。

首先,我们来介绍一下三相电压型SPWM逆变器的工作原理。

该逆变器由六个开关管组成,三个开关管连接到每个电压型逆变器的输入端,三个开关管连接到中性点。

逆变器的输入是直流电压,输出是三相交流电压。

逆变器的工作原理是通过不同开关管的开关状态,控制直流电压经过逆变器的辅助电路,从而产生所需的交流电压。

在SPWM控制策略下,通过对开关管的PWM波形进行调制,可以实现对输出电压的调节。

接下来,我们进行三相电压型SPWM逆变器的仿真分析。

首先,我们需要建立逆变器的数学模型,并设计控制策略。

然后,利用数值计算软件进行仿真模拟,得到逆变器的输出波形和性能参数。

最后,对仿真结果进行分析和验证。

在仿真过程中,我们可以通过调节PWM波形的频率、幅值和相位等参数,观察输出电压的变化情况。

同时,可以对逆变器的效率、谐波含量、响应时间等性能指标进行评估和改进。

通过仿真分析,可以帮助我们更好地理解逆变器的工作原理和特性,并为实际应用中的设计和优化提供参考。

除了仿真分析,三相电压型SPWM逆变器还有一些关键技术需要注意。

首先是开关管的选择和驱动电路的设计,要保证开关管具有足够的电流和电压承受能力,并且能够快速开关。

其次是PWM控制策略的设计,包括调制波形的产生方法和控制方法的选择,以实现输出电压的精确控制。

此外,还需要考虑逆变器的过电流保护、温度保护、短路保护等安全措施。

综上所述,三相电压型SPWM逆变器是一种常见的电力电子装置,在可再生能源发电系统、电动汽车充电系统、UPS电源等领域有广泛应用。

通过仿真分析和关键技术的研究,可以提高逆变器的性能和可靠性,推动其在实际应用中的进一步发展。

电流滞环控制SPWM逆变器

电流滞环控制SPWM逆变器
混凝土的抗冻性随水泥活性增高而提 高。普通硅酸盐水泥混凝土的抗冻性优于 混合水泥混凝土, 更优于火山灰水泥混凝 土的抗冻性。混凝土集料对抗冻性的影响 主要体现在集料吸水量的影响及集料本身 抗冻性的影响。 2.6 外加剂及掺合料的影响
减水剂、引气剂及引气减水剂等外加 剂均能提高混凝土的抗冻性。引气剂能增 加混凝土的含气量, 而减水剂则能降低混 凝土的水灰比, 从而减少孔隙率, 最终都能 提高混凝土的抗冻性。
常用的热养护方法有电热法、蒸汽养 护法及热拌混凝土蓄热养护法。目前我国 常使用的还是蒸汽养护法, 但耗汽量很大。 早强剂、防冻剂目前仍以氯盐、亚硝酸盐 为主。三乙醇胺复合早强剂使用也较普 遍。近几年我国开始研制和应用无氯盐早 强减水剂和防冻剂。中国建筑科学研究院 混凝土研究所研制成功的 S J 型早强减水剂 和防冻剂均不含氯盐和铬盐, 对钢筋无锈 蚀作用, 在负温条件下使混凝土具有较强 的抗冻害能力, 从而能保证冬季正常施工。
为等效露感。
检测实际电流用的电流传感器必须具
备很快通频带的高性能传感器, 霍尔传感
器就能够胜任。调速时, 只需改变电流给
定信号的频率, 无须调节逆变器的电压。
图 2 滞环控制原理
图 3 单相电流波形
其中粗黑色实线为参考电流,细线为实际输出电流
图 4 三相电流波形 图 5 线电压波形
图 6 PW 电机的启动速度波形
2 电路实现 模块中的 Relay 由比较器 1/4LM339 &
D 触发器来构成, 根据输入信号的变化, 在逻 辑 1 和 0 之间跳变。当实际电流低于参 kao 电 流,且差值大于 Relay 的滞环宽度时,对应相 正向导通(Relay 输出 1),负向关断(Logical operator 输出0);当实际电流高于参考电流, 且差值大于滞环宽度时, 对应相负向导通, 正 向关断。减小滞环宽度,可以减少输出相电流 纹波, 但受功率管开关频率的限制, 滞环宽度 不能取得太小此外, 滞环宽度取值太小, 系统 采样周期也要减小,这将不利于系统的实时运 行。

SPWM与SVPWM的原理、算法以及两者的区别

SPWM与SVPWM的原理、算法以及两者的区别

SPWM与SVPWM的原理、算法以及两者的区别所谓SPWM,就是在PWM的基础上改变了调制脉冲方式,脉冲宽度时间占空比按正弦规律排列,这样输出波形经过适当的滤波可以做到正弦波输出。

它广泛地用于直流交流逆变器等,比如高级一些的UPS就是一个例子。

三相SPWM是使用SPWM模拟市电的三相输出,在变频器领域被广泛的采用。

SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法。

前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。

SVPWM的主要思想是以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成PWM波,以所形成的实际磁链矢量来追踪其准确磁链圆。

传统的SPWM方法从电源的角度出发,以生成一个可调频调压的正弦波电源,而SVPWM方法将逆变系统和异步电机看作一个整体来考虑,模型比较简单,也便于微处理器的实时控制。

spwm与svpwm的原理SPWM原理正弦PWM的信号波为正弦波,就是正弦波等效成一系列等幅不等宽的矩形脉冲波形,其脉冲宽度是由正弦波和三角波自然相交生成的。

正弦波波形产生的方法有很多种,但较典型的主要有:对称规则采样法、不对称规则采样法和平均对称规则采样法三种。

第一种方法由于生成的PWM脉宽偏小,所以变频器的输出电压达不到直流侧电压的倍;第二种方法在一个载波周期里要采样两次正弦波,显然输出电压高于前者,但对于微处理器来说,增加了数据处理量当载波频率较高时,对微机的要求较高;第三种方法应用最为广泛的,它兼顾了前两种方法的优点。

实验五十一DCACSPWM单相全桥逆变电路设计及研究

实验五十一DCACSPWM单相全桥逆变电路设计及研究

华中科技大学电气与电子工程学院实验教学中心 信号与控制综合实验指导书 实验五十一DC/AC SPWM单相全桥逆变电路设计及研究(信号与系统—自动控制理论—检测技术-电力电子学综合实验)一、实验原理SPWM单相全桥逆变电路的主要工作原理是依靠四个开关管的通、断状态配合,利用冲量等效原理,采用正弦脉宽调制(SPWM)策略将输入的直流电压变换成正弦波电压输出。

SPWM的调制原理是通过对每个周期内输出的脉冲个数和每个脉冲宽度来调节逆变器输出电压的频率和幅值。

要使输出的电压波形接近标准的正弦波,就要尽量保证SPWM电压波在每一时间段都与该时段中正弦电压等效。

除要求每一时间段的面积相等外,每个时间段的电压脉冲宽度还必须很窄,这就需要在一个正弦波形内脉冲的数量很多。

脉波数量越多,不连续的按正弦规律改变宽度的多脉冲电压就越等效于正弦电压。

目前,在电力电子控制技术中,SPWM技术应用极为广泛,SPWM波形的形成一般有自然采样法、规则采样法等等。

前者主要用于模拟控制中,后者适用数字控制。

本实验采用的是DSP控制的单相全桥逆变电路,采用对称规则采样法。

对称规则采样的基本思想是使SPWM波的每个脉冲均以三角载波中心线为轴线对称,因此在每个载波周期内只需一个采样点就可确定两个开关切换点时刻。

具体算法是过三角波的对称轴与正弦波的交点,做平行于时间轴的平行线,该平行线与三角波的两个腰的交点作为SPWM波“开通”和“关断”的时刻。

由于在每个三角载波周期中只需要进行一次采样,因此使得计算公式得到简化,并且可以根据脉宽计算公式实时计算出SPWM波的脉宽时间,可以实现数字化控制。

图51-1 对称规则采样法生成SPWM波根据相似三角形定理,可以分析出图1对称规则采样法生成的SPWM波脉宽时间T n华中科技大学电气与电子工程学院实验教学中心 信号与控制综合实验指导书为:()21sin n n T T MN Nπ−= (51-1) 式中,M 为调制度,T 为正弦调制波周期,N 为载波比。

简述SPWM的基本原理及应用

简述SPWM的基本原理及应用

简述SPWM的基本原理及应用1. 什么是SPWMSPWM(Sine-wave Pulse Width Modulation),中文名为正弦波脉宽调制,是一种常用的调制技术。

它通过将一个参考信号与一个三角波进行比较,通过改变脉冲宽度来实现输出波形的调制。

SPWM技术广泛用于电力电子领域,特别是在交流调压供电系统中,通过控制晶闸管或IGBT开关管的通断条件,控制输出电压的大小和波形。

SPWM能够产生质量较高的交流电源,被广泛应用于交流电动机驱动、UPS、逆变器等领域。

2. SPWM的基本原理SPWM的基本原理是通过对比参考信号与三角波信号的相位差,确定脉冲宽度的长度,从而控制输出波形的形状。

具体原理如下:•生成参考信号:根据输入的目标频率和幅值,生成一个和所需输出波形一致的正弦信号。

•生成三角波信号:三角波信号是一种连续的、呈线性变化的信号,通常由一个积分单元产生。

该信号用于与参考信号进行比较。

•比较参考信号与三角波信号相位差:参考信号和三角波信号在一个比较器中进行比较,产生一个以三角波信号为基准的脉冲信号。

•控制脉冲宽度:当参考信号的幅值大于三角波信号的幅值时,脉冲宽度较宽;反之,若参考信号幅值小于三角波信号幅值,则脉冲宽度较窄。

•输出波形调制:通过控制脉冲宽度的变化,实现对输出波形的调制。

脉冲宽度的改变导致输出波形的有效值和形状发生变化。

3. SPWM的应用SPWM技术在电力电子领域有着广泛的应用,以下是几个常见的应用场景:3.1 交流电动机驱动SPWM技术可以用于交流电动机驱动系统中,通过控制变频器输出的电压和频率,实现对电动机的速度和转矩的精确控制。

通过调整脉冲宽度和频率,可以使电动机在不同负载条件下运行效果更佳。

3.2 UPS(不间断电源)UPS系统通常使用SPWM技术来实现交流电转直流电并通过逆变器将直流电转换为交流电供应给负载。

SPWM技术可以提供较高的转换效率和高质量的输出电压,保证负载设备的稳定供电。

直流48变交流220SPWM全桥逆变器电路

直流48变交流220SPWM全桥逆变器电路

输入:48Vdc, 输出:220Vac/50Hz二. 作业总体框图图1作业总体框图三.作业原理分析SPWM脉宽调制原理PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。

即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。

当采用正弦波作为调制信号来控制输出PWM脉冲的宽度,使其按照正弦波的规律变化,这种脉冲宽度调制控制策略就称为正弦脉冲宽度调制(Sine pulse width modulation,SPWM),产生SPWM脉冲,采用最多的载波是等腰三角波;因为等腰三角波上任一点的水平宽度和高度成线性关系且左右对称,当它与任何一个平缓变化的调制信号波相交时,如果在交点时刻对电路中开关器件的通断进行控制,就可以得到宽度正比于信号波幅值的脉冲。

在调制信号波为正弦波时,所得到的就是SPWM波形。

SPWM波形的产生(如图2)图2 SPWM波形的产生1.电路组成及工作原理分析:电路主要由正弦波和三角波发生电路,控制电路、逆变升压电路和保护电路组成。

电路中所用到的元器件主要有GS61001,ICL8038,运算放大器LF353,比较器LM311,IR2110,MOSFET,CD4069,电阻电容及齐纳二极管组成。

2.电源电路分析为了给主电路,驱动电路,保护电路的芯片提供正常工作电压,要把+48V 直流电变换成+15V直流电。

可采用GS61001芯片为其供电,GS61001是一款48V 电池供电降压型DC-DC电源管理芯片,内部集成基准电源、振荡器、误差放大器、过热保护、限流保护、短路保护等功能,非常适合高压60V以上场合应用。

(如图3)图3 电源电路3.控制电路分析:当电路开始工作,首先由ICL8038产生的正弦波和三角波,正弦波和三角波的幅值由可调电阻来控制,得到的波可以通过LF353运算放大器构成的反相电路进行反向,得到方向相反的正弦波,正弦波与三角波信号通过LM311比较芯片产生SPWM脉冲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档