高中数学第三章不等式复习教案新人教A版必修5

合集下载

人教A版高中数学必修五河北省张家口第三章不等关系与不等式学案

人教A版高中数学必修五河北省张家口第三章不等关系与不等式学案

3.1 不等关系与不等式(一)一、教学目标1.通过具体实例使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解了一些不等式(组)产生的实际背景的前提下,能列出不等式与不等式组,解决实际问题。

让学生学会用数学思想来思考问题,用数学知识来解决问题。

2. 掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小.3. 培养学生转化的数学思想和逻辑推理能力。

二、教学重、难点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值。

差值比较法:作差→变形→判断差三、教学过程(一)[创设问题情境]下面的几个不等关系用什么样的不等词表示?能用简洁的数学符号表示吗?你还能列举出你周围日常生活中的不等关系吗?1. 限速40km/h 的路标,表示汽车的速度v 不超过40km/h 。

2. 某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量应不少于2.3%。

3. a 与b 的和是非负数。

4. 大圆1O 的半径为R ,小圆2O 的半径为r ,两圆的圆心距为d ,若两圆相交,则d 需要满足什么条件?5. 某种杂志原以每本2.5元的价格销售,可以售出8万本。

根据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。

若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元?6. 某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种,按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍。

7. 某厂使用两种零件A 、B,装配两种产品甲乙,该厂的生产能力是甲月产量最多2500件,乙月产量最多1200件,而组装一件产品,甲需要4个A ,2个B ;乙需要6个A ,8个B 。

某个月,该厂能用的A 最多有14000个,B 最多有12000个,用不等式将甲乙两种产品产量之间的关系表示出来。

2018_2019高中数学第三讲柯西不等式与排序不等式复习教案新人教A版

2018_2019高中数学第三讲柯西不等式与排序不等式复习教案新人教A版

第三讲柯西不等式与排序不等式一、复习目标掌握柯西不等式的形式以及应用掌握排序不等式以及应用二、课时安排1课时三、复习重难点掌握柯西不等式的形式以及应用掌握排序不等式以及应用四、教学过程(一)知识梳理(二)题型、方法归纳利用柯西不等式证明简单不等式排序原理在不等式证明中的应用利用柯西不等式、排序不等式求最值(三)典例精讲题型一、利用柯西不等式证明简单不等式柯西不等式形式优美、结构易记,因此在解题时,根据题目特征灵活运用柯西不等式,可证明一些简单不等式.例1已知a,b,c是实数,且a+b+c=1,求证:13a+1+13b+1+13c+1≤4 3.【规范解答】 因为a ,b ,c 是实数,且a +b +c =1,令m =(13a +1,13b +1,13c +1),n =(1,1,1),则|m ·n |2=(13a +1+13b +1+13c +1)2, |m |2·|n |2=3[(13a +1)+(13b +1)+(13c +1)] =3[13(a +b +c )+3]=48. ∵|m ·n |2≤|m |2·|n |2,∴(13a +1)+13b +1+13c +1)2≤48, ∴13a +1+13b +1+13c +1≤4 3. [再练一题]1.设a ,b ,x ,y 都是正数,且x +y =a +b ,求证:a 2a +x +b 2b +y≥a +b2.【证明】 ∵a ,b ,x ,y 都大于0, 且x +y =a +b . 由柯西不等式,知⎝ ⎛⎭⎪⎫a 2a +x +b 2b +y [(a +x )+(b +y )] ≥⎝⎛⎭⎪⎫a a +x ·a +x +b b +y ·b +y 2=(a +b )2.又a +x +b +y =2(a +b )>0, 所以a 2a +x +b 2b +y≥a +b2.题型二、排序原理在不等式证明中的应用应用排序不等式的技巧在于构造两个数组,而数组的构造应从需要入手来设计,这一点应从所要证的式子的结构观察分析,再给出适当的数组.例2已知a ,b ,c 为正实数,求证:a +b +c ≤a 2+b 22c +b 2+c 22a +c 2+a 22b.【规范解答】 由于不等式关于a ,b ,c 对称, 可设a ≥b ≥c >0.于是a 2≥b 2≥c 2,1c ≥1b ≥1a.由排序不等式,得反序和≤乱序和,即a 2·1a +b 2·1b +c 2·1c ≤a 2·1b +b 2·1c +c 2·1a,及a 2·1a +b 2·1b +c 2·1c ≤a 2·1c +b 2·1a +c 2·1b.以上两个同向不等式相加再除以2,即得原不等式. [再练一题]2.设a ,b ,c ∈R +,求证:a 5+b 5+c 5≥a 3bc +b 3ac +c 3ab . 【证明】 不妨设a ≥b ≥c >0,则a 4≥b 4≥c 4, 运用排序不等式有:a 5+b 5+c 5=a ×a 4+b ×b 4+c ×c 4≥ac 4+ba 4+cb 4.又a 3≥b 3≥c 3>0, 且ab ≥ac ≥bc >0,所以a 4b +b 4c +c 4a =a 3ab +b 3bc +c 3ca ≥a 3bc +b 3ac +c 3ab , 即a 5+b 5+c 5≥a 3bc +b 3ac +c 3ab .题型三、利用柯西不等式、排序不等式求最值有关不等式的问题往往要涉及到对式子或量的范围的限制,柯西不等式、排序不等式为我们通过不等式求最值提供了新的有力工具,但一定要注意取等号的条件能否满足.例3 设a ,b ,c 为正实数,且a +2b +3c =13,求3a +2b +c 的最大值. 【规范解答】 由于a ,b ,c 为正实数,根据柯西不等式,知 (a +2b +3c )⎝ ⎛⎭⎪⎫3+1+13=[(a )2+(2b )2+ (3c )2]⎣⎢⎡⎦⎥⎤r(32+12+⎝⎛⎭⎪⎫132) ≥⎝ ⎛⎭⎪⎫3·a +1·2b +13·3c 2=(3a +2b +c )2, ∴(3a +2b +c )2≤1323,即3a +2b +c ≤1333,当且仅当a3=2b 1=3c 13时取等号. 又a +2b +3c =13,∴当a =9,b =32,c =13时,3a +2b +c 取得最大值为1333.[再练一题]3.已知实数a ,b ,c ,d ,e 满足a 2+b 2+c 2+d 2+e 2=16.求a +b +c +d +e 的最大值.【解】a+b+c+d +e =a +b +c +d +e2≤(a 2+b 2+c 2+d 2+e 2)(12+12+12+12+12)≤16×5=45,所以a +b +c +d +e 的最大值是4 5. (四)归纳小结利用柯西不等式证明简单不等式 排序原理在不等式证明中的应用 利用柯西不等式、排序不等式求最值 (五)随堂检测1.已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+bt 的最大值.【解】 (1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1.(2)-3t +12+t =34-t +t ≤[(3)2+12][(4-t )2+(t )2] =24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t )max =4.2.已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4. (1)求a +b +c 的值; (2)求14a 2+19b 2+c 2的最小值.【解】 (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c , 当且仅当-a ≤x ≤b 时,等号成立. 又a >0,b >0,所以|a +b |=a +b , 所以f (x )的最小值为a +b +c .又已知f (x )的最小值为4,所以a +b +c =4. (2)由(1)知a +b +c =4,由柯西不等式,得⎝ ⎛⎭⎪⎫14a 2+19b 2+c 2(4+9+1)≥⎝ ⎛⎭⎪⎫a 2×2+b 3×3+c ×12=(a +b +c )2=16,即14a 2+19b 2+c 2≥87. 当且仅当12a 2=13b 3=c 1,即a =87,b =187,c =27时等号成立,故14a 2+19b 2+c 2的最小值是87.3.已知x >1,y >1,且lg x +lg y =4,那么lg x ·lg y 的最大值是( ) A .2 B.12 C.14 D .4【解析】 ∵4=lg x +lg y ≥2lg x ·lg y , ∴lg x ·lg y ≤4. 【答案】 D4.已知a ,b ∈R +,且a +b =1,则(4a +1+4b +1)2的最大值是( ) A .2 6 B. 6 C .6D .12【解析】 (4a +1+4b +1)2=(1×4a +1+1×4b +1)2≤(12+12)(4a +1+4b +1) =2[4(a +b )+2] =2×(4×1+2)=12, 当且仅当4b +1=4a +1, 即a =b =12时等号成立.故选D.【答案】 D5.数列{a n }的通项公式a n =nn 2+90,则数列{a n }中的最大项是( )A .第9项B .第8项和第9项C .第10项D .第9项和第10项【解析】 a n =nn 2+90=1n +90n ≤12n ×90n=1610, 当且仅当n =90n,即n =310时等号成立.又n ∈N +,检验可知选D. 【答案】 D 五、板书设计利用柯西不等式证明简单不等式排序原理在不等式证明中的应用利用柯西不等式、排序不等式求最值六、作业布置本课单元检测七、教学反思。

数学人教A版必修五第三章 3.2 第2课时分式不等式

数学人教A版必修五第三章 3.2 第2课时分式不等式

第2课时一元二次不等式及其解法(二)学习目标1.会解可化为一元二次不等式(组)的简单分式不等式.2.会对含参数的一元二次不等式分类讨论.3.掌握与一元二次不等式有关的恒成立问题的解法.知识点一 分式不等式的解法 一般的分式不等式的同解变形法则: (1)f (x )g (x )>0⇔f (x )·g (x )>0; (2)f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x )≤0;g (x )≠0; (3)f (x )g (x )≥a ⇔f (x )-ag (x )g (x )≥0. 知识点二 一元二次不等式恒成立问题一般地,“不等式f (x )>0在区间[a ,b ]上恒成立”的几何意义是函数y =f (x )在区间[a ,b ]上的图象全部在x 轴上方.区间[a ,b ] 是不等式f (x )>0的解集的子集. 恒成立的不等式问题通常转化为求最值问题,即: k ≥f (x )恒成立⇔k ≥f (x )max ; k ≤f (x )恒成立⇔k ≤f (x )min .知识点三 含参数的一元二次不等式的解法解含参数的一元二次不等式,仍可按以前的步骤,即第一步先处理二次项系数,第二步通过分解因式或求判别式来确定一元二次方程有没有根,第三步若有根,区分根的大小写出解集,若无根,结合图象确定解集是R 还是∅.在此过程中,因为参数的存在导致二次函数开口方向、判别式正负、两根大小不确定时,为了确定展开讨论.1.由于x -5x +3>0等价于(x -5)(x +3)>0,故y =x -5x +3与y =(x -5)(x +3)图象也相同.( × )2.x 2+1≥2x 等价于(x 2+1)min ≥2x .( × )3.对于ax 2+3x +2>0,当a =1时与a =-1时,对应的不等式解集不能求并集.( √ ) 4.(ax +1)(x +1)>0⇔⎝⎛⎭⎫x +1a (x +1)>0.( × )题型一 分式不等式的解法 例1 解下列不等式:(1)2x -5x +4<0; (2)x +12x -3≤1. 解 (1)2x -5x +4<0⇔(2x -5)(x +4)<0⇔-4<x <52,⎩⎭(2)∵x +12x -3≤1,∴x +12x -3-1≤0,∴-x +42x -3≤0,即x -4x -32≥0.此不等式等价于(x -4)⎝⎛⎭⎫x -32≥0且x -32≠0, 解得x <32或x ≥4,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4. 反思感悟 分式不等式的解法:先通过移项、通分整理成标准型f (x )g (x )>0(<0)或f (x )g (x )≥0(≤0),再化成整式不等式来解.如果能判断出分母的正负,直接去分母即可. 跟踪训练1 解下列不等式: (1)2x -13x +1≥0;(2)2-xx +3>1. 解 (1)原不等式可化为⎩⎪⎨⎪⎧(2x -1)(3x +1)≥0,3x +1≠0.解得⎩⎨⎧x ≤-13或x ≥12,x ≠-13,∴x <-13或x ≥12,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-13或x ≥12. (2)方法一 原不等式可化为⎩⎪⎨⎪⎧ x +3>0,2-x >x +3或⎩⎪⎨⎪⎧x +3<0,2-x <x +3.解得⎩⎪⎨⎪⎧ x >-3,x <-12或⎩⎪⎨⎪⎧x <-3,x >-12,∴-3<x <-12, ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3<x <-12. 方法二 原不等式可化为(2-x )-(x +3)x +3>0,化简得-2x -1x +3>0,即2x +1x +3<0,∴(2x +1)(x +3)<0,解得-3<x <-12.⎩⎭题型二 不等式恒成立问题 例2 设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求实数m 的取值范围; (2)对于x ∈[1,3],f (x )<-m +5恒成立,求实数m 的取值范围. 解 (1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0,满足题意;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,即-4<m <0.∴-4<m ≤0.(2)方法一 要使f (x )<-m +5在x ∈[1,3]上恒成立, 就要使m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, ∴g (x )max =g (3)=7m -6<0,∴0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, ∴g (x )max =g (1)=m -6<0,得m <6,∴m <0. 综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 方法二 当x ∈[1,3]时,f (x )<-m +5恒成立, 即当x ∈[1,3]时,m (x 2-x +1)-6<0恒成立. ∵x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又m (x 2-x +1)-6<0,∴m <6x 2-x +1.∵函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,∴只需m <67即可.综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 引申探究把例2(2)改为:对于任意m ∈[1,3],f (x )<-m +5恒成立,求实数x 的取值范围. 解 f (x )<-m +5,即mx 2-mx -1<-m +5, m (x 2-x +1)-6<0. 设g (m )=m (x 2-x +1)-6.则g (m )是关于m 的一次函数且斜率 x 2-x +1=⎝⎛⎭⎫x -122+34>0. ∴g (m )在[1,3]上为增函数,要使g (m )<0在[1,3]上恒成立,只需g (m )max =g (3)<0, 即3(x 2-x +1)-6<0,x 2-x -1<0,方程x 2-x -1=0的两根为x 1=1-52,x 2=1+52,∴x 2-x -1<0的解集为⎝⎛⎭⎪⎫1-52,1+52,即x 的取值范围为⎝ ⎛⎭⎪⎫1-52,1+52.反思感悟 有关不等式恒成立求参数的取值范围,通常处理方法有两种(1)考虑能否进行参变量分离,若能,则构造关于变量的函数,转化为求函数的最大(小)值,从而建立参变量的不等式.(2)若参变量不能分离,则应构造关于变量的函数(如一次函数、二次函数),并结合图象建立参变量的不等式求解.跟踪训练2 当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,求实数m 的取值范围. 解 构造函数f (x )=x 2+mx +4,x ∈[1,2], 则f (x )在[1,2]上的最大值为f (1)或f (2).由于当x ∈(1,2)时,不等式x 2+mx +4<0恒成立.则有⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0,即⎩⎪⎨⎪⎧1+m +4≤0,4+2m +4≤0,可得⎩⎪⎨⎪⎧m ≤-5,m ≤-4,所以m ≤-5.题型三 含参数的一元二次不等式例3 解关于x 的不等式ax 2-(a +1)x +1<0. 解 当a <0时,不等式可化为⎝⎛⎭⎫x -1a (x -1)>0, ∵a <0,∴1a <1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 或x >1. 当a =0时,不等式可化为-x +1<0,解集为{x |x >1}. 当a >0时,不等式可化为⎝⎛⎭⎫x -1a (x -1)<0. 当0<a <1时,1a >1,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a . 当a =1时,不等式的解集为∅.当a >1时,1a <1,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. 综上,当a <0时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 或x >1; 当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,解集为∅;当a >1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1. 反思感悟 解含参数的一元二次不等式,可以按常规思路进行:先考虑开口方向,再考虑判别式的正负,最后考虑两根的大小关系,当遇到不确定因素时再讨论. 跟踪训练3 解关于x 的不等式(x -a )(x -a 2)<0.解 当a <0或a >1时,有a <a 2,此时,不等式的解集为{x |a <x <a 2}; 当0<a <1时,有a 2<a ,此时,不等式的解集为{x |a 2<x <a }; 当a =0或a =1时,原不等式无解.综上,当a<0或a>1时,原不等式的解集为{x|a<x<a2};当0<a<1时,原不等式的解集为{x|a2<x<a};当a=0或a=1时,解集为∅.穿针引线解高次不等式观察下列不等式解集与图象的关系.猜想第三个不等式的解集.对于函数f(x)=(x-x1)(x-x2)(x-x3)…(x-x n),不妨设x1<x2<x3<…<x n.其图象有两个特点:①当x>x n时,x-x1>0,x-x2>0,…,x-x n>0,∴f(x)>0.该区间内f(x)图象在x轴上方.②从x轴右上方开始,f(x)的图象每穿过一个零点,就从x轴一侧到另一侧变化一次.根据这个原理,只要画出f(x)示意图(穿针引线),即可得到f(x)>0(或f(x)<0)的解集.如第三个不等式解集为(0,1)∪(2,+∞).在此过程中,y轴可省略不画.典例解不等式x-1x(x+1)>0.解x-1x(x+1)>0即x(x-1)(x+1)>0,穿针引线:解集为(-1,0)∪(1,+∞).[素养评析]穿针引线法的发现归功于从简单到复杂,从具体到一般的观察,发现问题,提出命题,这就是逻辑推理素养中的归纳.1.若不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2答案 D解析 由题意,得Δ=m 2-4≤0,∴-2≤m ≤2. 2.不等式x -1x -2≥0的解集为( )A .[1,2]B .(-∞,1]∪[2,+∞)C .[1,2)D .(-∞,1]∪(2,+∞) 答案 D解析 由题意可知,不等式等价于⎩⎪⎨⎪⎧(x -1)(x -2)≥0,x -2≠0,∴x >2或x ≤1.3.不等式3x +1≥1的解集是( )A .(-∞,-1)∪(-1,2]B .[-1,2]C .(-∞,2]D .(-1,2]答案 D解析 ∵3x +1≥1,∴3x +1-1≥0,∴3-x -1x +1≥0,即x-2x+1≤0,等价于(x-2)(x+1)<0或x-2=0,故-1<x≤2.4.若不等式x2+x+k<0在区间[-1,1]上恒成立,则实数k的取值范围是.答案(-∞,-2)解析x2+x+k<0,即k<-(x2+x)在区间[-1,1]上恒成立,即k<[-(x2+x)]min.当x=1时,[-(x2+x)]min=-2.∴k<-2.5.解关于x的不等式:x2+(1-a)x-a<0.解方程x2+(1-a)x-a=0的解为x1=-1,x2=a.因为函数y=x2+(1-a)x-a的图象开口向上,所以①当a<-1时,原不等式的解集为{x|a<x<-1};②当a=-1时,原不等式的解集为∅;③当a>-1时,原不等式的解集为{x|-1<x<a}.1.解分式不等式时,一定要等价变形为一边为零的形式,再化归为一元二次不等式(组)求解.当不等式含有等号时,分母不为零.2.对于某些恒成立问题,分离参数是一种行之有效的方法.这是因为将参数分离后,问题往往会转化为函数问题,从而得以迅速解决.当然,这必须以参数容易分离作为前提.分离参数时,经常要用到以下简单结论(1)若f (x )有最大值f (x )max ,则a >f (x )恒成立⇔a >f (x )max ;(2)若f (x )有最小值f (x )min ,则a <f (x )恒成立⇔a <f (x )min . 3.含参数的一元二次型的不等式在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑(1)关于不等式类型的讨论:二次项系数a >0,a <0,a =0.(2)关于不等式对应的方程根的讨论:两不等根(Δ>0),两相等实根(Δ=0),无根(Δ<0). (3)关于不等式对应的方程根的大小的讨论:x 1>x 2,x 1=x 2,x 1<x 2.一、选择题1.不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1 B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞)D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 答案 A解析 原不等式等价于⎩⎪⎨⎪⎧2x +1≠0,(x -1)(2x +1)≤0,解得-12<x ≤1.∴原不等式的解集为⎝⎛⎦⎤-12,1.2.若关于x 的不等式x 2-4x -m ≥0对任意x ∈(0,1]恒成立,则m 的最大值为( ) A .1 B .-1 C .-3 D .3 答案 C解析 由已知可得m ≤x 2-4x 对一切x ∈(0,1]恒成立, 又f (x )=x 2-4x 在(0,1]上为减函数, ∴f (x )min =f (1)=-3,∴m ≤-3, ∴m 的最大值为-3.3.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,4] D .[0,4]答案 D解析 当a =0时,ax 2-ax +1<0无解,符合题意. 当a <0时,ax 2-ax +1<0解集不可能为空集. 当a >0时,要使ax 2-ax +1<0解集为空集,需⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,解得0<a ≤4.综上,a ∈[0,4].4.设a <-1,则关于x 的不等式a (x -a )⎝⎛⎭⎫x -1a <0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <a 或x >1a B.{}x | x >aC.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >a 或x <1a D.⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 答案 A 解析 ∵a <-1,∴a (x -a )⎝⎛⎭⎫x -1a <0⇔(x -a )·⎝⎛⎭⎫x -1a >0. 又a <-1,∴1a >a ,∴x >1a或x <a .∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <a 或x >1a . 5.不等式mx 2-ax -1>0(m >0)的解集可能是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >14 B .RC.⎩⎨⎧⎭⎬⎫x ⎪⎪-13<x <32 D .∅ 答案 A解析 因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点, 又m >0,所以原不等式的解集不可能是B ,C ,D ,故选A.6.若关于x 的方程x 2+(a 2-1)x +a -2=0的一根比1小且另一根比1大,则实数a 的取值范围是( ) A .(-1,1) B .(-∞,-1)∪(1,+∞) C .(-2,1) D .(-∞,-2)∪(1,+∞)答案 C解析 令f (x )=x 2+(a 2-1)x +a -2, 依题意得f (1)<0,即1+a 2-1+a -2<0, ∴a 2+a -2<0,∴-2<a <1.7.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则实数x 的取值范围是( ) A .1<x <3 B .x <1或x >3 C .1<x <2 D .x <1或x >2答案 B解析 设g (a )=(x -2)a +(x 2-4x +4), g (a )>0恒成立且a ∈[-1,1]⇔⎩⎪⎨⎪⎧g (1)=x 2-3x +2>0,g (-1)=x 2-5x +6>0⇔⎩⎪⎨⎪⎧x <1或x >2,x <2或x >3⇔x <1或x >3. 8.若方程x 2+(m -3)x +m =0有两个正实根,则m 的取值范围是( ) A .(0,1] B .(0,2) C .(-3,0) D .(-1,3) 考点 “三个二次”间对应关系的应用 题点 由“三个二次”的对应关系求参数值 答案 A解析 由题意得⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,x 1+x 2=3-m >0,x 1x 2=m >0,解得0<m ≤1.二、填空题9.不等式5-xx +4≥1的解集为 .答案 ⎝⎛⎦⎤-4,12 解析 因为5-x x +4≥1等价于1-2xx +4≥0,所以2x -1x +4≤0,等价于⎩⎪⎨⎪⎧(2x -1)(x +4)≤0,x +4≠0,解得-4<x ≤12.10.若不等式ax 2+2ax -(a +2)≥0的解集是∅,则实数a 的取值范围是 . 答案 (-1,0]解析 当a =0时,-2≥0,解集为∅,满足题意;当a ≠0时,a 满足条件⎩⎪⎨⎪⎧a <0,Δ=4a 2+4a (a +2)<0,解得-1<a <0.综上可知,a 的取值范围是(-1,0].11.(2018·上饶模拟)当x >0时,若不等式x 2+ax +1≥0恒成立,则实数a 的最小值为 . 答案 -2解析 当Δ=a 2-4≤0,即-2≤a ≤2时,不等式x 2+ax +1≥0对任意x >0恒成立,当Δ=a 2-4>0时,有f (0)=1>0,若要原不等式恒成立,则需⎩⎪⎨⎪⎧a 2-4>0,-a 2<0,解得a >2,所以使不等式x 2+ax +1≥0对任意x >0恒成立的实数a 的最小值是-2. 三、解答题12.对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,求实数a 的取值范围. 解 当a -2≠0时,⎩⎪⎨⎪⎧ a -2<0,4(a -2)2-4(a -2)·(-4)<0,即⎩⎪⎨⎪⎧a <2,a 2<4,解得-2<a <2.当a -2=0时,-4<0恒成立, 综上所述,-2<a ≤2.13.已知一元二次不等式ax 2+bx +c >0的解集为(α,β),且0<α<β,求不等式cx 2+bx +a <0的解集.解 方法一 由题意可得a <0,且α,β为方程ax 2+bx +c =0的两根,∴由根与系数的关系得⎩⎨⎧ba=-(α+β)<0, ①ca =αβ>0, ②∵a <0,0<α<β, ∴由②得c <0,则cx 2+bx +a <0可化为x 2+b c x +ac >0.①÷②,得b c =-(α+β)αβ=-⎝⎛⎭⎫1α+1β<0. 由②得a c =1αβ=1α·1β>0.∴1α,1β为方程x 2+b c x +ac =0的两根. 又∵0<α<β, ∴0<1β<1α,∴不等式x 2+b c x +ac >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x <1β或x >1α, 即不等式cx 2+bx +a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x <1β或x >1α. 方法二 由题意知a <0,∴由cx 2+bx +a <0,得c a x 2+ba x +1>0.将方法一中的①②代入, 得αβx 2-(α+β)x +1>0, 即(αx -1)(βx -1)>0. 又∵0<α<β, ∴0<1β<1α.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1β或x >1α.14.关于x 的不等式组⎩⎪⎨⎪⎧x 2-x -2>0,2x 2+(2k +5)x +5k <0的整数解的集合为{-2},则实数k 的取值范围为 . 答案 [-3,2)解析 ∵-2是2x 2+(2k +5)x +5k <0的解,∴2(-2)2+(2k +5)(-2)+5k =k -2<0.∴k <2,-k >-2>-52,∴2x 2+(2k +5)x +5k =(x +k )(2x +5)<0的解集为⎝⎛⎭⎫-52,-k , 又x 2-x -2>0的解集为{x |x <-1或x >2}, ∴-2<-k ≤3,∴k 的取值范围为[-3,2). 15.解关于x 的不等式ax 2-2(a +1)x +4>0. 解 (1)当a =0时,原不等式可化为-2x +4>0, 解得x <2,所以原不等式的解集为{x |x <2}.(2)当a >0时,原不等式可化为(ax -2)(x -2)>0,对应方程的两个根为x 1=2a ,x 2=2.①当0<a <1时,2a>2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a 或x <2; ②当a =1时,2a=2,所以原不等式的解集为{x |x ≠2};③当a >1时,2a <2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2或x <2a . (3)当a <0时,原不等式可化为(-ax +2)(x -2)<0,对应方程的两个根为x 1=2a ,x 2=2,则2a<2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a <x <2. 综上,当a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2; 当a =0时,原不等式的解集为{x |x <2};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a 或x <2; 当a =1时,原不等式的解集为{x |x ≠2};当a >1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2或x <2a .。

人教A版高中数学必修五《基本不等式》精品教案

人教A版高中数学必修五《基本不等式》精品教案

《基本不等式:》教案《普通高中课程标准实验教科书·数学》必修5(人教A 版)第三章3.4节 一.教学目标①知识与技能目标:学会推导并掌握基本不等式,理解基本不等式的几何意义,并掌握式子中取等号的条件,会用基本不等式解决简单的数学问题。

②过程方法与能力目标:通过类比、直觉、发散等探索性思维的培养,激发学生学习数学的兴趣,进一步培养学生的解题能力,创新能力,勇于探索的精神。

③情感、态度与价值观目标:通过本节的学习,体会数学来源于生活并用于生活,增强学生应用数学的意识,激发学生学习数学的兴趣。

让学生享受学习数学带来的情感体验和成功喜悦。

二.教学重点、难点教学重点:创设代数与几何背景理解基本不等式,并从不同角度探索基本2a b+≤。

教学难点:理解“当且仅当a b =时取“=”号”的数学内涵,基本不等式的简单应用。

三、教学方法与手段本节课采用启发引导,讲练结合,自主探究的互动式教学方法。

以学生为主体,以基本不等式为主线,从实际问题出发,让学生探究思索。

以多媒体作为教学辅助手段,加深学生对基本不等式的理解。

四、教学过程设计设置情景,导入新课1.图中的面积有哪些相等和不等的关系?2.正方形ABCD的面积肯定大于4个直角三角形的面积和吗?有没有相等的情况呢?1.让学生观察常见的图形,目的是调动学生的学习兴趣,让学生感受到数学来源于生活,从而激发他们的学习动机。

2.借助《几何画板》动态演示和数据验算让学生更容易理解“当且仅当a b时取“=”号”的数学内涵,突破一个难点。

教师利用多媒体展示问题情景:1.(投影出)在北京召开的第24届国际数学家大会的会标——风车。

2.让学生直观观察(多媒体动画演示,“当正方形EFGH缩为一个点时,它们的面积相等”。

)自主探究,从而归纳出:“正方形ABCD的面积不小于4个直角三角形的面积和”。

五、板书设计板书设计方面主要板书两个不等式和应用不等式求最值的问题,例题及练习则利用多媒体课件展现,这样有利增加课堂容量,提高课堂效率。

新人教A版必修5高中数学《3.4 基本不等式》导学案(3)

新人教A版必修5高中数学《3.4 基本不等式》导学案(3)

高中数学《3.4 基本不等式》导学案(3)新人教A 版必修5学习目标1.理解并掌握基本不等式及变形应用. 2.会用基本不等式求最值问题 ※ 学习重点、难点:1.利用基本不等式求最值.(重点)2.利用基本不等式求最值时的变形转化(难点)1、若x >0,则34x x+的最小值为 2、若a,b 均为大于1的正数,且ab =100,则lga ·lgb 的最大值是3、设0<x<32,求函数y =x(3-2x)的最大值;一层练习 4、若a <1,则a +1a -1有最___值,为________.5、设0>x ,求xx y 133--=的最大值二层练习 6、求)0(112<-+=x xx y 的最大值7、求)0(123≠+=x xx y 的值域8、求函数y =x +1x的值域.9、求)1(1622>-++=x x x x y 的最小值求函数y =x 2+3x 2+2的最小值.二、合作探究题型四 利用基本不等式解有条件的最值问题1、已知,0,0>>b a 且,4=ab 求b a 23+的最小值2、已知,0,0>>b a 且,14=+b a 求ab 的最大值3、已知x>0,y>0,且 1x +9y =1,求x +y 的最小值.4、已知,0,0>>y x 且124++=y x xy 求xy 的最小值5、设x ,y 都是正数,且1x +2y=3求2x +y 的最小值;6、若正数b a ,满足3++=b a ab ,则ab 的取值范围是 .(3)设x>0,y>0,且2x +8y =xy ,求x +y 的最小值.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值52B .最小值54C .最大值1D .最小值1已知x <54,求函数f (x )=4x -2+14x -5的最大值.1.函数y =log 2⎝⎛⎭⎪⎫x +1x -1+5 (x >1)的最小值为( ) A .-3 B .3 C .4 D .-42.已知点P (x ,y )在经过A (3,0),B (1,1)两点的直线上,则2x +4y的最小值为( ) A .2 2 B .4 2 C .16 D .不存在6.函数y =log a (x +3)-1 (a >0,a ≠1)的图象恒过点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +2n的最小值为________.(2)设x >-1,求y =x +x +x +1的最小值.4.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52D .-36.若lg x +lg y =1,则2x+5y的最小值为________.8.设正数x ,y 满足x +y ≤a ·x +y 恒成立,则a 的最小值是______. 2已知2a +b =1,a >0,b >0,则11a b+的最小值是( )A .B .3-C .3+D .33(2011·安徽合肥一模)若M =24a a+(a ∈R ,a ≠0),则M 的取值范围为( )A .(-∞,-4]∪[4,+∞)B .(-∞,-4]C .[4,+∞)D .[-4,4]1函数y =3x +32-x的最小值为__________.4. 若14<<-x ,则22222-+-x x x 的最小值为( )(1).11120,0的最小值,求且yx y x y x +=+>> ; (2) 设x 、y 是正实数,且x+y=5,则lgx+lgy 的最大值是_______________________. 2、已知正数a ,b 满足ab =a +b +3.求a +b 的最小值.达标练习课后练习。

人教A版高中数学必修五3.1.不等关系与不等式 教学设计

人教A版高中数学必修五3.1.不等关系与不等式 教学设计

人教版新课标普通高中◎数学⑤必修第三章不等式概述不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容.建立不等观念,处理不等关系与处理等量问题是同样重要的.根据课程标准,在本章中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的内在联系.1.内容与课程学习目标本章主要学习描述不等关系的数学方法,一元二次不等式的解法及其应用,线性规划问题,基本不等式及其应用等,通过学习,要使学生达到以下目标:(1)通过具体情境,感受在现实世界和日常生活中存在着大量的数量关系,了解不等式(组)的实际背景.(2)经历从实际情境中抽象出一元二次不等式模型的过程;通过函数图象了解一元二次不等式与相应函数、方程的联系;会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图.(3)从实际情境中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)探索基本不等式的证明过程;会用基本不等式解决简单最大(小)值问题.2.教学要求(1)基本要求①了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景;理解不等式(组)对于刻划不等关系的意义和价值;会用不等式(组)表示实际问题中的不等关系,能用不等式(组)研究含有不等关系的实际问题.②理解并掌握不等式的基本性质;了解从实际情境中抽象出一元二次不等式模型的过程.③理解一元二次不等式的概念;通过图象,理解并掌握一元二次不等式、二次函数及一元二次方程之间的关系.④理解并掌握解一元二次不等式的过程;会求一元二次不等式解集;掌握求解一元二次不等式的程序框图及隐含的算法思想,会设计求解的过程.⑤了解从实际情境中抽象出二元一次不等式(组)模型的过程;理解二元一次不等式(组)、二元一次不等式(组)的解集的概念;了解二元一次不等式的几何意义,理解(区域)边界的概念及实线、虚线边界的含义;会用二元一次不等式(组)表示平面区域,能画出给定的不等式(组)表示的平面区域.1教师备课系统──多媒体教案2 ⑥了解线性约束条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解的概念;掌握简单的二元线性规划问题的解法.⑦了解基本不等式的代数背景、几何背景以及它的证明过程;理解算术平均数,几何平均数的概念;会用基本不等式解决简单的最大(小)值的问题;通过基本不等式的实际应用,感受数学的应用价值.(2)发展要求①体会不等式的基本性质在不等式证明中所起的作用.②会从实际情景中抽象出一些简单的二元线性规划问题并加以解决.(3)说明①不等式的有关内容将在选修4-5中作进一步讨论.②淡化解不等式的技巧性要求,突出不等式的实际背景及其应用.③突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形.3. 教学内容及课时安排建议3.1不等式与不等关系(约2课时)3.2一元二次不等式及其解法(约2课时)3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域(约2课时)3.3.2简单的线性规划问题(约2课时)3.4基本不等式:2ba ab +≤(约2课时)人教版新课标普通高中◎数学⑤ 必修33.1 不等关系与不等式教案 A第1课时教学目标一、知识与技能通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质.二、过程与方法通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法.三、情感、态度与价值观通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯. 教学重点和难点教学重点:用不等式(组)表示实际问题的不等关系;并用不等式(组)研究含有不等关系的问题;理解不等式(组)对于刻画不等关系的意义和价值.教学难点:用不等式(组)正确表示出不等关系.教学关键:将实际问题的不等关系转化为数学中不等式问题.教学突破方法:通过分析实践、自主探究、合作交流等一系列的寻求问题解决方法的活动,讨论解决方法.教法与学法导航教学方法:观察法、探究法、尝试指导法、讨论法.学习方法:从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.教学准备教师准备:多媒体、黑板、教材.学生准备:直尺、教材.教学过程一、创设情境,导入新课在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.如两点之间线段最短、三角形两边之和大于第三边,等等.人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系.在数学中,我们用不等式来表示不等关系.下面我们首先来看如何利用不等式来表示不等关系.二、主题探究,合作交流1. 用不等式表示不等关系引例1:限速40km /h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是40v .教师备课系统──多媒体教案4引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示.3.2,5.20000≥≥p f问题1:设点A 与平面α的距离为d ,B 为平面α上的任意一点,则||d AB ≤. 问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本. 据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯ 万元,那么不等关系“销售的总收入不低于20万元”可以表示为不等式2.5(80.2)200.1x x --⨯≥. 问题3:某钢铁厂要把长度为4 000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍. 怎样写出满足所有上述所有不等关系的不等式呢?解:假设截得500 mm 的钢管 x 根,截得600mm 的钢管y 根.根据题意,应有如下的不等关系:(1)截得两种钢管的总长度不超过4 000mm ;(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍;(3)截得两种钢管的数量都不能为负.要同时满足上述的三个不等关系,可以用下面的不等式组来表示:5006004000300.x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩,,, 三、拓展创新,应用提高1. 试举几个现实生活中与不等式有关的例子.2. 教材第74页的练习 第1、2题.四、小结用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.五、课堂作业教材第75页习题 3.1A 组 第4、5题.人教版新课标普通高中◎数学⑤ 必修5第2课时教学目标一、知识与技能掌握不等式的基本性质,会用不等式的性质证明简单的不等式.二、过程与方法通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法.三、情感、态度与价值观通过讲练结合,培养学生转化的数学思想和逻辑推理能力.教学重点和难点教学重点:掌握不等式的性质和利用不等式的性质证明简单的不等式.教学难点:利用不等式的性质证明简单的不等式.教学关键:学生会用不等式的性质证明简单的不等式和比较两个数的大小.教学突破方法:通过问题解决情景的设置、投影错例展示的方式,解决学生对不等式的理解.教法与学法导航教学方法:采用探究法,遵循从具体到抽象的原则.学习方法:通过观察、分析、讨论,引导学生归纳小结出不等式的基本性质,设计较典型的问题,总结解题的规律.教学准备教师准备:多媒体、黑板、教材.学生准备:直尺、教材.教学过程一、创设情境,导入新课关于不等式的几个基本事实0;0;0.a b a b a b a b a b a b >⇔->⎧⎪=⇔-=⎨<⇔-<⎪⎩在初中,我们已经学习过不等式的一些基本性质,请同学们回忆初中不等式的的基本性质.1. 不等式的两边同时加上或减去同一个数,不等号的方向不改变,即若a b a c b c >⇒±>±;2. 不等式的两边同时乘以或除以同一个正数,不等号的方向不改变,即若,0a b c ac bc >>⇒>;3. 不等式的两边同时乘以或除以同一个负数,不等号的方向改变,即若,0a b c ac bc ><⇒<.二、主题探究,合作交流1. 不等式的基本性质教师备课系统──多媒体教案6 师:同学们能证明以上不等式的基本性质吗?证明:(1)()()0a cbc a b+-+=->,∴a c b c+>+;(2)()()0>-=---bacbca,∴cbca->-.实际上,我们还有,a b b c a c>>⇒>.(证明:∵a>b,b>c,∴a-b>0,b-c>0.)根据两个正数的和仍是正数,得(a-b)+(b-c)>0,即a-c>0,∴a>c.于是,我们就得到了不等式的基本性质:(1)abba<⇔>;(2),a b b c a c>>⇒>;(3)a b a c b c>⇒+>+;(4),0a b c ac bc>>⇒>;,0a b c ac bc><⇒<.例1已知0,0,a b c>><求证c ca b>.证明:因为0a b>>,所以ab>0,1ab>.于是11a bab ab⨯>⨯,即11b a>.由c<0 ,得c ca b>.例2比较(a+3)(a-5)与(a+2)(a-4)的大小.分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要).根据实数运算的符号法则来得出两个代数式的大小.比较两个实数大小的问题转化为实数运算符号问题.解:由题意可知:(a+3)(a-5)-(a+2)(a-4)=(a2-2a-15)-(a2-2a-8)=-7<0∴(a+3)(a-5)<(a+2)(a-4)2. 探索研究思考:利用上述不等式的性质,证明不等式的下列性质:(5)dbcadcba+>+⇒>>,;(6)bdacdcba>⇒>>>>0,0;人教版新课标普通高中◎数学⑤ 必修7(7))2,(0≥∈>⇒>>n N n b a b a n n ;(8))2,(0≥∈>⇒>>n N n b a b a n n .证明:(5)∵ a >b , ∴ a +c >b +c . ①∵ c >d , ∴ b +c >b +d . ②由①②得 a +c >b +d .(6)bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,.(7)同学们自己证明.(8)反证法)假设n n b a ≤,则:a b a b <⇒<=⇒=这都与b a >矛盾, ∴n n b a >.三、知识巩固,练习提高例3 已知x ≠0, 比较22)1(+x 与124++x x 的大小.解:(取差)22)1(+x -)1(24++x x22424112x x x x x =---++=.∵0≠x , ∴02>x . 从而22)1(+x >124++x x .例4 已知a >b >0,c <d <0,则ba -c 与ab -d 的大小关系为________.解析:b a -c -ab -d =b 2-bd -a 2+ac (a -c )(b -d )=(b +a )(b -a )-(bd -ac)(a -c )(b -d ).因为a >b >0,c <d <0,所以a -c >0,b -d >0,b -a <0,又-c >-d >0,则有-ac >-bd ,即ac <bd ,则bd -ac >0,所以(b +a )(b -a )-(bd -ac )<0,所以b a -c -a b -d =(b +a )(b -a )-(bd -ac )(a -c )(b -d )<0,即b a -c <ab -d ..教师备课系统──多媒体教案8 答案:ba-c<ab-d.课堂练习:教材第74页的练习第3题.四、小结本节课学习了不等式的性质,并用不等式的性质证明了一些简单的不等式,还研究了如何比较两个实数(代数式)的大小——作差法,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n个因式之积或完全平方式或常数的形式;第二步:判断差值与零的大小关系,必要时须进行讨论;第三步:得出结论.五、课堂作业教材第75页习题3.1 A组第2、3题;B组第1题.教案 B第1课时教学目标1.在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容;利用数轴回忆实数的基本理论并能用实数的基本理论来比较两个代数式的大小,及用实数的基本理论来证明不等式的一些性质.2.通过回忆与复习学生所熟悉的等式性质类比得出不等式的一些基本性质.并在了解不等式一些基本性质的基础之上,掌握作差比较法判断两实数或代数式大小,利用它们来证明一些简单的不等式.3.通过富有实际意义问题的解决,激发学生的探究精神和严肃认真和科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学生的学习兴趣.教学重点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题;理解不等式(组)对于刻画不等关系的意义和价值及不等式的三条基本性质.教学难点用不等式或不等式组准确地表示出不等关系,作差比较法判断两实数或代数式大小.教学过程一、导入新课章头图是一幅山峦重叠起伏的壮观画面,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.二、提出问题1.回忆初中学过的不等式,让学生说出“不等关系”与不等式的异同,怎样利用人教版新课标普通高中◎数学⑤ 必修 9不等式研究及表示不等关系?2. 在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系,你能举出一些实际例子吗?三、应用示例例1 某汽车公司由于发展的需要需购进一批汽车,计划使用不超过1 000万元的资金购买单价分别为40万元、90万元的A 型汽车和B 型汽车.根据需要,A 型汽车至少买5辆,B 型汽车至少买6辆,写出满足上述所有不等关系的不等式.解:设购买A 型汽车和B 型汽车分别为x 辆、y 辆,则40901000,5,6,N ,x y x y x y *+≤⎧⎪≥⎨≥⎪∈⎩,,即. 49100,5,6,N .x y x y x y *+≤⎧⎪≥⎨≥⎪∈⎩, 例2.某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种,按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍.怎样写出满足上述所有不等关系的不等式呢?解:假设截得的500mm 钢管x 根,截得的600mm 钢管y 根.根据题意,应有如下的不等关系:5006004000,3,,.x y x y x N y N +≤⎧⎪≥⎪⎨∈⎪⎪∈⎩说明:关键是找出题目中的限制条件,利用限制条件列出不等关系.四、小结上面的例子表明,我们可以用不等式(组)来刻画不等关系.表示不等关系的式子叫做不等式,常用(<>≤≥≠、、、、)表示不等关系. 老师进一步画龙点睛,指出不等式是研究不等关系的重要数学工具.五、练习教材第74页 练习第 1、2题.六、提出新问题怎样比较两个实数的大小?七、作业教材第75页习题3.1 A 组第4、5题; B 组第1、2题.第2课时教学目标1.在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容;利用数轴回忆实数的基本理论并能用实数的基本理论来比较两个代数式的大小,教师备课系统──多媒体教案10及用实数的基本理论来证明不等式的一些性质.2.通过回忆与复习学生所熟悉的等式性质类比得出不等式的一些基本性质.并在了解不等式一些基本性质的基础之上,掌握作差比较法判断两实数或代数式大小,利用它们来证明一些简单的不等式.3.通过富有实际意义问题的解决,激发学生的探究精神和严肃认真和科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学生的学习兴趣. 教学重点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值及不等式的三条基本性质. 教学难点用不等式或不等式组准确地表示出不等关系,作差比较法判断两实数或代数式大小. 教学过程一、提出问题不等式是研究不等关系的重要数学工具,我们都了解哪些不等式的性质呢?1.请学生回答等式有哪些性质?2.不等式有哪些基本性质?这些性质都有何作用?二、探究不等式的性质性质1:如果b a >,那么a b <;如果a b <,那么b a >(对称性).证:∵b a >,∴0>-b a ,由正数的相反数是负数.0)(<--b a ,0<-a b ,a b <.性质2:如果b a >,c b >,那么c a >(传递性).证:∵b a >,c b >,∴0>-b a ,0>-c b .∵两个正数的和仍是正数,∴+-)(b a 0)(>-c b .∵0>-c a ,∴c a >.由对称性,性质2可以表示为如果b c <且a b <那么a c <.性质3:如果b a >,那么c b c a +>+(加法单调性)反之亦然.证:∵0)()(>-=+-+b a c b c a ,∴c b c a +>+.从而可得移项法则:b c a b c b b a c b a ->⇒-+>-++⇒>+)()(.性质4:如果b a >且d c >,那么d b c a +>+(相加法则).证:d b c a d b c b d c c b c a b a +>+⇒⎭⎬⎫+>+⇒>+>+⇒>. 推论:如果b a >且d c <,那么d b c a ->-(相减法则).人教版新课标普通高中◎数学⑤ 必修 11证:∵d c < ∴d c ->-;d b c a d c ba ->-⇒⎩⎨⎧->->.或证:)()()()(d c b a d b c a ---=---.d c ba <> ⇒⎭⎬⎫<-∴>-∴00d c b a 上式>0.性质5:如果b a >且0>c ,那么bc ac >.如果b a >且0<c ,那么bc ac <(乘法单调性).证:c b a bc ac )(-=-.∵b a >,∴0>-b a .根据同号相乘得正,异号相乘得负,得:0>c 时0)(>-c b a ,即:bc ac >;0<c 时0)(<-c b a ,即:bc ac <.性质6:如果0>>b a 且0>>d c ,那么bd ac >(相乘法则).证:bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,.推论:如果0>>b a 且d c <<0,那么d bc a>(相除法则).证:∵0>>c d ∴⇒⎪⎭⎪⎬⎫>>>>0011b a dcd bc a >.性质7:如果0>>b a , 那么n n b a > (N 1)n n ∈>且.性质8:如果0>>b a ,那么n n b a > (N 1)n n ∈>且.证:(反证法)假设n n b a ≤,则:a b a b <=这都与b a >矛盾, ∴nn b a >.三、应用实例例1 比较大小教师备课系统──多媒体教案12 ①已知0>>ba,0<c求证:bcac>;解:∵0a b>>,∴ab>0,1ab>.∴11a bab ab⨯>⨯,即11b a>.∵c<0 ,∴c ca b>.②231-和10.解:∵23231+=-,∵02524562)10()23(22<-=-=-+.∴231-<10.例2 比较)5)(3(-+aa与)4)(2(-+aa的大小.解:(取差))5)(3(-+aa-)4)(2(-+aa7)82()152(22<-=-----=aaaa.∴)5)(3(-+aa<)4)(2(-+aa.例3 已知x≠0, 比较22)1(+x与124++xx的大小.解:(取差)22)1(+x-)1(24++xx22424112xxxxx=---++=.∵0≠x,∴02>x.从而22)1(+x>124++xx.小结:比较大小的步骤:“作差-变形-定号-结论”.例4 已知2,x>比较311x x+与266x+的大小.人教版新课标普通高中◎数学⑤ 必修 13解:3232211(66)33116x x x x x x x +-+=--+- 2(3)(32)(3)x x x x =-+-+-=(3)(2)(1)x x x --------------------(*)(1)当3x >时,(*)式0>,所以 311x x +>266x +;(2)当3x =时,(*)式0=,所以 311x x +=266x +;(3)当23x <<时,(*)式0<,所以 311x x +<266x +. 说明:实数比较大小的问题一般可用作差比较法,其中变形常用因式分解、配方、通分等方法才能定号.四、课堂练习1.已知0>>b a ,0<<d c ,0<e ,求证:db ec a e ->-. 证明:⇒⎪⎭⎪⎬⎫<-<-⇒>-<-⇒⎭⎬⎫<<>>011000e d b c a d b c a d c b a d b e c a e ->-. 2.||||,0b a ab >>, 比较a 1与b 1的大小. 解:a 1-b 1aba b -=, 当0,0>>b a 时,∵||||b a >即b a >,0<-a b ,0>ab , ∴0<-ab a b ,∴a 1<b1. 当0,0<<b a 时∵||||b a >即b a <,0>-a b ,0>ab , ∴0>-ab a b ,∴a 1>b1. 3.若0,>b a , 求证:a b ab >⇔>1. 解:01>-=-aa b a b . ∵0>a , ∴0>-a b ,∴b a <.0>-⇒>a b a b .∵0>a ,∴01>-=-a b a a b , ∴1>a b .教师备课系统──多媒体教案14 五、课堂小结1.不等式的性质,并用不等式的性质证明了一些简单的不等式;2.如何比较两个实数(代数式)的大小——作差法.六、布置作业教材第75页习题3.1 A组第2、3题;B组第2、3题.。

高中数学第三章不等式31不等关系与不等式课件新人教A版必修5


D.5
【解题探究】判断不等关系的真假,要紧扣不等的性
质,应注意条件与结论之间的联系. 【答案】C
【解析】①c 的范围未知,因而判断 ac 与 bc 的大小缺乏 依据,故该结论错误.
②由 ac2>bc2 知 c≠0,则 c2>0,
∴a>b,∴②是正确的.
③a<b, ⇒a2>ab,a<b, ⇒ab>b2,
【答案】M>N
【解析】M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1= a1(a2 - 1) - (a2 - 1) = (a1 - 1)(a2 - 1) , 又 ∵ a1∈(0,1) , a2∈(0,1) , ∴ a1 - 1<0 , a2 - 1<0.∴(a1 - 1)(a2 - 1)>0 , 即 M - N>0.∴M>N.
用不等式表示不等关系
【例1】 某钢铁厂要把长度为4 000 mm的钢管截成 500 mm 和600 mm两种规格,按照生产的要求,600 mm 钢管 的数量不能超过500 mm钢管的3倍.试写出满足上述所有不等 关系的不等式.
【解题探究】应先设出相应变量,找出其中的不等关 系,即①两种钢管的总长度不能超过4 000 mm;②截得600 mm钢管的数量不能超过500 mm钢管数量的3倍;③两种钢管 的数量都不能为负.于是可列不等式组表示上述不等关系.
比较大小要注重分类讨论
【示例】设 x∈R 且 x≠-1,比较1+1 x与 1-x 的大小. 【错解】∵1+1 x-(1-x)=1-1+1-x x2=1+x2 x,而 x2≥0,∴ 当 x>-1 时,x+1>0,1+x2 x≥0,即1+1 x≥1-x; 当 x<-1 时,x+1<0,1+x2 x≤0,即1+1 x≤1-x.

高中数学第三章不等式32一元二次不等式及其解法第2课时一元二次不等式的解法的应用课件新人教A版必修


2.含参数一元二次不等式有解的讨论方法 (1)当二次项系数不确定时,要分二次项系数_等__于__零_、 _大__于__零___、_小__于__零___三种情况进行讨论. (2)判别式不确定时,要分判别式大于零、等于零、小 于零三种情况进行讨论. (3)判别式大于零时,只需讨论两根大小.
1.若集合
它的同解不等式为xx--22≠x0-,5≥0, ∴x<2 或 x≥5. ∴原不等式的解集为{x|x<2 或 x≥5}.
【方法规律】1.对于比较简单的分式不等式,可直接转 化为一元二次不等式或一元一次不等式组求解,但要注意分母 不为零.
2.对于不等号右边不为零的较复杂的分式不等式,先 移项再通分(不要去分母),使之转化为不等号右边为零,然后 再用上述方法求解.
【答案】B
3.不等式x+x 1≤3 的解集为________. 【答案】x|x<0或x≥12
4.若函数f(x)=log2(x2-2ax-a)的定义域为R,则a的 取值范围为________.
【答案】(-1,0) 【解析】已知函数定义域为R,即x2-2ax-a>0对任意 x∈R恒成立,∴Δ=(-2a)2+4a<0,解得-1<a<0.
y=200a(1+2x%)(10-x)%=215a(50+x)(10-x)(0<x<10). (2)原计划税收为 200a·10%=20a(万元).依题意得215a(50
+ x)(10 - x)≥20a×83.2% , 化 简 得 x2 + 40x - 84≤0 , ∴ - 42≤x≤2.又 0<x<10,∴0<x≤2.∴x 的取值范围是{x|0< x≤2}.
)
A.x|1t <x<t
B.x|x>1t 或x<t
C.x|x<1t 或x>t
D.x|t<x<1t

高中数学必修5(人教A版)第三章不等式3.5知识点总结含同步练习及答案

A.[
答案: A 解析: 只需
1 2
x
)
1 ] 4 7 D.(−∞, − ) 2
B.(−∞,
f (x) min ⩾ g(x) min 即可.
4. 三位同学合作学习,对问题"已知不等式 xy ⩽ ax2 + 2y 2 对于 x ∈ [1, 2] , y ∈ [2, 3] 恒成立,求 a 的 取值范围"提出了各自的解题思路. 甲说:"可视 x 为变量,y 为常量来分析". 乙说:"寻找 x 与 y 的关系,再作分析". 丙说:"把字母 a 单独放在一边,再作分析". 参考上述思路,或自已的其它解法,可求出实数 a 的取值范围是 ( A.[1, +∞)
1. 若关于 x 的方程 9 x + (4 + a) ⋅ 3 x + 4 = 0 有解,则实数 a 的取值范围是 ( A.(−∞, −8) C.[−8, +∞)
答案: B 解析:
)Hale Waihona Puke B.(−∞, −8]D.(−∞, +∞)
由 9 x + (4 + a) ⋅ 3 x + 4 = 0,得 a = −3 x −
答案: B 解析:
)
D.[−1, 6]
B.[−1, +∞)
C.[−1, 4)
y y y 2 − 2( ) ,由 x ∈ [1, 2] , y ∈ [2, 3] ,x 、 y 构成正方形区域, 表示过 x x x y y 原点直线与正方形区域相交时直线的斜率的取值范围,则有 ∈ [1, 3] ,当 = 1 时, x x y y 2 − 2( ) 有最大值为 −1,则 a 的取值范围是 [−1, +∞) x x

2020版新学优高中数学同步人教A必修5 教师课件:模块复习课 第3课时 不等式


专题归纳
高考体验
课堂篇专题整合
反思感悟 1.“三个二次”的关系是解一元二次不等式的理论基础,一
般可把 a<0 时的情形转化为 a>0 时的情形.
2.关于 x 的不等式 ax2+bx+c>0 对任意实数 x 恒成立⇔
������ = ������ ������ > 0
=
0, 或
������ ������
答案:C
专题归纳
高考体验
课堂篇专题整合
反思感悟判断关于不等式的命题真假的三种方法 1.直接运用不等式的性质:把要判断的命题和不等式的性质联系起 来考虑,找到与命题相近的性质,然后进行推理判断. 2.利用函数的单调性:当利用不等式的性质不能比较大小时,可以利 用指数函数、对数函数、幂函数的单调性等进行判断. 3.特殊值验证法:给要判断的几个式子中涉及的变量取一些特殊值, 然后进行比较、判断.
课前篇自主梳理
知识网络
要点梳理
思考辨析
2.一元二次不等式的解法
判别式 Δ=b2-4ac Δ>0
Δ=0
二次函数 y=ax2+bx+c(a>0) 的图象
一元二次方程 ax2+bx+c=0(a>0) 的根
ax2+bx+c>0(a>0) 的解集 ax2+bx+c<0(a>0) 的解集
有两相异实数根 x1=-b2-a Δ,x2=-b2+a Δ(x1<x2) {x|x<x1,或 x>x2}
,
+

.
④当 m<-3 时,则 Δ>0,且 m+3<0,所以原不等式的解集是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ⅱ)当 时,原不等式可化为 ,对应方程的两根为 。
①当 时, ,所以原不等式的解集为 ;
②当 时, ,所以原不等式的解集为 ;
③当 时, ,所以原不等式的解集为 。
Ⅲ)当 时,原不等式可化为 ,对应方程的两根为 ,
又 ,所以原不等式的解集为 。
练5:解不等式 .
答案:
(1)当 时,原不等式转的最小值以及取得最小值时 的值。
解:由 ,得 ,则 。
当且仅当 时取“ ”号.于是 或者 (舍去)
答:最小值是 ,取得最小值时 的值为 。
练1:已知 ,求函数 的最大值.
解:由 ,得 , ,
由 (当且仅当 时,即 时取“ "),
得 ,所以函数的最大值为 。
练2:求函数 的最小值.
解:令 ,则 ,
(2) 表示点 与点 之间的距离;
(3) 表示点 与原点 连线的斜率;
(4) 表示点 与点 连线的斜率。
二、考点突破
考点一:不等式的基本性质:
题型一:不等式的性质:
例1、如果 满足 且 ,那么下列选项中不一定成立的是()
A、 B、 C、 D、
练1:设 ,则下列不等式成立的是()
A、 B、 C、 D、
(4)根据一元二次方程根的情况画出对应的二次函数的草图.
(5)根据图象写出不等式的解集.
练1:求下列不等式的解集:
(1) ;(2) ;
(3) ;(4) 。
答案:(1) ;(2) ;(3) ;(4) .
练2:设集合 ,则 中有个元素.
练3:解下列不等式:
(1) ;(2) ;(3) 。
答案:(1) ;(2) ;(3) 。
对于乙车,有 ,即 .
解得 或 (舍去).这表明乙车的车速超过 ,超过规定限速.
[题后感悟](1)解不等式应用题,一般可按如下四步进行:
①阅读理解、认真审题、把握问题中的关键量、找准不等关系;
②引进数学符号,用不等式表示不等关系(或表示成函数关系);
③解不等式(或求函数最值);
④回扣实际问题.
考点四、分式不等式、高次不等式及无理不等式的解法:
[题后感悟]含参数的不等式的解题步骤为:
(1)将二次项系数转化为正数;(2)判断相应方程是否有根(如果可以直接分解因式,可省去此步);
(3)根据根的情况写出相应的解集(若方程有相异根,为了写出解集还要分析根的大小).
另外,当二次项含有参数时,应先讨论二次项系数是否为0,这决定不等式是否为二次不等式.
考点五:绝对值不等式的解法:(选修4—5)
(1) ;
(2) ;
(3) ;
(4) 。
例1、(08四川文科)不等式 的解集为()
A、 B、 C、 D、
解析: .
练1:(04全国)不等式 的解集为()
A、 B、 C、 D、
解析: 。
练2:(07广东)设函数 ,若 ,则 的取值范围是.
解析:
练3:(09山东)不等式 的解集为.
所以不等式 的解集为 .
(4)原不等式可化为 ,即 ,所以不等式的解集为 。
[题后感悟]解不含参数的一元二次不等式的一般步骤:
(1)通过对不等式的变形,使不等式右侧为0,使二次项系数为正.
(2)对不等式左侧因式分解,若不易分解,则计算对应方程的判别式.
(3)求出相应的一元二次方程的根或根据判别式说明方程无实根.
(4)无理不等式的解法:平方法化无理不等式为有理不等式(具体见模块);
(5)绝对值不等式的解法:分类讨论或平方法(具体见模块)。
3、基本不等式:如果 ,则 (当且仅当 时取“ ”)(一正二定三相等)。
(1)特例: , ; ( 同号)。
(2)变形:① ;② ;③ ;
(3)扩展: 。(备注:调和 几何 算术 平方)。
4、均值定理:已知 .
(1)如果 (定值),则 (当且仅当 时取“ ")“和定积最大".
(2)如果 (定值),则 (当且仅当 时取“ ”)“积定和最小".
5、判断二元一次不等式(组)表示平面区域的方法—“选点法":直线定边界,分清虚实;选点定区域,常选原点。
6、线性规划中常见代数式的几何意义:
(1) 表示点 与原点 之间的距离;
A、若方程 的 且两实根分别为 ,则不等式 的解集为 ,不等式 的解集为 ;
B、若方程 的 且两相等实根分别为 ,则不等式 的解集为 ,不等式 的解集为 ;
C、若方程 的 ,则不等式 的解集为 ,不等式 的解集为 .
(2)分式不等式的解法:化分式不等式为整式不等式进行求解(具体见模块);
(3)高次不等式的解法:序轴标根法(过程见模块);
解得
综上所述,当 时,原不等式的解为全体实数.
练3:若不等式 对 恒成立,求实数 的取值范围.
答案:因为 时,原不等式为 ,所以 时成立.
当 时,由题意得 ,即 ,解得 .
综上两种情况可知 。
题型二:二次方程、二次函数、二次不等式的关系:
例2、若不等式 的解集为 ,求不等式 的解集.
解:方法一:由 的解集为 知 ,又 ,则 。
又 为方程 的两个根,所以 ,即 ,又 ,所以 .此时不等式变为 ,即 ,又因为 ,所以 。所以所求不等式的解集为 .
方法二:由已知得 且 知 .
设方程 的两根分别为 ,则 ,
其中 。
所以不等式 的解集为 .
[题后感悟]方法总结:
(1)给出一元二次不等式的解集,则可知二次项的符号和一元二次方程的根,由根与系数的关系可知 之间的关系;
解Ⅰ: ,解Ⅱ: ,即 或 ,所以 ,
则原不等式的解集为 .
练5:解不等式 的解集。
解:移项 ,则 ,
所以原不等式的解集为 .
练6:解不等式(1) ;(2) .
解:(1)原不等式等价于Ⅰ: 或Ⅱ:
解Ⅰ: ,解Ⅱ: ,即: 或 ,所以 ,
则原不等式的解集为 .
(2)原不等式等价于 ,即 或 ,
所以原不等式的解集为 。
A、作差法:对于任意 ,① ;② ;③ ;
B、作商法:设 ,则① ;② ;③ 。
备注1:不等式作差时常用到因式分解、配方法、通分、有理化等变形技巧;
备注2:对于比较大小时,要考虑各种可能情况,对不确定的因素进行分类讨论;
备注3:平方差公式: ;平方和公式: 。
2、不等式的解法;
(1)一元二次不等式 及 的解法:( 转化为 )
题型三:解含参数的一元二次不等式:
例3、解关于 的不等式 。(因式分解—比较两根大小—分类讨论求解)
解:原不等式可化为 ,对应的一元二次方程的根为 ,
(1)当 时, ,不等式的解集为 .
(2)当 时,原不等式化为 ,无解.
(3)当 时, ,不等式的解集为 .
综上所述,原不等式的解集为: 时, ; 时, ; 时, 。
练4:已知不等式 的解集为 ,求 的解集
答案:因为 的解集为 ,所以 是方程 的两实根.
由根与系数的关系得 ,解得 .
所以 。
则不等式 的解集为 。
题型三:一元二次不等式的实际应用:
例3、汽车在行驶时,由于惯性作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析交通事故的一个重要因素.在一个限速
的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场勘查测得甲车的刹车距离略超过 ,乙车的刹车距离略超过 ,又知甲、乙两种车型的刹车距离 与车速 之间分别有如下关系: 。
试判断甲、乙两车有无超速现象,并根据所学数学知识给出判断的依据.
解:由题意,对于甲车,有 ,即 .解得 或 (舍去).这表明甲车的车速超过 ,但根据题意刹车距离略超过 ,由此估计甲车不会超过限速 .
练习2:设 ,且 ,求 的取值范围。
解:设 ,则 ,即 ,
于是得 ,得 。所以 。因为 ,
所以 ,故 .
练习3:(10江苏)设 为实数,满足 ,则 的最大值是.
解:设 ,化简得 , ,得 , ,所以 的最大值是 。
考点二、一元二次不等式及其解法:
题型一:一元二次不等式的定义:
例1、下列不等式中,一元二次不等式的个数为()
解:若 ,则原不等式可化为 ,即 ,不合题意,故 。
令 ,因为原不等式对任意 都成立,所以二次函数 的图像在 轴的下方。
则 且 ,即 ,所以 ,故 的取值范围为 .
[题后感悟]不等式恒成立问题方法总结:
(1) 恒成立 ;(2) 恒成立 ;
练1:若关于 的不等式 在 上恒成立,求实数 的取值范围.
答案:当 时,原不等式可化为 ,其解集不为 ,故 不满足题意,舍去;
因为 ,所以 ,故 (当且仅当 时,即 取“ ”)。所以函数的最小值为 。
练3:求 的最大值。
解:令 ,则 ,当且仅当 ,即 时取
等号,故 的最大值为 。
题型二:“1”的变换:
例2、已知 ,且 ,求 的最小值。
解:因为 , ,所以 ,当且仅当 ,即 时, 的最小值为 。
解析:

练4:若不等式 对一切实数 恒成立,求实数 的取值范围.
解:不等式 对一切实数 恒成立,由绝对值的几何意义可知, 表示数轴上点 到 和 的距离之和,那么对任意 恒成立,显然 ,又 ,故 ,所以实数 的取值范围是 。
考点六:基本不等式和均值定理:(一正二定三相等)
题型一:通过加减项配凑成基本不等式:
练4:解关于的不等式:
(1) ;(2) .
答案:(1)原不等式 可化为 。
①当 时, ,所以原不等式的解集为 ;
②当 时, ,所以原不等式的解集为 ;
③当 时, ,所以原不等式的解集为 ;
④当 时, ,所以原不等式的解集为 ;
⑤当 时,,所以原不等式的解集为 .
相关文档
最新文档