常微分方程的奇解的求法
微分方程的求解方法

微分方程的求解方法微分方程是数学中的一种重要概念,广泛应用于自然科学、工程技术和社会科学等领域。
解微分方程是求解方程中未知函数与它的导数之间的关系,从而揭示出问题的特解或通解。
本文将介绍微分方程的求解方法,包括分离变量法、线性微分方程的常数变易法和齐次线性微分方程的特征方程法。
首先,我们来介绍分离变量法。
对于形如dy/dx = f(x)g(y)的一阶微分方程,我们可以将其改写为g(y)dy = f(x)dx。
然后,我们对方程两边同时积分,得到∫g(y)dy = ∫f(x)dx。
这样,我们就将原方程分离成了两个变量的函数关系式。
接下来,我们对左右两边进行积分,得到了方程的解析解。
需要注意的是,积分常数的引入要根据具体问题中的初始条件来确定。
接下来,我们来介绍线性微分方程的常数变易法。
对于形如dy/dx + P(x)y = Q(x)的一阶线性非齐次微分方程,我们可以通过常数变易法来求解。
首先,我们假设方程的解为y = u(x)v(x),其中u(x)是一个待定函数,v(x)是一个已知函数。
然后,我们对方程两边同时求导,得到dy/dx = u'(x)v(x) + u(x)v'(x)。
将这个结果代入原方程,整理后可以得到u'(x)v(x) + P(x)u(x)v(x) = Q(x)。
然后,我们将结果与方程以及原方程比较,可以得到两个关于u(x)和v(x)的方程。
通过求解这两个方程,我们可以求得待定函数u(x)和已知函数v(x)。
进而,我们就可以得到微分方程的解析解。
同样地,积分常数的引入要根据具体问题中的初始条件来确定。
最后,我们来介绍齐次线性微分方程的特征方程法。
对于形如dy/dx + P(x)y = 0的一阶线性齐次微分方程,我们可以通过特征方程法来求解。
首先,我们假设方程的解为y = e^(αx),其中e为自然对数的底数,α为待定常数。
然后,我们将这个解代入原方程,得到αe^(αx)+ P(x)e^(αx) = 0。
高等数学:第九章 常微分方程1-2

设在微小的时间间隔 [t, t t], o
100 cm
水面的高度由h降至 h h, 则 dV r 2dh,
r 1002 (100 h)2 200h h2 ,
dV (200h h2 )dh,
(2)
比较(1)和(2)得: (200h h2 )dh 0.62 2ghdt,
28
(200h h2 )dh 0.62 2ghdt,
解 设制动后 t 秒钟行驶 s 米, s s(t)
d 2s dt 2 0.4
t 0时, s 0,v ds 20, dt
v
ds dt
0.4t
C1
s 0.2t 2 C1t C2
代入条件后知 C1 20, C2 0
7
例 2 列车在平直的线路上以 20 米/秒的速度行驶,
当制动时列车获得加速度 0.4 米/秒 2,问开始制动
其中c1, …,cn是n个独
立的任意常数,则称y是F=0的一个通解。
例: y=x2+C是方程y'=2x 的通解.yBiblioteka x2 2C1x C2
是
方程y"=1的通解.
y
y=x2+C
独立:C1 C2 x C3 x 2 不独立:C1x C2 x (C1 C2 )x Cx
0
x
15
5. 特解: 不包含任何常数的解.
隐函数的形式Φ(x,y;c1, …,cn)=0,给出, 把Φ(x,y;c1, …,cn)=0称作方程的通积分。
求微分方程满足某些条件的特解。即
9. 初值问题:求出方程F(x, y, y‘, …, y (n) ) = 0满足
初始条件的解。其中x0,y0,y1,…,yn-1是
已知常数。y(x0 ) y0,
微分方程的解法

微分方程是数学中常见且重要的概念之一,解决方程的过程通常涉及诸多技巧和方法。
本文将介绍一些常见的微分方程的解法,希望能够帮助读者更好地理解和应用微分方程。
微分方程可以分为常微分方程和偏微分方程两大类。
常微分方程中,函数只依赖于一个独立变量,如 y=f(x),而偏微分方程中,函数依赖于多个独立变量,如 u=f(x, y, z)。
常微分方程有很多种解法,我们首先来介绍几种常见的解法。
一种常用的解法是分离变量法。
当微分方程可以表达为 dy/dx=f(x)g(y)的形式时,我们可以将该方程转化为 1/g(y)dy=f(x)dx,然后进行分离变量,再进行积分得到解。
举个例子,如对于微分方程 dy/dx=x/(1+y^2),我们可以将方程转化为 (1+y^2)dy=x dx,然后分离变量并积分两边,即可得到解 y=tan(x+C)。
另一种常见的解法是常系数齐次线性微分方程的特征根法。
这类微分方程的一般形式为 d^n y/dx^n+a_{n-1}d^{n-1} y/dx^{n-1}+...+a_1 dy/dx+a_0 y=0,其中 a_i (i=0,1,2,...,n-1) 为常数。
我们可以假设一个解 y=e^(rx),其中r 为待确定的常数。
代入微分方程后,通过整理可得到一个关于 r 的代数方程,解此方程即可得到微分方程的通解。
例如,对于微分方程 d^2y/dx^2+2dy/dx+y=0,我们可以设 y=e^(rx) 为解,代入微分方程后得到r^2e^(rx)+2re^(rx)+e^(rx)=0,化简后可得到 (r+1)^2 e^(rx)=0,解得 r=-1。
因此通解为 y=C_1e^(-x)+C_2xe^(-x),其中 C_1 和 C_2 为常数。
此外,变量替换法也是解微分方程常用的方法之一。
当微分方程的形式较为复杂时,我们可以通过变量替换的方式将其转化为更容易求解的形式。
例如,对于微分方程 dy/dx=y^2+xxy,我们可以通过变量替换 y=vx,将方程转化为 v+x dv/dx=v^2+xv。
常微分方程讲义精简

例2 求解方程 .解令,有原方程的参数形式为由基本关系式有积分得到从而原方程的参数形式通解为也可以消去参数t ,得到原方程的通积分为通解为例4 求解方程解令原方程的参数形式为(1.72)由基本关系式有或上式又可化为由,代入(1.72)的第三式,得原程的一个特解 .再由,解得,代入(1.72)的第三式,得原方程的通解例5求解方程(1.73)这里,假定是二次可微函数.解 (1.73)的参数形式为(1.74)由基本关系式有整理得由,得,代入(1.74)的第三式,得原方程通解(1.75)由于,由解得隐函数 ,代入(1.74)第三式,得到原方程的一个特解(1.76)(第7讲几种可降阶的高阶方程例1求解方程解令则有通解为从而积分四次,得到原方程的通解第二种可降阶的高阶方程例2求解方程.解令,则代入原方程得或积分后得"其中a"为任意常数. 解出p"得或积分后得其中 b为任意常数. 于是有或其中为任意常数.1.7.3恰当导数方程假如方程( 1.80)的左端恰为某一函数对 x的导数,即(1.80)可化为则(1.80)称为恰当导数方程.这类方程的解法与全微分方程的解法相类似,显然可降低一阶,成为之后再设法求解这个方程.例3求解方程.解易知可将方程写成故有即.积分后即得通解例4 求解方程.解先将两端同乘不为0的因子,则有故,从而通解为参数法第10讲解的延展2.3.1 延展解、不可延展解的定义定义2.1 设是初值问题(2,2)在区间上的一个解,如果(2,2)还有一个在区间上的解,且满足(1)(2)当时,则称解是可延展的,并称是在I2上的一个延展解.否则,如果不存在满足上述条件的解,则称是初值问题(2.2)的一个不可延展解,(亦称饱和解).这里区间I1和I2可以是开的也可以是闭的..3.2 不可延展解的存在性定义2.2设定义在开区域上,如果对于D上任一点,都存在以为中心的,完全属于D的闭矩形域R,使得在R上的关于y满足李普希兹条件,对于不同的点,闭矩形域R的大小以及常数N可以不同,则称在D上关于y满足局部李普希兹条件“柯西收敛准则收敛对,N,使当1.数列,就有,存在对,N,使当2.,时,总有.存在对,A> 0,使当3.,总有.”例1试讨论方程通过点(1,1)的解和通过点(3,-1)的解的存在区间.解此时区域D是整个平面.方程右端函数满足延展定理的条件.容易算出,方程的通解是故通过(1,1)的积分曲线为它向左可无限延展,而当x →2-0时,y →+∞, 所以,其存在区间为(-∞,2),参看图2-10.图 2-10通过(3,-1)的积分曲线为它向左不能无限延展,因为当x →2+0时,y →-∞,所以其存在区间为(2,+∞).顺便指出:这个方程只有解y = 0可以向左右两上方向无限延展.这个例子说明,尽管在整个平面满足延展定理条件,解上的点能任意接近区域D的边界,但方程的解的定义区间却不能延展到整个数轴上去.例2讨论方程解的存在区间.解方程右端函数在无界区域内连续,且对y满足李普希兹条件,其通解为过D1内任一点的初值解.图 2-11在(0,+∞)上有定义,且当x →+0时,该积分曲线上的点无限接近D1的边界线x = 0,但不趋向其上任一点(图2-11).在区域内的讨论是类似的.延展定理是常微分方程中一个重要定理.它能帮助我们确定解的最大存在区间.从推论和上面的例子可以看出,方程的解的最大存在区间是因解而异的.例3考虑方程及在平面上连续,试证明:对于任意及假设,方程满足的解都在(-∞,+∞)上存在.图 2-12证明根据题设,可以证明方程右端函数在整个平面上满足延展定理及存在与唯一性定理的条件.易于看到,为方程在(-∞,+∞)上的解.由延展定理可知,满足任意,的解上的点应当无限远离原点,但是,由解的唯一性,又不能穿过直线,故只能向两侧延展,而无限远离原点,从而这解应在(-∞,+∞)上存在(图2-12).2.4.1 奇解在本章 2.2节的例2中,我们已经看到方程的通解是,还有一解,除解外,其余解都满足唯一性,只有解所对应的积分曲线上每一点,唯一性都被破坏. 这样的解在许多方程中存在.例1求方程的所有解.解该方程的通解是此外还有两个特解和.由于该方程右端函数的根号前只取+号,故积分曲线如图2-13所示,图 2-13显然解和所对应的积分曲线上每一点,解的唯一性均被破坏。
Gronwall不等式的应用及微分方程的奇解

JO U RNAL O F QINGH AI J UNI O R TE AC HERS ’COLL EGE( N atural Science E dition )2002 年第 5 期No5 . 2002G ronwall 不等式的应用及微分方程的奇解赵玉萍(青海师范高等专科学校 计算机系 ,青海 西宁 810007)摘 要 :本文引用 G ronw all 不等式证明了一阶微分方程的解的存在唯一定理中的“唯一性”. 并且给出了微分方程奇解的 验证方法 .关键词 : G ronw all 不等式 ; C 1airau t 方程 :奇解中图分类号 :O155 文献标识码 :B 文章编号 :1007 - 0117 (2002) 05 - 0020 - 02引理 1 ( G ronwall 不等式) 设 K 为非负常数 ,f (t ) 和 g (t ) 为在区间α≤t ≤β上的连续非负函数 ,且满足不 解 y =φ(x ) ,定义于区间| x - x 0 | ≤h 上 ,连续且满足 初始条件φ(x 0 ) = y 0 . 这里 h = min (a ,b/ M) ,M = m ax|等式 f (t ) ≤K + ∫tf ( s )g ( s ) ds( ) fx ,y | . α 则有 :f (t ) ≤K ex p ( ∫tg ( s ) ds ) .α≤t ≤β 下面我们用 G ronwall 不等式证明定理中的唯一性.命题 1 设φ(x ) ψ, (x ) 都是微分方程 dy/ dx = f ( x ,y ) 定义于| x - x 0 | ≤h 上 ,满足初始条件的解. 则φ( x )=ψ(x) ,| x - x 0 | ≤h证明 设初始条件 :φ(x) =ψ(x) = y 0因为求微分方程初值问题的解等价于求积分方程 yα 证明 设 R (t ) = ∫tf ( s )g ( s ) dsα 则 :f (t ) ≤K + R (t )用 g (t ) 乘不等式两边 :f (t )g (t ) ≤K g (t ) + R (t ) g (t ) R (t ) ≤K g (t ) + R (t ) g (t )dR (t ) ≤K g (t ) dt + R (t ) g (t ) dtx= y 0 + ∫ f ( x ,y ) dx 的连续解 . 我们仅对 X 0 . x 0 + h x0 用 ex p ( - ∫tg( s ) ds ) 乘不等式两边 : α 区间讨论 ,另一半区间的讨论方法一样.因为 y =φ(x ) ,y =ψ(x ) 都是微分方程的解.ex p ( - ∫tg ( s ) ds ) dR ( t ) ≤K g ( t ) ex p ( - ∫tg ( s ) ds ) dtα α + R (t ) g (t ) ex p ( - ∫tg (s ) ds ) dt x所以 :φ(x ) = y 0 + ∫x f (ξφ, (ξ) ) d ξ, α 0∫tg ( s ) d R ds ) ](t ) ex p ( - ∫αtg ( s ) ds ) ] ≤- K d e x p ( - α ψ(x ) = y + ∫x f (ξψ, (ξ) ) d ξ 0 xx|φ(x ) - ψ(x ) | ≤∫x | f (ξφ, (ξ) ) - f (ξψ, (ξ) ) | d ξ 两边从α到 t 积分 :0 x≤∫x L|φ(ξ) - ψ(ξ) | d ξ 0 ∫t g ( s ) ds ( - ∫tg ( s ) ds ) ] R (t ) ex p - ≤K1 - ex p α α 由 f (t ) ≤K + R (t ) 式 :f (t ) - k ≤R (t )其中 L 为利普希茨常数. L > 0由引理 1 得 :|φ(x ) - ψ(x ) | ≤0ex p ( ∫xL d ξ) , 所以 : f ( t ) - Kex p ( - ∫tg ( s ) ds ) ≤K1 - ex p ( -α x 0∫t αg( s ) ds ) ] f (t) ≤K ex p ( ∫tg( s ) ds) a ≤t ≤β x ≤ξ≤x + h 0 0即 :|φ(x ) - ψ(x ) | ≤0则 :φ(x ) =ψ(x )同理可证 :φ(x) =ψ(x) α 定理 1 (解的存在唯一性) 对微分方程 dy/ dx = f ( x ,y ) ,如果 f (x ,y ) 在矩形域 R : | x - x 0 | ≤α,| y - y 0 | ≤b 连续 ,且关于 y 满足利普希茨条件 ,则方程存在唯一x 0 ≤x ≤x 0 + hx 0 - h ≤x ≤x 0 用 gronwall 不等式证明“唯一性”较简单 ,容易.收稿日期 :2002 - 03 - 03作者简介 :赵玉萍 (1975 - ) ,女 ,青海湟中人 ,青海师范高等专科学校计算机系助教 .20赵玉萍 : G ronw all 不等式的应用及微分方程的奇解在常微分方程课的教学中 ,发现学生对奇解的概念难易掌握 .下面我们给出几种判别微分方程的解是奇解的方法.在解微分方程时 ,除了得到含任意常数 C 的通解 (设为ψ (x ,y ,c ) = 0) 以外 ,还可能有不在通解之 中的解 ,设为 y =φ(x ) ,它可能是奇解还有可能是特 解 ,需进行验证 .第一种验证方法 :X 0 = - f ′(p 0 ) Y 0 =f ′(p 0 ) p 0 + f (p 0 ) 再在 (1) 中取任意常数 C = p 0 ,则对应的特解y = x p 0 + f (p 0 ) (3)在 ( 3) 中取 X 0 = - f ′(p 0 ) 则对应 y 0 = - f ′(p 0 ) p 0 + f (p 0 )这说明曲线 (2) 上的每一点都有曲线 (1) 中的一条通过 .②由 (2) 得 : d y/ dx = - f ′(p ) - f ′′(p ) p + f (p ) ]Π - f ′′(p ) = p dy/ dx| (x 0 . y 0 ) ) = p 0 (1) 在曲线 y =φ(x ) 上任取一点 (x 0 φ, (x 0 ) )(2) 对于刚才取的点 ( x 0 ,φ( x 0 ) ) ,应有曲线族中某一曲线通过 ,即应存在常数 C 0 ,使得ψ( x 0 ,φ( x 0 ) , C 0 ) = 0(3) 对于已经从曲线中找出的 y =φ( x) 有交点 (x 0 .φ(x 0 ) ) 的曲线ψ( x ,y , C 0 ) = 0 ,求它在交点处的切线斜率 ,如果是相等 ,那么 y =φ( x ) 就是方程的奇 解 .我们用上述方法判断 C lairaut 方程的奇解 . 形如 : y = x p + f (p ) 的 方 程 称 为 C lairaut 方 程 。
一阶常微分方程的求解

一阶常微分方程的求解微积分是数学中非常重要的一个分支,它研究的是函数的极限、导数、积分以及微分方程等。
在微分方程的研究中,一阶常微分方程是最基本也是最常见的类型。
本文将介绍一阶常微分方程的求解方法。
一、分离变量法分离变量法是一种常用的求解一阶常微分方程的方法。
其思想是将微分方程中的变量分开,然后分别对两边进行积分,最终得到解析解。
例如,考虑一阶常微分方程形式为dy/dx=f(x)g(y),其中f(x)和g(y)分别是关于x和y的函数,我们希望求解y的表达式。
首先,我们将方程重新排列为dy/g(y)=f(x)dx,然后对两边同时进行积分,得到∫dy/g(y)=∫f(x)dx。
接下来,我们可以通过求解这两个积分来得到问题的解析解。
二、常数变易法当一阶常微分方程形式为dy/dx=f(x,y)时,常数变易法是一种常用的求解方法。
其基本思想是假设y的解可表示为y=uv,其中u和v都是关于x的函数。
通过对y=uv进行求导,将其代入原微分方程,可以得到一个新的方程,其中v和其导数可以互相约去。
然后,我们可以求解新方程得到v的表达式,再将其代入y=uv中,即可得到问题的解析解。
三、齐次微分方程法齐次微分方程是指方程右端项为0的一阶常微分方程。
对于形如dy/dx=f(y/x)的齐次微分方程,我们可以引入一个新的变量v=y/x,通过对v进行求导,将其代入原微分方程,可以得到一个只含有v的方程。
然后,我们可以通过对新方程进行积分求解v的表达式,再将其代入v=y/x中,即可得到问题的解析解。
四、一阶线性微分方程法一阶线性微分方程是指方程可以写成dy/dx+p(x)y=q(x)的形式。
对于这种类型的微分方程,我们可以使用一阶线性微分方程的解法来求解。
具体来说,我们可以通过乘以一个积分因子,将其变为一个恰当微分方程,然后再进行求解。
综上所述,一阶常微分方程的求解可以通过分离变量法、常数变易法、齐次微分方程法和一阶线性微分方程法等方法进行。
《常微分方程》(第三版)
常微分方程2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。
故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。
故特解是时,代入式子得。
当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123 yxy dx dyxy 321++=解:原式可化为:x x y xx y x yx y y x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y ydx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln s in ln 07ln s gn arcs in ln s gn arcs in 1s gn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x ar ctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。
一阶常微分方程若干求解技巧
一阶常微分方程若干求解技巧1. 可分离变量法:如果方程可以写成dy/dx=g(x)h(y),则可以将方程分离为两个变量的方程,然后进行分别积分得到解。
2. 齐次方程法:如果方程dy/dx=f(x,y)可以写成dy/dx=g(x,y),其中g(x,y)是齐次函数,则可以进行变量代换y=ux,将方程转化为关于u和x的可分离变量方程。
3. 全微分法:如果方程可以写成M(x,y)dx+N(x,y)dy=0,其中M(x,y)和N(x,y)是关于x和y的已知函数,则可以判断M(x,y)和N(x,y)的一阶偏导数是否相等,如果相等,则方程为全微分方程,可以求出方程的解。
4. 高阶可降阶方程法:对于方程dy/dx=f(x,y),可以进行变量代换u=y',将方程转化为关于u和x的高阶方程,然后再进行求解。
5.变量替换法:通过适当的变量代换,将原方程转化为形式简单的方程,然后进行求解。
6. 恰当方程法:如果方程M(x,y)dx+N(x,y)dy=0满足∂M/∂y=∂N/∂x,则称该方程为恰当方程,可以使用求解恰当方程的方法求解。
7. 积分因子法:对于形式为M(x,y)dx+N(x,y)dy=0的方程,可以通过乘以适当的积分因子来使方程变为恰当方程,然后再进行求解。
8. 线性方程法:对于形如dy/dx+p(x)y=q(x)的线性方程,可以通过求解其特征方程来得到通解。
9. 变系数线性方程法:对于形如dy/dx+p(x)y=q(x)的非齐次线性方程,可以通过利用常数变易法来求解。
10.积分组合法:对于一些特殊形式的方程,可以通过将方程进行适当的积分组合,从而得到解的形式。
以上是一些常见的一阶常微分方程的解法技巧,不同的方程形式可能需要使用不同的解法。
熟练掌握这些技巧可以帮助我们更好地求解一阶常微分方程,解决实际问题。
《常微分方程》知识点整理
《常微分方程》复习资料1.(变量分离方程)形如()()dyf x y dxϕ=(1.1)的方程,称为变量分离方程,这里(),()f x y ϕ分别是,x y 的连续函数. 解法:(1)分离变量,当()0y ϕ≠时,将(1.1)写成()()dyf x dx y ϕ=,这样变量就“分离”了; (2)两边积分得()()dyf x dx c y ϕ=⎰⎰+(1.2),由(1.2)所确定的函数(,)y x c ϕ=就为(1.1)的解. 注:若存在0y ,使0()0y ϕ=,则0y y =也是(1.1)的解,可能它不包含在方程(1.2)的通解中,必须予以补上. 2.(齐次方程)形如(dy yg dx x=的方程称为齐次方程,这里是u 的连续函数. ()g u 解法:(1)作变量代换(引入新变量)y u x =,方程化为()du g u u dx x -=,(这里由于dy dux u dx dx=+);(2)解以上的分离变量方程;(3)变量还原.3.(一阶线性微分方程与常数变异法)一阶线性微分方程()()()0dya xb x yc x dx++=在的区间上可写成()0a x ≠()()dyP x y Q x dx =+(3.1),这里假设在考虑的区间上是(),()P x Q x x 的连续函数.若,则(3.1)变为()0Q x =()dyP x y dx=(3.2),(3.2)称为一阶齐次线性方程.若()0Q x ≠,则(3.1)称为一阶非齐次线性方程. 解法:(1)解对应的齐次方程()dyP x y dx=,得对应齐次方程解()p x y ce dx ⎰=,为任意常数;c (2)常数变异法求解(将常数变为c x 的待定函数,使它为(3.1)的解):令为(3.1)的解,则()c x ()()p x dxy c x e ⎰=()()()()()p ⎰⎰p x dx p x dy dc x e c x x e dx dx =+dx ,代入(3.1)得()()()p x dx dc dxx Q x e -⎰=),积分得;()p x dx c ⎰=+ ()()c x Q x e -⎰(3)故(3.1)的通解为()()(()p x dxp x dxy e Q x e dx -⎰⎰c=+⎰ . 4.(伯努利方程)形如()()n dyP x y Q x y dx=+的方程,称为伯努利方程,这里为(),()P x Q x x 的连续函数. 解法:(1)引入变量变换,方程变为1nz y -=(1)()(1)()dz n P x z n Q x dx=-+-;(2)求以上线性方程的通解; (3)变量还原.5.(可解出的方程)形如y (,)dyy f x dx=(5.1)的方程,这里假设(,)f x y '有连续的偏导数. 解法:(1)引进参数dyp dx=,则方程(5.1)变为(,)y f x p =(5.2); (2)将(5.2)两边对x 求导,并以dy p dx =代入,得f f pp x p x∂∂∂=+∂∂∂(5.3),这是关于变量,x p 的一阶微分方程;(3)(i )若求得(5.3)的通解形式为(,)p x c ϕ=,将它代入(5.2),即得原方程(5.1)的通解(,(,))y f x x c ϕ=,为任意常数;c(ii )若求得(5.3)的通解形式为(,)x p c ψ=,则得(5.1)的参数形式的通解为(,)((,),)x p c y f p c p ψψ=⎧⎨=⎩,其中p 是参数,是任意常数;c (iii )若求得(5.3)的通解形式为,则得(5.1)的参数形式的通解为(,,)0x p c Φ=(,,)0(,)x p c y f x p Φ=⎧⎨=⎩,其中p 是参数,是任意常数.c 6.(可解出x 的方程)形如(,)dyx f y dx=(6.1)的方程,这里假设(,)f y y '有连续的偏导数. 解法:(1)引进参数dyp dx=,则方程(6.1)变为(,)x f y p =(6.2); (2)将(6.2)两边对y 求导,并以1dx dy p=代入,得1f f pp y p y ∂∂∂=+∂∂∂(6.3),这是关于变量,y p 的一阶微分方程;(3)若求得(6.3)的通解形式为,则得(6.1)的参数形式的通解为(,,)0y p c Φ=(,)(,,)0x f y p y p c =⎧⎨Φ=⎩,其中p 是参数,是任意常数.c 7.(不显含的方程)形如y (,)0dyF x dx=的方程,这里假设(,)F x y '有连续的偏导数. 解法:(1)设dyp dx=,则方程变为; (,)0F x p =(2)引入参数,将用参数曲线表示出来,即t (,)0F x p =()()x t p t ϕψ=⎧⎨=⎩,(关键一步也是最困难一步); (3)把()x t ϕ=,()p t ψ=代入dy ,并两边积分得pdx =()()y t t dt ψϕ'c =+⎰;(4)通解为()()()x t y t t dt ϕψϕ=⎧⎪⎨'=+⎪⎩⎰c .8.(不显含x 的方程)形如(,)0dyF y dx=的方程,这里假设(,)F y y '有连续的偏导数.解法:(1)设dyp dx=,则方程变为;(,)0F y p =(2)引入参数,将用参数曲线表示出来,即t (,)0F y p =()()y t p t ϕψ=⎧⎨=⎩,(关键一步也是最困难一步);(3)把()y t ϕ=,()p t ψ=代入dy dx p =,并两边积分得()()t x dt c t ϕψ'=+⎰; (4)通解为()()()t x dt c t y t ϕψϕ'⎧=+⎪⎨⎪=⎩⎰. 9.(型可降阶高阶方程)特点:不显含未知函数()(1)(,,,,)0(1)k n n F x y y y k -=≥ y 及.(1),,k y y -' 解法:令()()k yz x =,则(1)k y z +'=,.代入原方程,得.若能求得,()()n n y z -=k ()(,(),(),,())0n k F x z x z x z x -'= ()z x将()()k yz x =()yf =连续积分次,可得通解.k , 10.(型可降阶高阶方程)特点:右端不显含自变量()(1)(,,)n k y y y -n x .解法:设,则()y 222,(dp dy dP d p dP y P y P P dy dx dy dy dy'''''===+ y p '=2,) ,代入原方程得到新函数的()P y (1n -阶方程,求得其解为1()(,,,)n 1P y y C C ϕ-== dy dx,原方程通解为11(,,,)n n dyx C y C C ϕ-=+⎰ .11.(恰当导数方程)特点:左端恰为某一函数对(1)(,,,,)n x y y y -'Φ x 的导数,即(1)(,,,,)0n dx y y y dx-'Φ= . 解法:类似于全微分方程可降低一阶(1)(,,,,)n x y y y C -'Φ =',再设法求解这个方程.12.(齐次方程)特点:(k 次齐次函数).()()(,,,,)(,,,,)n k n x ty ty ty t F x y y y '= F zdx解法:可通过变换y e =⎰将其降阶,得新未知函数.因为()z x 2()(1),(),,(,,,)zdxzdxzdxn n y ze y z z e yz z z e -⎰⎰⎰'''''==+=Φ (1)(,,,,)0n f x z z z -',代入原方程并消去,得新函数的阶方程k z e ⎰dx ()z x (n -1)= .13.(存在唯一性定理)考虑初值问题00(,)()dyf x y dxy x y ⎧=⎪⎨⎪=⎩(13.1),其中(,)f x y 在矩形区域00:,R x x a y y b -≤-≤上连续,并且对满足Lipschitz 条件:即存在,使对所有(,y 0L >12(,)),x y x y R ∈常成立121(,)(,)2f x y f x y L y y -≤-,则初值问题(13.1)在区间0x x -≤h 上的解存在且唯一,这里(,)min(,h a =(,)x y R M Max f x y ∈=bM.初值问题(13.1)等价于积分方程00(,)xx y y f t y =+⎰dt ,构造Picard 逐步逼近函数列}{00001()()()(,())xn nn x x y x x y f ϕϕϕξϕ-=⎧⎪⎨=+⎪⎩⎰dx ξ 00x x x ≤≤+h ,n .1,= 2,14.(包络的求法)曲线族(14.1)的包络包含在下列两方程(,,)0x y c Φ=(,,)0(,,)0c x y c x y c Φ=⎧⎨'Φ=⎩消去参数而得到的曲线之中.曲线c (,)0F x y =(,)0F x y =称为(14.1)的c -判别曲线.15.(奇解的直接计算法)方程(,,)0dyF 15.1)的奇解包含在由方程组⎨去参数x y dx =(消(,,)0(,,)0c F x y p F x y p =⎧'=⎩p 而之得到的曲线(,Φ=中,此曲线称为(15.1)的)0x y p -别曲线,这里(,F 判,)x y p 0=是,,x y p 的连续可微函数. 注:p -判别曲线是否为方程的奇解,尚需进一步讨论. 16.(克莱罗方程)形如dy dy y xf dxdx ⎛⎫=+ ⎝⎭⎪(16.1)的方程,称为克莱罗方程,这里. ()0f p ''≠解法:令dy p dx =,得.两边对()y xp f p =+x 求导,并以dyp dx=代入,即得()dp dp p x p f p dx dx '=++,经化简,得[()]0.dpx f p dx '+= 如果0dp dx=,则得到p c =.于是,方程(16.1)的通解为:()y cx f c =+.如果,它与等式()0x f p '+=()y xp f p =+联立,则得到方程(16.1)的以p 为参数的解:()0()x f p y xp f p '+=⎧⎨=+⎩或()0()x f c y xc f c '+==+⎧⎨⎩其中为参数.消去参数c p 便得方程的一个解. 17.(函数向量组线性相关与无关)设12(),(),,()m x t x t x t a t b ≤≤是一组定义在区间[,上的函数列向量,如果存在一组不全为0的常数,使得对所有,有恒等式]a b c 12,,m c c c 1122()()()0m m c x t c x t x t +++ =, 则称12(),(),,()m x t x t x t 在区间[,上线性相关;否则就称这组向量函数在区间[,上线性无关.]a b ]a b 18.(Wronsky 行列式)设有n 个定义在a t 上的向量函数b ≤≤nn 11121212221212()()()()()()(),(),,()()()()n n n n n x t x t x t x t x t x x t x t x t t x t x t x t ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢===⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣ ⎦ ,由这n 个向量函数所构成的行列式111212122212[(),(12()()()()()()),()()()()()n n n n n nn x t x t x t x t x t x t W x x t W t t x t x t x t x t ≡称为这个向量函数所构成的Wronsky 行列式.n 如果向量函数12(),(),,()n x t x t x t 在a t 上线性相关,则它们的Wronsky 行列式. b ≤≤()0,t W t a b ≡≤≤19.(基解矩阵的计算公式)(1)如果矩阵具有个线性无关的特征向量,它们相应的特征值为A n 12,,,n v v v 12,,,n λλ λ(不必互不相同),那么矩阵是常系数线性微分方程组12tte λλ12(),,,],n tn v v e v λΦ=-∞<< [t e x +∞x Ax '=的一个基解矩阵; (2)矩阵的特征值、特征根出现复根时(略); A (3)矩阵的特征根有重根时(略).A 20.(常系数齐线性方程)考虑方程111[]0n n n n n d x d xL x a a x dt dt--=+++= (20.1),其中为常数,称(20.1)为阶常系数齐线性方程.12,,n a a a n 解法:(1)求(20.1)特征方程的特征根12,,,k λλλ ;(2)计算方程(20.1)相应的解:(i )对每一个实单根k λ,方程有解k teλ;(ii )对每一个重实根1m >k λ,方程有个解:m 21,,,,k k k tttm e te t e te k tλλλ- λ;(iii )对每一个重数是1的共轭复数i αβ±,方程有两个解:cos ,sin tte t e ααt ββ; (iv )对每一个重数是的共轭复数1m >i αβ±,方程有个解:2m 11cos ,cos ,,cos ;sin ,sin ,,sin t t m t ttm te t te t t e t e t te t te tααααααββββββ-- ;(3)根据(2)中的(i )、(ii )、(iii )、(iv )情形,写出方程(20.1)的基本解组及通解.21.(常系数非齐次线性方程)()y py qy f x '''++=二阶常系数非齐次线性方程对应齐次方程,通解结构0y py qy '''++=y Y y =+.设非齐次方程特解()x y Q x e λ=代入原方程 2()(2)()()()()m Q x p Q x p q Q x P x λλλ'''+++++=(1)若λ不是特征方程的根,,可设20p q λλ++≠()()m Q x Q x =,()xm y Q x e λ=;(2)若λ是特征方程的单根,,2020p q λλ++=p λ+≠,可设()()m Q x xQ x =,()xm y xQ x e λ=; (3)若λ是特征方程的重根,,2020p q λλ++=p λ+=,可设,2()()m Q x x Q x =2()xm y x Q x e λ=. ()k x综上讨论,设y m x e Q x λ=,. 012k λλλ⎧⎪=⎨⎪⎩不是根是单根是重根。
常微分方程解题方法总结
常微分方程解题方法总结
来源:文都教育
复习过半,课本上的知识点相信大部分考生已经学习过一遍. 接下来,如何将零散的知识点有机地结合起来,而不容易遗忘是大多数考生面临的问题. 为了加强记忆,使知识自成体系,建议将知识点进行分类系统总结. 著名数学家华罗庚的读书方法值得借鉴,他强调读书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要.
以常微分方程为例,本部分内容涉及可分离变量、一阶齐次、一阶非齐次、全微分方程、高阶线性微分方程等内容,在看完这部分内容会发现要掌握的解题方法太多,遇到具体的题目不知该如何下手,这种情况往往是因为没有很好地总结和归纳解题方法. 下面以表格的形式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询.
以上以常微分方程为例总结了一些常见题型的解题方法,对于其他知识点也可用类似的形式进行总结,一方面加深印象,另一方面梳理清楚知识点之间的联系,这也是复习中比较实用的方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011届本科毕业论文常微分方程的奇解的求法学院:数学科学学院专业班级:数学07-4(实验)班学生姓名:哈丽古丽.穆塔力菩指导教师:伊里夏提答辩日期:2011年5月10日新疆师范大学教务目录1 引言 (1)2 奇解的定义 (1)3 不存在奇解的判别法 (1)4 自然法 (2)5 拾遗法 (2)6 包络线及奇解的求法 (2)6.2 C-判别曲线 (3)6.3 P-判别曲线 (5)6.4 C-P判别法 (7)总结 (8)参考文献 (1)致谢 (2)常微分方程的奇解的求法摘要:该文章我们主要讨论的是常微分方程奇解的求法。
一个常微分方程有没有它的奇解,有了奇解怎么求是该文章的主要目的。
在这里我们讨论不存在奇解的判别法。
如果方程有了它的奇解,一般有五种方法可以求它的奇解,即自然法,拾遗法,C -判别曲线(C-消去法),P-判别曲线(P-消去法),C-P判别法。
我们最常用的,方便的方法是后面的三个,在这里对这三个方法进行详细的讨论。
关键词:奇解,判别式,包络线。
1 引言我们看到对某些微分方程,存在一条特殊的积分曲线,它并不属于这方程的积分曲线族。
但是,在这条特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和它在此点相切。
在几何学上,这条特殊的积分曲线称为上述积分曲线族的包络。
在微分方程里,这条特殊的积分曲线所对应的解称为方程的奇解。
若一个微分方程它有奇解,那我们怎么求它的奇解是该文章主要讨论的问题。
2 奇解的定义定义 如果方程存在某一节,在它所对应的积分曲线上每一点处,解的唯一性都被破坏,则称此解为微分方程的奇解。
奇解对应的积分曲线称为奇积分曲线。
3 不存在奇解的判别法每一个微分方程都有它的奇解吗?答案是:不一定。
那我们怎么知道,微分方程有没有它的奇解呢?下面我们介绍不存在奇解的两种判别法。
方法1 假设方程(,)dyf x y dx= (1) 的右端函数2),(R D y x f ⊆在区域上有定义,如果),(y x f 在D 上连续且),(y x f y '在D 上有界(或连续),那么由解的存在唯一性定理,方程的任一解是唯一的,从而在D 内一定不存在奇解。
例1 判断方程 22y x dxdy+= 是否存在奇解。
解:方程22y x dxdy+= 右端函数22(,)f x y x y =+,(,)2y f x y y '=均在全平面上连续,故该方程在全平面上无奇解。
方法2如果存在唯一性定理条件不是整个),(y x f 有定义的区域D 内成立,那么奇解只能存在于不满足解的存在唯一性定理条件的区域上,若能进一步表明在这样的区域上不存在方程的解,那么我们也可以断定该方程无奇解。
例2 判断方程 2+-=x y dxdy是否存在奇解。
解:方程2+-=x y dxdy的右端函数(,)2f x y = 在区域x y ≥上有定义且连续,xy f y -=121'在y x >上有定义且连续,故不满足解的存在唯一性定理条件的点集只有x y =,即若该方程有奇解必定是x y =,然而x y =不是该方程的解,从而该方程无奇解。
4 自然法找出方程不满足唯一性条件的点集合L ,例如,{(,)|}fL x y y∂==∞∂,再验证它是否是奇解。
5 拾遗法在求通解过程中,方程两边约去的不含导数的因式,令其为零,可能得到奇解。
6 包络线及奇解的求法6.1 包络线的定义定义 设给定单参数曲线族():(,,)0C x y c Φ= (2)其中c 为参数,Φ对所有变量连续可微,如果存在连续可微曲线L ,在其上任一点均有()C 中某一曲线与L 相切,且在L 上不同点,L 与()C 中不同曲线相切,那 么称此曲线L 为曲线族()C 的包络线或简称包络。
l (c)定理1 方程(1)的积分曲线族()C 的包络线L 是(1)的奇积分曲线。
证明:只需证明()C 的包络线L 是方程(1)的积分曲线即可。
设),(y x p 为L 上任一点,由包络线定义,必有()C 中一曲线l 过p 点,且与L 相切,即l 与L 在p 点有公共切线。
由于l 是积分曲线,它在p 点的切线应与方程(1)所定义的线素场在该点的方向一致,所以L 在p 点的切线也就与方程(1)在该点的方向一致了。
这就表明L 在其上任一点的切线与方程(1)的线素场的方向一致。
从而L 是(1)的积分曲线。
证毕。
6.2 C-判别曲线定理 若L 是曲线族(2)的包络线,则它满足如下的C-判别式(,,)0(,,)0cx y c x y c Φ=⎧⎨'Φ=⎩ (3) 反之,若从(3)解得连续可微曲线:(),()x c y c ϕψΓ==且满足非蜕化条件:0)()(22≠'+'c c ψϕ和0)),(),(()),(),((22≠Φ'+Φ'c c c c c c y x ψϕψϕ则Γ是曲线族的包络线。
证明:在L 上任取一点),(y x p ,由包络线的定义,有(C )中一条曲线l 在p点与L 相切,设l 所对应的参数为c ,故L 上的点坐标x 和y 均是c 的连续可微函数,设为)(),(c y c x ψϕ== 又因为),(y x p 在l 上,故有恒等式0)),(),((=Φc c y c x (4)L 在p 点的切线斜率为 )()(c x c y k L ''=l 在p 点的切线斜率为 )),(),(()),(),((c c y c x c c y c x k y x l Φ'Φ'-=因为l 为L 在p 点相切,故有l L k k =,即有关系式0)()),(),(()()),(),((='Φ'+'Φ'c y c c y c x c x c c y c x y x (5)另一方面,在(4)式两端对C 求导得0)),(),(()()),(),(()()),(),((=Φ'+'Φ'+'Φ'c c y c x c y c c y c x c x c c y c x c y x 此式与(5)式比较,无论是在)(),(c y c x ''和y x Φ'Φ',同时为零还是不同时为零的情况下,均有下式)),(),((=Φ'c c y c x c成立。
即包络线满足C-判别式(3)。
反之,在Γ上任取一点))(),(()(c c c q ψϕ=则有((),(),)0((),(),)0c c c c c c c φψφψΦ=⎧⎨'Φ=⎩成立。
因为y x Φ'Φ',不同时为零,所以对(2)在q 点利用隐函数定理可确定一条连续可微曲线)(:x h y =γ(或)(x k x =)它在q 点的斜率为:)),(),(()),(),((c c c c c c k y x ψϕψϕγΦ'Φ'-= (8)另一方面,Γ在q 点的斜率为: )()(c c k ψϕ''=Γ (9) 现在,由(7)式的第一式对C 求导得0)()),(),(()()),(),((=ψ'Φ'+'Φ'c c c c c c c c y x ψϕϕψϕ (10) 因为)(),(c c ψϕ''和y x Φ'Φ',分别不同时为零,所以,由(10),(9)和(8)推出Γ=k k γ,即曲线族(2)中有曲线γ在q 点与曲线Γ相切。
因此,Γ是曲线族(2)的包络线。
例3 求方程 21y dxdy-= 的奇解。
解:21y dxdy-=dx = ⇒ ⎰⎰=-dx dy y211∴ 该方程的通解为)sin(c x y +=。
由C-判别式sin()0cos()y x c x c =+⎧⎨=+⎩的第二式解出 2x c k ππ=-++, ,2,1,0±±=k代入第一式,得到1±=y .因为01≠=Φ'y ,01)(≠-='c ϕ,故1±=y 为方程的奇解。
6.3 P-判别曲线由存在唯一性定理可知,如果),,(y y x F '关于y y x ',,连续可微,则只要0≠'∂∂yF就能保证解的唯一性,因此,奇解(存在的话)必须同时满足下列方程 0),,(='y y x F , 0),,(='∂'∂y y y x F于是我们有下面的结论: 方程0),,(=∂∂xyy x F (11) 的奇解包含在由方程组(,,)0(,,)0P F x y P F x y p =⎧⎨'=⎩ (12)消去p 而得到的曲线中,这里),,(P y x F 是P y x ,,的连续可微函数。
此曲线称为方程(11)的判别曲线,P-判别曲线是否是方程的奇解,尚需进一步验证。
例4 求方程01)(22=-+y dxdy 的奇解。
解:从221020p y p ⎧+-=⎨=⎩消去p ,得到P -判别曲线1±=y ;下面验证,1±=y 是不是该方程的解。
该微分方程的通解为);sin(c x y +=而1±=y 也是该微分方程的解,且正好是通解的包络。
例5 求方程2)(2dxdy dx dy x y -= 的奇解。
解:从22022y px p x p⎧=-⎨=-⎩ 消去p ,得到P -判别曲线 2x y =但2x y =不是方程的解,故此方程没有奇解。
6.4 C-P 判别法对方程(3),(11),(12)而得的0),(,0),(==y x y x ψϕ中,寻得公共的 单因式,令其为零,一般就是(3)得奇解。
例 6 求3227894y y y x '-'=-的奇解。
解:方程即 3227894p p y x -=-,从 2324892780()9x y p p p p ⎧-=-⎪⎪⎨⎪=-⎪⎩消去p ,可得274,-==x y x y , 原方程的通解式32)()(c x c y -=-,按C –消去法,从()()()()⎩⎨⎧--=---=-23232c x c y c x c y 消去C ,得274-=x y 。
因此,274-=x y 是两种消去法的公共因式,故它是奇解。
总结常微分方程奇解的求法有五种,但我们最常用的方法是:C -判别曲线(C-消去法),P-判别曲线(P-消去法),C-P判别法。
求奇解之前我们判断该方程到底有没有奇解,就是用不存在奇解的判别法来判断该方程有没有奇解,如果有了奇解,刚才提的三种方法中,任用一个可以求它的奇解。
参考文献[1]王高雄,周之铭,朱思铭,王寿松。
北京:高等教育出版社 1983[2]东北师范大学微分方程教研室。