物质代谢的调节
代谢调节

●二、三大营养物质与核苷酸代谢间的联系
体内核苷酸可以由糖、氨基酸转 变生成。产生的CTP、GTP、 UTP可分别参与磷脂、蛋白质和 糖原的合成。
第二节
细胞水平的代谢调节
代谢调节是生物在长期进化过程中逐步形 成的一种适应能力。 ★三种层次的代谢调节 在高等动物体内,通常有三种水平的代谢 调节方式:细胞水平的调节、激素水平 的调节和整体水平的调节,其中细胞水 平的调节是整个代谢调节的基础。
代谢调节
【学习要求】 ★掌握物质代谢的相互联系、细胞水 平代谢调节概念、酶结构调节。 ▲熟悉激素水平代谢调节的基本原理、 细胞的膜结构及酶分布对代谢调节 的作用。 ●了解酶数量调节、整体水平的调节。
物质代谢是一系列连续的酶促化学 反应过程。由于各条代谢途径可以 产生一些共有的中间物而相互间有 密切联系、相互影响、相互制约, 并在神经内分泌调控下,相互协调, 维持动态平衡。
▲⑵变构调节机制:变构酶是由调节亚 基和催化亚基组成的多亚基寡聚体, 常以高活性与低活性或无活性的两种 构象状态存在于细胞内。变构剂可以 非共价键与调节亚基结合,引起酶蛋 白空间构象发生改变(解聚↔聚合),从 而改变酶活性。
▲⑶变构调节的生理意义:变构 调节可以快速改变酶活性,以 影响代谢速度甚至代谢方向, 从而防止产物堆积,避免能源 物质的浪费。
●⑴通过此途径发挥作用的激素:TRH、ADH、 作用于α1受体的肾上腺素等。 ●⑵参与传递的G蛋白:磷脂酶C型G蛋白。 ●⑶参与的第二信使:包括IP3、DAG和Ca2+。 IP3和DAG由磷脂酶C催化膜中磷脂酰肌醇二 磷酸水解生成。IP3和DAG分别作为第二信使, 启动双信使传递途径。
●⑷第二信使的作用: ①IP3与胞内钙库(肌浆网)膜上通道受体结合,引 起钙库释放Ca2+,使胞内Ca2+增高; ②DAG与Ca2+和磷脂酰丝氨酸共同激活PKC; ③Ca2+除了参与激活PKC外,还与CaM结合, 形成Ca2+-CaM活性复合物。后者可直接激活 一些酶蛋白,包括磷酸二酯酶、腺苷酸环化酶 等、Ca2+-CaM蛋白激酶,发挥调节作用。
生物化学:第十三章 代谢调节

• 代谢调节普遍存在于生物界
单细胞生物
通过细胞内代谢物浓度的变 化,影响酶活性及含量,从而调 节代谢
——原始调节/细胞水平调节
高 等 生 细胞水平代谢调节 物
激素水平代谢调节
整体水平代谢调节
细胞水平代谢调节
细胞的膜结构及酶分布 在代谢的调节作用
酶活性的调节
多酶体系的 区域化分布
同工酶在调 节中的作用
GTP
已糖激酶
6-P-G
磷酸果糖激酶
6-P-F
磷酸果糖激酶1
6-磷酸果糖
1,6-二磷酸果糖
各种腺苷酸对磷酸果糖激酶的变构调节
变构调节的机制和特点
➢多数变构酶由多亚基构成,所以存在四级结构。 它们的变构调节一般体现在亚基的解聚和聚合上。 ➢多数变构酶由两种亚基组成:催化亚基和调节亚 基。 ➢变构酶有两种构象。 ➢变构剂与调节亚基以非共价键结合,两者的结合 程度取决于变构剂的浓度。 ➢变构调节快速短暂,一般在数分钟内完成。
甘油
某些非必需氨基酸
磷酸甘油醛
糖酵解途径
丙酮酸
其他α-酮酸
ቤተ መጻሕፍቲ ባይዱ
• 但不能说,脂类可转变为氨基酸
• 氨基酸可以转变为脂类
氨基酸
乙酰CoA
脂肪
• 氨基酸可作为合成磷脂的原料
丝氨酸
丝氨酸磷脂
胆胺
脑磷脂
胆碱
卵磷脂
4. 核酸与糖、蛋白质
代谢的相互联系
• 氨基酸是体内合成核酸的重要原料
甘氨酸
天冬氨酸
谷氨酰胺
一碳单位
酶结构 的调节
酶数量 的调节
一、代谢途径的区域化分布 1、代谢途径有关酶类常组成酶体系,分布
于细胞的某一区域或亚细胞结构中。
生化第十二章物质代谢的整合与调节

第九章物质代谢的整合与调节本章要点一、物质代谢的特点1.体内各种物质代谢过程互相联系形成一个整体2.机体物质代谢不断受到精细调节3.各组织、器官物质代谢各具特色4.体内各种代谢物都具有共同的代谢池5.ATP是机体储存能量和消耗能量的共同形式6.NADPH提供合成代谢所需的还原当量二、物质代谢的相互联系1.各种能量物质的代谢相互联系相互制约2.糖、脂和蛋白质代谢通过中间代谢物而相互联系①葡萄糖可转变为脂肪酸②葡萄糖与大部分氨基酸可以相互转变③氨基酸可转变为多种脂质但脂质几乎不能转变为氨基酸④一些氨基酸、磷酸戊糖是合成核苷酸的原料三、肝在物质代谢中的作用1.肝是维持血糖水平相对稳定的重要器官①肝内生成的葡糖-6-磷酸是糖代谢的枢纽②肝是糖异生的主要场所2.肝在脂质代谢中占据中心地位①肝在脂质消化吸收中具有重要功能②肝是甘油三酯和脂肪酸代谢的中枢器官③肝是维持机体胆固醇平衡的主要器官④肝是血浆磷脂的主要来源3.肝的蛋白质合成及分解代谢均非常活跃①肝合成多数血浆蛋白②肝内氨基酸代谢十分活跃③肝是机体解“氨毒”的主要器官4.肝参与多种维生素和辅酶的代谢①肝在脂溶性维生素吸收和血液运输中具有重要作用②肝储存多种维生素③肝参与多数维生素的转化5.肝参与多种激素的灭活四、肝外重要组织器官的物质代谢特点及联系1.心肌优先利用脂肪酸氧化分解供能①心肌可利用多种营养物质及其代谢中间产物为能源②心肌细胞分解营养物质供能方式以有氧氧化为主2.脑主要利用葡萄糖供能且耗氧量大①葡萄糖和酮体是脑的主要能量物质②脑耗氧量高达全身耗氧总量的四分之一③脑具有特异的氨基酸及其代谢调节机制3.骨骼肌主要氧化脂肪酸,强烈运动产生大量乳酸①不同类型骨骼肌产能方式不同②骨骼肌适应不同耗能状态选择不同能源4.糖酵解是成熟红细胞的主要供能途径5.脂肪组织是储存和释放能量的重要场所①机体将从膳食中摄取的能量主要储存于脂肪组织②饥饿时主要靠分解储存于脂肪组织的脂肪供能6.肾能进行糖异生和酮体生成五、物质代谢调节的主要方式(一)、细胞水平的物质代谢调节主要调节关键酶活性②别构效应通过改变酶分子构象改变酶活性③别构调节使一种物质的代谢与相应的代谢需求和相关物质的代谢协调4.化学修饰调节通过酶促共价修饰调节酶活性②酶的化学修饰调节具有级联放大效应▲化学修饰调节的特点:a.绝大多数受化学修饰调节的关键酶都具无活性(或低活性)和有活性(或高活性)两种形式,它们可分别在两种不同酶的催化下发生共价修饰,互相转变。
生物化学讲义第十章物质代谢的联系和调节

生物化学讲义第十章物质代谢的联系和调节 【目的与要求】1.熟悉三大营养物质氧化供能的通常规律与相互关系。
2.熟悉糖、脂、蛋白质、核酸代谢之间的相互联系。
3.熟悉代谢调节的三种方式。
掌握代谢途径、关键酶(调节酶)的概念;掌握关键酶(调节酶)所催化反应的特点。
熟悉细胞内酶隔离分布的意义。
熟悉酶活性调节的方式。
4.掌握变构调节、变构酶、变构效应剂、调节亚基、催化亚基的概念;5.掌握酶的化学修饰调节的概念及要紧方式。
6.熟悉激素种类及其调节物质代谢的特点。
7.熟悉饥饿与应激状态下的代谢改变。
【本章重难点】1.物质代谢的相互联系2.物质代谢的调节方式及意义3.酶的变构调节、化学修饰、阻遏与诱导4.作用于细胞膜受体与细胞内受体的激素学习内容第一节物质代谢的联系第二节物质代谢的调节第一节物质代谢的联系一、营养物质代谢的共同规律物质代谢:机体与环境之间不断进行的物质交换,即物质代谢。
物质代谢是生命的本质特征,是生命活动的物质基础。
二、三大营养物质代谢的相互联系糖、脂与蛋白质是人体内的要紧供能物质。
它们的分解代谢有共同的代谢通路—三羧酸循环。
三羧酸循环是联系糖、脂与氨基酸代谢的纽带。
通过一些枢纽性中间产物,能够联系及沟通几条不一致的代谢通路。
对糖、脂与蛋白质三大营养物质之间相互转变的关系作简要说明:㈠糖可转变生成甘油三酯等脂类物质(除必需脂肪酸外),甘油三酯分解生成脂肪酸,脂肪酸经β-氧化生成乙酰CoA,乙酰CoA或者进入三羧酸循环或者生成酮体,因此甘油三酯的脂肪酸成分不易生糖,但甘油部分能够转变为磷酸丙糖而生糖,但是甘油只有三个碳原子,只占甘油三酯的很小部分。
㈡多数氨基酸是生糖或者生糖兼生酮氨基酸。
因此氨基酸转变成糖较为容易。
糖代谢的中间产物只能转变成非必需氨基酸,不能转变成必需氨基酸。
㈢少数氨基酸能够生酮,生糖氨基酸生糖后,也可转变为脂肪酸(除必需脂肪酸外),因此氨基酸转变成脂类较为容易。
脂肪酸经β-氧化生成乙酰CoA进入三羧酸循环后,即以CO2形式被分解。
物质代谢的联系与调节《生物化学》复习提要

物质代谢的联系与调节第一节物质代谢的特点(一)整体性体内各种物质包括糖、脂、蛋白质、水、无机盐、维生素等的代谢不是彼此孤立各自为政,而是同时进行的,而且彼此互相联系,或相互转变,或相互依存,构成统一的整体。
(二)代谢调节机体存在精细的调节机制,不断调节各种物质代谢的强度、方向和速度以适应内外环境的变化。
代谢调节普遍存在于生物界,是生物的重要特征。
(三)各组织、器官物质代谢各具特色由于各组织、器官的结构不同,所含有酶系的种类和含量各不相同,因而代谢途径及功能各异,各具特色。
例如肝在糖、脂、蛋白质代谢上具有特殊重要的作用,是人体物质代谢的枢纽。
(四)各种代谢物均具有各自共同的代谢池无论是体外摄人的营养物或体内各组织细胞的代谢物,只要是同一化学结构的物质在进行中间代谢时,不分彼此,参加到共同的代谢池中参与代谢。
(五)ATP是机体能量利用的共同形式糖、脂及蛋白质在体内分解氧化释出的能量,均储存在ATP的高能磷酸键中。
(六)NADPH是合成代谢所需的还原当量参与还原合成代谢的还原酶则多以NADPH为辅酶,提供还原当量。
如糖经戊糖磷酸途径生成的NADPH既可为乙酰辅酶A合成脂酸,又可为乙酰辅酶A 合成固醇提供还原当量。
第二节物质代谢的相互联系一、在能量代谢上的相互联系乙酰辅酶A是三大营养物共同的中间代谢物,三羧酸循环是糖、脂、蛋白质最后分解的共同代谢途径,释出的能量均以ATP形式储存。
从能量供应的角度看,这三大营养素可以互相代替,并互相制约。
二、糖、脂和蛋白质代谢之间的联系体内糖、脂、蛋白质和核酸等的代谢不是彼此独立,而是相互关联。
它们通过共同的中间代谢物,即两种代谢途径汇合时的中间产物,三羧酸循环和生物氧化等联成整体。
(一)糖代谢与脂代谢的相互联系当摄人的糖量超过体内能量消耗时,除合成少量糖原储存在肝及肌肉外,生成的柠檬酸及ATP可变构激活乙酰辅酶A竣化酶,使由糖代谢源源而来的大量乙酰辅酶A得以羧化成丙二酰辅酶A,进而合成脂酸及脂肪在脂肪组织中储存,即糖可以转变为脂肪。
第十一章物质代谢的相互联系及其调节

CTP
血红素合成 ALA合成酶
血红素
(2)变构酶的特点及作用机制
变构酶常由多个亚基构成; 变构效应剂可通过非共价键与调节亚基结合,引起酶构
象改变(T态和R态)或亚基的聚合、分离从而影响酶 的活性; 变构酶的酶促反应动力学不符合米曼氏方程式; 变构效应剂常常是酶的底物、产物或其他小分子中间代 谢物。 变构调节过程不需要能量。
(CH2)4CO HS Co
OH
AO
CH
3
CO
P
丙酮酸脱氢 酶
O CH HC TT
S
二氢硫辛酸 转乙酰酶
C C S Co
H3
A
H SH
(CH2)4CO OH
2 3
HP
S
(CH2)4CO OH
S
S
FAD H2
二氢硫辛酸
脱氢酶 FA D
丙酮酸氧化脱羧
NFAA
D+
NADH +H+
乙酰 丙二酸单 β-酮脂酰转移酶 酰转移酶 合成酶
第一节
物质代谢的相互联系
一、物质代谢的特点
物质代谢的整体性 物质代谢的可调节性 组织器官代谢的特色性 不同来源代谢物代谢的共同性 能量储存的特殊性 NADPH为合成代谢提供还原当量
二、物质代谢的相互联系
(一)能量代谢上的相互联系
物质代谢过程中所伴随的能量的贮存、释放、转移和利 用等称为能量代谢。
现出激素的生物学效应。 根据激素作用受体部位不同,激素可分为:细胞膜受
体激素和细胞内受体激素。
三、整体水平的代谢调节
1.应激状态下的代谢调节
应激是机体在一些特殊的情况下,如严重创伤、感染、中 毒、剧烈的情绪变化等所作出的应答性反应。
生物化学 第11章、代谢调控
色氨酸操纵子 调节基因产生的阻遏蛋白没有生物) 酶蛋白
阻遏蛋白不能跟操纵基因结 合, 结构基因可以表达 B:有色氨酸 色氨酸与阻遏蛋白结合,从 而使阻遏蛋白能够结合到 操纵基因,结构基因不表达
代谢产物
色氨酸合成途径还存在色氨酸操纵子中衰
减子所引起的衰减调节。
操纵子(operon ):指原核生物基因表达的的 调控单位。包括一个操纵基因(operator,O) , 一群功能相关的结构基因(S)和专管转录起始 的启动基因(P)。
调节 基因
R
启动 操纵 基因 基因
P O S
1
结构 基因
S
2
S
3
操纵子
操纵子可分为:
可诱导操纵子:基因在正常情况下不表 达,
加入诱导物后基因表达。如乳糖操纵子 可阻遏操纵子:基因在正常情况下表达, 有辅阻遏物存在时不表达。如色氨酸操纵子
酶促反应的前馈和反馈
:
前馈作用(feedforward):代谢途径中前
面的底物对其后某一催化反应的调节酶有作用。
前馈激活——底物对后面的酶起激活作用。
前馈抑制——底物对后面的酶起抑制作用
丙酮酸激酶
G → G-6-P → F-6-P → FDP →→→ PEP
前馈激活
丙酮酸
乙酰CoA+CO2 + H2O + ATP
前馈抑制
乙酰CoA羧化酶
丙二酸单酰CoA+ADP+ Pi
反馈调节(feedback)—某一代谢途径的产物或 终产物积累时,反过来对反应序列前头的限速 酶发生的调节作用
正反馈(反馈激活)——产物能使反应速度加快 负反馈(反馈抑制)——产物能使反应速度减慢
生物化学激素与代谢调控
细胞内仅有单一的E1基因。 E2基因有多种。 E3不仅与E2结合,还要识别特异的底物蛋白质。细胞内有许多不同的E3.
E3 Ubiquitin Ligase:
Ub
-S-
E2
substrate
E3
Ub
Ub
Ub
Ub
多聚泛素分子(多于4个)修饰的蛋白质被蛋白酶体(proteasome)识别和降解。
多聚泛素链通常是通过泛素分子的第48位赖氨酸(K-48)与下一个泛素分子羧基末端的甘氨酸形成酰胺键(异肽键,isopeptide bond)相连。
激素(胰高血糖素、肾上腺素等)
腺苷酸环化酶
(无活性)
腺苷酸环化酶
(有活性)
ATP
cAMP
蛋白激酶A (PKA)
(无活性)
蛋白激酶A (PKA)
(有活性)
糖原合成酶
(有活性)
糖原合成酶
P
(无活性)
磷酸化酶b激酶
(无活性)
磷酸化酶b激酶
P
(有活性)
磷 蛋 白 磷 酸 酶 1
磷 蛋 白 磷 酸 酶 1
细胞膜受体
细胞内受体
细胞内受体及作用机制
1
2
3
4
5
细胞膜受体分类
G蛋白偶联受体 离子通道受体 具有内在酶活性的受体 与酪氨酸蛋白激酶活性相关的受体
G蛋白和G蛋白偶联受体
G蛋白:一般是指任何可与鸟苷酸结合的蛋白质的总称。 它们的共同特征是: 由α,β,γ等3个不同的亚单位构成的异聚体。 具有结合GTP或GDP的能力,并具有GTP酶活性,能将与之结合的GTP分解形成GDP。 其本身的构象改变可进一步激活(或抑制)效应蛋白,使后者活化。 对G蛋白激活后的精确反应,由特定的α,β,γ亚型和下游靶分子的特殊亚型同时控制。
【生物化学简明教程】第四版16章 物质代谢的调节控制
16 物质代谢的调节控制1.哪些化合物是联系糖类、脂质、蛋白质和核酸代谢的重要物质?为什么?解答:详见本章引言和图16-1,并结合各代谢章节的内容加以总结归纳。
2.举例说明代谢途径的反馈调节。
解答:反馈调节主要是指在酶促反应系统中的最终产物对起始步骤的酶活性的调节作用。
凡最终产物抑制起始步骤酶的活性的作用称为负反馈或反馈抑制;凡最终产物激活起始步骤酶的活性的作用称为正反馈。
详见16.1.1.1“反馈调节”。
3.何谓酶活性的共价修饰调节。
解答:共价调节酶可通过其他酶对其肽链上某些基团进行共价修饰,使酶处于活性与无活性的互变状态,从而调节酶的活性,这种调节方式称为共价修饰调节作用。
目前已知有6种类型的可逆共价修饰作用,(1)磷酸化/脱磷酸化;(2)乙酰化/脱乙酰化;(3)腺苷酰化/脱腺苷酰化;(4)尿苷酰化/脱尿苷酰化;(5)甲基化/脱甲基化;(6) S—S/SH相互转变。
详见16.1.1.3 “共价修饰调节作用”。
4.何谓操纵子?根据操纵子模型说明酶合成的诱导和阻遏。
解答:所谓操纵子是原核细胞基因表达的协调单位。
操纵子由一组在功能上相关的结构基因和控制位点所组成。
控制位点包括启动基因和操纵基因。
此控制位点可受调节基因产物的调节。
详见16.1.2.1“原核生物基因表达调节乳糖操纵子和色氨酸操纵子模型”。
5.说明衰减子的作用机制和生物学意义。
解答:色氨酸合成途径中除了阻遏蛋白对操纵基因的阻遏调节外,还存在色氨酸操纵子中衰减子所引起的衰减调节。
衰减调节是在转录水平调节基因表达,它可使转录终止或减弱,衰减调节比阻遏作用是更为精细的调节。
阻遏作用是控制转录的起始。
衰减调节控制转录不能继续进行下去。
转录衰减作用是转录能正常开始,但是转录过程可因细胞内氨基酸浓度升高而使转录中止的一种调节机制。
细节见16.1.2.1“原核生物基因表达调节”。
6.为什么说阻遏蛋白对乳糖操纵子起负调节作用,而在降解物阻遏中的调节蛋白CAP 起正调节作用?解答:当无诱导物乳糖存在时,调节基因编码的阻遏蛋白处于活性状态,阻遏蛋白可与操纵基因相结合,阻止了RNA聚合酶与启动基因的结合,使结构基因(Z、Y、A)不能编码参与乳糖分解代谢的3种酶,既乳糖操纵子关闭,因此阻遏蛋白为负调控因子。
生物体内的代谢途径和调节
生物体内的代谢途径和调节生物体内的代谢过程是指化学反应过程,包括营养物质的摄入,分解与合成,产生能量或消耗能量,并且对身体的生长和发育具有重要作用。
生物体内代谢途径主要包括糖类、脂类和蛋白质代谢三个方面,而在代谢过程中,又会有对代谢过程的调节和控制。
一、糖类代谢糖类是人体能量的主要来源之一,不仅通过食物提供,也可以通过肝脏和肌肉等内源性合成。
糖类代谢过程包括糖原代谢、糖异生和糖酵解三个方面。
糖原是一种多糖,主要储存在肝脏和肌肉细胞内,在需要时可以被分解,产生能量。
而糖异生指的是在饥饿或低血糖情况下,肝脏和肾脏等器官通过代谢非糖物质将其转化为糖类的合成过程。
糖酵解则是将葡萄糖分解为能量和乳酸,同时也能产生ATP。
在糖类代谢过程中,能产生大量能量和二氧化碳等反应产物。
糖类代谢的调节可以通过胰岛素和葡萄糖激素等荷尔蒙进行控制。
二、脂类代谢脂类代谢是指脂肪的合成、分解和氧化过程。
脂肪是储存能量的一种方式,同时也为人体提供重要的组成部分。
脂类代谢过程包括脂肪的合成、分解和氧化三个方面。
脂肪的合成主要发生在肝脏和脂肪细胞中,由葡萄糖和氨基酸等物质通过多级反应合成三酰基甘油等中间代谢物。
脂肪的分解则在肝脏和肌肉等组织中进行,通过酯酶等酶的催化将三酰基甘油分解为游离脂肪酸和甘油等反应产物。
脂肪的氧化则在线粒体中进行,将脂肪酸和氧气反应,产生大量ATP和其他代谢产物。
三、蛋白质代谢蛋白质代谢涉及蛋白质的合成和分解两个方面。
蛋白质是构成人体组织和器官的重要组成部分,对于人体的生长、发展和修复等过程具有重要作用。
蛋白质的分解主要发生在肝脏和腰肌等组织中,通过蛋白水解酶等酶的催化将蛋白质分解成氨基酸等反应产物。
蛋白质的合成则是通过核酸和氨基酸等物质进行,合成过程需要利用ATP等能量源。
四、代谢的调节代谢过程的调节主要通过内分泌系统进行,并且调节的发生和停止是由反馈机制实现的。
在胰腺中分泌的胰岛素主要促进糖原的形成和脂肪酸合成等代谢过程,同时也抑制了糖异生和脂肪分解等反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物质代谢的调节与相互关系
一、填空题
1. 哺乳动物的代谢调节可以在()、()、() 和 ()四个水平上
进行。
2. 酶水平的调节包括 ()、() 和()。其中最灵敏的调节方式是
()。
3. 酶合成的调节分别在()、()和 ()三个方面进行。
4. 合成诱导酶的调节基因产物是(),它通过与 ()结合起调节作
用。
5. 在分解代谢阻遏中调节基因的产物是 (),它能与() 结合而被
活化,帮助 () 与启动子结合,促进转录进行。
6. 色氨酸是一种(),能激活 (),抑制转录过程。
7. 乳糖操纵子的结构基因包括 ()、 ()和 () 。
8. 在代谢网络中最关键的三个中间代谢物是 ()、()和()。
10.共价调节酶是由()对酶分子进行 (),使其构象在()和()之
间相互转变。
11.真核细胞中酶的共价修饰形式主要是(),原核细胞中酶共价修饰
形式主要是()。
二、选择题
1. 利用操纵子控制酶的合成属于哪一种水平的调节:
A.翻译后加工 B.翻译水平 C.转录后加工 D.转录水平
2. 色氨酸操纵子调节基因产物是:
A.活性阻遏蛋白 B.失活阻遏蛋白
C.cAMP受体蛋白 D.无基因产物
3. 下述关于启动子的论述错误的是:
A.能专一地与阻遏蛋白结合 B.是RNA聚合酶识别部位
C.没有基因产物 D.是RNA聚合酶结合部位
4. 在酶合成调节中阻遏蛋白作用于:
A.结构基因 B.调节基因 C.操纵基因 D.RNA聚合酶
5. 酶合成的调节不包括下面哪一项:
A.转录过程 B.RNA加工过程
C.mRNA翻译过程 D.酶的激活作用
6. 关于共价调节酶下面哪个说法是错误的:
A.都以活性和无活性两种形式存在 B.常受到激素调节
C.能进行可逆的共价修饰 D.是高等生物特有的调节方式
7. 被称作第二信使的分子是:
A.cDNA B.ACP C.cAMP D.AMP
8.反馈调节作用中下列哪一个说法是错误的:
A.有反馈调节的酶都是变构酶 B.酶与效应物的结合是可逆的
C.反馈作用都是使反速度变慢 D.酶分子的构象与效应物浓度有关
三、问答题
1.以乳糖操纵子为例说明酶诱导合成的调控过程?
2.以糖原磷酸化酶激活为例,说明级联系统是怎样实现反应信号放大
的?
3.简述酶合成调节的主要内容。
4.代谢的区域化有何意义?
答 案
一、
1. 细胞内酶水平;细胞水平;激素水平;神经水平
2. 酶的区域化;酶数量的调节;酶活性的调节
3. 转录水平;转录后加工和运输;翻译水平
4. 阻遏蛋白;操纵基因
5. 降解物基因活化蛋白(CAP);环腺苷酸(cAMP);RNA聚合酶
6. 辅阻遏物;阻遏蛋白
7. LacZ;LacY;LacA
8. 6-磷酸葡萄糖;丙酮酸;乙酰辅酶A
9. 酶原激活;酶共价修饰;变构调节;反馈调节;辅因子调节;能荷
调节
10. 小分子基团;共价修饰;有活性;无活性
11. 磷酸化和脱磷酸化;核苷酰化和脱核苷酰化
二、选择题
1. D:操纵子在酶合成的调节中是通过操纵基因的开闭来控制结构基因
表达的,所以是转录水平的调节。细胞中酶的数量也可以通过其它三种
途径进行调节。
2. B:色氨酸操纵子控制合成色氨酸五种酶的转录,色氨酸是蛋白质氨
基酸,正常情况下调节基因产生的是无活性阻遏蛋白,转录正常进行。
但当细胞中色氨酸的含量超过蛋白质合成的需求时,色氨酸变成辅阻遏
物来激活阻遏蛋白,使转录过程终止;诱导酶的操纵子调节基因产生的
是活性阻遏物;组成酶的操纵子调节基因不产生阻遏蛋白;有分解代谢
阻遏作用的操纵子调节基因产物是cAMP受体蛋白(降解物基因活化蛋
白)。
3. A:操纵基因是阻遏蛋白的结合部位。
4. C:活性阻遏蛋白与操纵基因结合使转录终止。
5. D:酶的激活作用是对酶活性的调节,与酶合成的调节无关。
6.D:共价调节酶是高等生物和低等生物都具有的一种酶活性调节方
式。
7.C:cDNA 为互补DNA,ACP为酰基载体蛋白,AMP为腺苷酸。cAMP由腺
苷酸环化酶催化ATP焦磷酸裂解环化生成,腺苷酸环化酶可感受激素信
号而被激活,所以,一般把激素称为“第一信使”,把cAMP称为“第二
信使”。
8.C:反馈作用包括正反馈(反馈激活)和负反馈(反馈抑制),正反
馈对酶起激活作用,负反馈对酶起抑制作用。
三、问答题(解题要点)
1. 答:(1)乳糖操纵子:操纵子是指在转录水平上控制基因表达的协
调单位,包括启动子(P)、操纵基因(O)和在功能上相关的几个结构
基因,操纵子可受调节基因的控制。乳糖操纵子是三种乳糖分解酶的控
制单位。
(2)阻遏过程:在没有诱导物(乳糖)情况下,调节基因产生的活性
阻遏蛋白与操纵基因结合,操纵基因被关闭,操纵子不转录。
(3)诱导过程:当有诱导物(乳糖)的情况下,调节基因产生的活性
阻遏蛋白与诱导物结合,使阻遏蛋白构象发生改变,失去与操纵基因结
合的能力,操纵基因被开放,转录出三种乳糖分解酶(LacZ、LacY、
LacA)。
2. 答:(1)级联系统:在连锁代谢反应中一个酶被激活后,连续地发
生其它酶被激活,导致原始调节信号的逐级放大,这样的连锁代谢反应
系统称为级联系统。糖原磷酸化酶的激活过程就是一个例子。
(2)放大过程:
①激素(如肾上腺素)使腺苷酸环化酶活化,催化ATP和生成cAMP。
②cAMP使蛋白激酶活化,使无活力的磷酸化酶b激酶转变成有活力的
磷酸化酶b激酶。
③磷酸化酶b激酶使磷酸化酶b转变成激活态磷酸化酶a。
④磷酸化酶a使糖原分解为磷酸葡萄糖。
每次激活都是一次共价修饰,也是对原始信号的一次放大过程。
3. 答:(1)转录水平的调节:负调控作用(酶合成的诱导和阻遏);
正调控作用(降解物基因活化蛋白);衰减作用(衰减子)。
(2)转录后的的调节:转录后mRNA的加工,mRNA由细胞核向细胞质的
运输,mRNA细胞中的定位和组装。
(3)翻译水平的调节:mRNA本身核苷酸组成和排列(如SD序列),反
义RNA的活性,mRNA的稳定性等都是翻译水平的调节的重要内容。
4.答:(1)消除酶促反应之间的干扰。
(2)使代谢途径中的酶和辅因子得到浓缩,有利于酶促反应进行。
(3)使细胞更好地适应环境条件的变化。
(4)有利于调节能量的分配和转换。