人脸识别毕业论文
人脸情绪识别毕业论文

人脸情绪识别毕业论文标题:人脸情绪识别技术及其应用研究摘要:随着人工智能的快速发展和智能设备的普及应用,人脸情绪识别成为一项备受关注的研究领域。
本文通过对人脸情绪识别技术的综述和分析,探讨了其在实际应用中的潜力和挑战,并提出了一种基于深度学习的人脸情绪识别方法。
1.引言人脸情绪识别是指利用计算机技术对人脸图像中的情绪进行自动识别和分类的过程。
人脸情绪识别技术在心理学研究、情感计算、虚拟现实等领域具有广泛的应用前景。
近年来,随着深度学习技术的发展,人脸情绪识别在准确性和效率上取得了重大突破。
2.人脸情绪识别技术综述2.1 传统的人脸情绪识别方法传统的人脸情绪识别方法主要基于统计和机器学习技术,包括特征提取、特征选择和分类器设计等过程。
常用的特征提取方法有LBP、HOG等,分类器则包括SVM、KNN等。
2.2 基于深度学习的人脸情绪识别方法深度学习技术的发展为人脸情绪识别带来了新的突破。
卷积神经网络(CNN)是一种常用的深度学习模型,在人脸情绪识别中取得了良好的效果。
通过训练大规模的人脸图像数据集,CNN可以自动学习到图像中的高级特征,从而提高情绪识别的准确性和鲁棒性。
3.人脸情绪识别应用研究3.1 情感计算人脸情绪识别在情感计算领域有着广泛的应用。
通过识别人们的情绪,可以对其进行情感调节和治疗,促进心理健康。
例如,在心理治疗中,可以利用人脸情绪识别技术对患者的情绪状态进行实时监测和分析,从而提供个性化的治疗方案。
3.2 虚拟现实人脸情绪识别可以应用于虚拟现实技术中,提高虚拟角色的情感交互能力和智能化。
通过实时识别用户的情绪,虚拟角色可以做出相应的情感反应,增强用户的沉浸感和参与度。
例如,在游戏中,虚拟角色可以根据玩家的情绪变化调整游戏难度和剧情。
4.人脸情绪识别的挑战与展望4.1 数据集的质量和规模人脸情绪识别的准确性和鲁棒性很大程度上依赖于训练数据集的质量和规模。
目前已经存在一些公开的人脸情绪数据集,但其规模和多样性还需要进一步提升。
基于半边脸的人脸检测——毕业论文

基于半边脸的人脸检测摘要图像中的人脸检测是人脸识别研究中一项非常重要的研究分支。
为了更有效地检测图像中的人脸,此次研究设计提出了基于半边脸的人脸检测方法。
根据图像中人半边脸的容貌或者器官的密度特征,比如眼睛,耳朵,嘴巴,部分脸颊,正面的平均全脸模板就可以被构建出来。
被模拟出来的半张脸是基于人脸的对称性的特点而构建的。
图像中人脸检测的实验运用了模板匹配法和相似性从而确定人脸在图像中的位置。
此原理分析显示了平均全脸模型法能够有效地减少模板的局部密度的不确定性。
基于半边脸的人脸检测能降低人脸模型密度的过度对称性,从而提高人脸检测的速度。
实验结果表明此方法还适用于在大角度拍下的侧脸图像,这大大增加了侧脸检测的准确性。
关键词:人脸模板;半边人脸模板;模板匹配法;相似性;侧脸1 介绍近几年,在图像处理和识别以及计算机视觉的研究领域中,人脸识别是一个很热门的话题。
作为人脸识别中一个重要的环节,人脸检测也拥有一个延伸的研究领域。
人脸检测的主要目的是为了确定图像中的信息,比如,图像总是否存在人脸,它的位置,旋转角度以及人脸的姿势。
根据人脸的不同特征,人脸检测的方法也有所变化[1-4]。
而且,根据人脸器官的密度或颜色的固定布局,我们可以判定是否存在人脸。
因此,这种基于肤色模型和模板匹配的方法对于人脸检测具有重要的研究意义[5-7]。
这种基于模板匹配的人脸检测法是选择正面脸部的特征作为匹配的模板,导致人脸搜索的计算量相对较大。
然而,绝大多数的人脸都是对称的。
所以我们可以选择半边正面人脸模板,也就是说,选择左半边脸或者有半边脸作为人脸匹配的模板,这样,大大减少了人脸搜索的计算。
2 人脸模板构建的方法人脸模板的质量直接影响匹配识别的效果。
为了减少模板局部密度的不确定性,构建人脸模板是基于大众脸的信息,例如,平均的眼睛模板,平均的脸型模板。
这种方法很简单。
在模板的仿射变换的实例中,人脸检测的有效性可以被确保。
构建人脸模板的过程如下[8]:步骤一:选择正面人脸图像;步骤二:决定人脸区域的大小和选择人脸区域;步骤三:将选出来的人脸区域格式化成同一种尺寸大小;步骤四:计算人脸区域相对应像素的平均值。
基于MATLAB的人脸识别系统的研究毕业论文

长沙民政职业技术学院毕业实践报告 题目:基于MATLAB 勺人脸识别系统的研扌旨导老师: ______ 谭刚林 ______________________ 系 另寸: 电子信息工程系 __________________ 班 级: ______________ 电子1133 ____________学号:1119013333 1119013334 1119013335 姓 名: 刘盼符思遥樊阳辉类型:2014年5月5日基于MATLAB勺人脸识别系统的研究符思遥、刘盼、樊阳辉指导老师:谭刚林苏宏艮马勇赞【摘要】人脸检测与识别技术是计算机视觉和模式识别等学科的研究热点之一,是进行身份认证最友好直接的手段,在出入境安全检查、内容检索、证件验证、门禁系统等领域都具有十分广泛的应用前景。
多年来,人脸识别技术中的很多问题都被深入地研究,而且大量的算法已经成功应用于人脸识别。
本文在研究了人脸检测和身份识别的关键技术和相关理论的基础上,重点讨论了在光照和背景不同的条件下,彩色静止图像的人脸检测和身份识别问题,它包括基于肤色分割的人脸粗检测、基于人眼检测的几何归一化和基于二维主成分分析法(2DPCA的身份识别。
本文主要工作如下:首先对彩色图像进行光照补偿,其次通过肤色检测获得可能的脸部区域并二值化,再用形态学开闭运算对图像进行滤波处理并通过一定规则确定人脸区域,然后运用水平垂直投影定位人眼坐标以此对人脸进行几何归一化,识别部分运用2DPCA勺图像映射方法对灰度图进行特征匹配,最后输出识别结果并进行语音播报。
实验结果表明,结合肤色和面部几何特征的算法能够对人脸进行较快速和准确的定位,同时2DPCAT法运用于身份识别也能达到较高的识别率。
本毕业设计对实际应用具有一定的参考价值,该系统的操作流程和输入输出方式是以实际应用为出发点,可应用于公安机关证件验证以及日常家庭的自动门禁系统等。
【关键词】人脸检测;肤色分割;人眼检测;2DPCA特征提取1绪论 (1)1.1选题的背景 (1)1.2人脸识别系统 (2)1.3人脸识别的典型方法 (2)2基于YCbCr颜色空间的肤色分割 (3)2.1三种色彩空间 (3)2.1.1 RGB色彩空间 (3)3基于2DPCA特征提取的身份识别 (4)3.1 2DPCA算法实验结果与分析 (5)3.1.1实验用数据库 (5)3.1.2实验结果与分析 (5)3.1.3 结论 (7)4人脸检测与识别系统设计与实现 (7)4.1系统环境 (7)4.2人脸检测与识别系统框图 (7)4.3系统功能模块 (8)4.4实验结果分析 (9)5总结与展望 (10)5.1总结 (10)5.2展望 (10)参考文献 (12)1绪论1.1选题的背景近年来随着计算机技术和互联网的发展,信息技术的安全变得越来越重要,生物特征识别技术得到广泛研究与开发,如人脸识别、指纹识别、掌形识别等。
人脸识别技术设计论文

人脸识别算法摘要人脸自动识别是模式识别领域的一项热门研究课题,有着十分广泛的应用前景。
本文对人脸位置矫正,人脸的特征提取和识别这些方面进行了研究,并提出了相应的实现算法。
人脸位置矫正作为人脸检测定位的一个环节,在计算机人脸识别中具有重要的意义。
本文第二章提出了一种基于单人脸灰度图像中眼睛定位的人脸位置矫正方法,它是针对人眼灰度变化特点、人眼几何形状特征及双眼的轴对称性而设计的。
实验结果表明,该方法对于双眼可见单人脸灰度图像能实现快速有效矫正,并能在矫正结果中精确给出双眼瞳孔位置。
本文第三章提出了一种基于神经网络的主元分析人脸图像识别方法。
该方法利用非线性主元分析神经网络对人脸图像提取人脸特征(矢量),并在BP神经网络上实现了对人脸图像的识别。
实验结果证明了该方法的有效性和稳定性。
关键词人脸位置矫正,人脸特征提取,人脸识别,神经网络,灰度图像,图像块纵向复杂度,主元分析法,1-iThe Design and Implementation of Algorithms for Human FaceRecognitionAbstractThe automatic recognition of human faces is a hot spot in the field of pattern recognition , which has a wide range of potential applications . As the results of our in-depth research ,two algorithms are proposed : one for face pose adjustment , the other for facial feature extraction and face identification .Face pose adjustment , as a loop of human face location, is very important in computer face recognition. Chapter 2 of this thesis presents a new approach to automatic face pose adjustment on gray-scale static images with a single face . In a first stage , the right positions of eyes are precisely detected according to several designed parameters which well characterize the complex changes of the gray parameter in and around eyes and the geometrical shape of eyes . During the second stage , based on the location and the symmetry feature of eyes , the inclination angle is calculated and the face position is redressed . The experimentation shows that the algorithm performs very well both in terms of rate and of efficiency . What’s more , due to the precise location of eyes , the apples of the eyes are detected .In chapter 3, a novel approach to human face image recognition based on principal component analysis and neural networks has been proposed . By using BP neural networks , human face images are successfully classified and recognized according to the output of BPNN whose input is the eigenvector extracted from the human face images via nonlinear principal1-iicomponent analysis of a single layer neural network . Simulation results demonstrate the effectiveness and stability of the approach .KeywordsFace Pose Adjustment, Facial Feature Extraction , Human Face Recognition , Neural Networks , Gray-scale Static Image , Vertical-complexity of Image Block, Principal Component Analysis1-iii致谢首先要感谢我的毕业设计导师曹文明教授,他是我在人脸识别领域研究的启蒙老师。
本科毕业论文-—基于opencv的图像识别

基于2DPCA的人脸识别算法研究摘要人脸识别技术是对图像和视频中的人脸进行检测和定位的一门模式识别技术,包含位置、大小、个数和形态等人脸图像的所有信息。
由于近年来计算机技术的飞速发展,为人脸识别技术的广泛应用提供了可能,所以图像处理技术被广泛应用了各种领域。
该技术具有广阔的前景,如今已有大量的研究人员专注于人脸识别技术的开发。
本文的主要工作内容如下:1)介绍了人脸识别技术的基础知识,包括该技术的应用、背景、研究方向以及目前研究该技术的困难,并对人脸识别系统的运行过程以及运行平台作了简单的介绍。
2)预处理工作是在原始0RL人脸库上进行的。
在图像的预处理阶段,经过了图象的颜色处理,图像的几何归一化,图像的均衡化和图象的灰度归一化四个过程。
所有人脸图像通过上述处理后,就可以在一定程度上减小光照、背景等一些外在因素的不利影响。
3)介绍了目前主流的一些人脸检测算法,本文采用并详细叙述了Adaboost人脸检测算法。
Adaboost算法首先需要创建人脸图像的训练样本,再通过对样本的训练,得到的级联分类器就可以对人脸进行检测。
4)本文介绍了基于PCA算法的人脸特征点提取,并在PCA算法的基础上应用了改进型的2DPCA算法,对两者的性能进行了对比,得出后者的准确度和实时性均大于前者,最后将Adaboost人脸检测算法和2DPCA算法结合,不仅能大幅度降低识别时间,而且还相互补充,有效的提高了识别率。
关键词:人脸识别 2DPCA 特征提取人脸检测2DPCA Face Recognition Algorithm Basedon The ResearchAbstract:Face recognition is a technology to detect and locate human face in an image or video streams,Including location, size, shape, number and other information of human face in an image or video streams.Due to the rapid development of computer operation speed makes the image processing technology has been widely applied in many fields in recent years. This paper's work has the following several aspects:1)Explained the background, research scope and method of face recognition,and introduced the theoretical method of face recognition field in general.2)The pretreatments work is based on the original ORL face database. In the image preprocessing stage, there are the color of the image processing, image geometric normalization, image equalization and image gray scale normalization four parts. After united processing, the face image is standard, which can eliminate the adverse effects of some external factors.3)All kinds of face detection algorithm is introduced, and detailed describing the Adaboost algorithm for face detection. Through the Adaboost algorithm to create a training sample,then Training the samples of face image,and obtaining the cascade classifier to detect human face.4)This paper introduces the facial feature points extraction based on PCA ,and 2DPCA is used on the basis of the PCA as a improved algorithm.Performance is compared between the two, it is concluds that the real time and accuracy of the latter is greater than the former.Finally the Adaboost face detection algorithm and 2DPCA are combined, which not only can greatly reduce the recognition time, but also complement each other, effectively improve the recognition rate.Key words:Face recognition 2DPCA Feature extraction Face detection目录第1章前言 (1)1.1 人脸识别的应用和研究背景 (1)1.2 人脸识别技术的研究方向 (2)1.3 研究的现状与存在的困难 (3)1.4 本文大概安排 (4)第2章人脸识别系统及软件平台的配置 (4)2.1 人脸识别系统概况 (4)2.1.1 获取人脸图像信息 (5)2.1.2 检测定位 (5)2.1.3 图像的预处理 (5)2.1.4 特征提取 (6)2.1.5 图像的匹配与识别 (6)2.2 OpenCV (6)2.2.1 OpenCV简介 (6)2.2.2 OpenCV的系统配置 (7)2.3 Matlab与图像处理 (8)第3章图像的检测定位 (8)3.1 引言 (8)3.2 人脸检测的方法 (8)3.3 Adaboost算法 (9)3.3.1 Haar特征 (10)3.3.2 积分图 (10)3.3.4 级联分类器 (11)第4章图像的预处理 (13)4.1 引言 (13)4.2 人脸图像库 (13)4.3 人脸预处理算法 (14)4.3.1 颜色处理 (14)4.3.2几何归一化 (15)4.3.3直方图均衡化 (16)4.3.4灰度归一化 (18)4.4 本章小结 (19)第5章图像的特征提取与识别 (19)5.1 引言 (19)5.2 图像特征提取方法 (20)5.2.1基于几何特征的方法 (20)5.2.2基于统计的方法 (20)5.2.3弹性图匹配(elastic graph matching) (21)5.2.4神经网络方法 (21)5.2.5支持向量机(SVM)方法 (22)5.3 距离分类器的选择 (22)5.4 PCA算法的人脸识别 (24)5.5 二维主成分分析(2DPCA) (25)5.5.1 2DPCA人脸识别算法 (25)5.5.2 特征提取 (27)5.5.3 分类方法 (27)5.5.4 基于2DPCA的图像重构 (28)5.6 实验分析 (28)第6章总结与展望 (33)6.1 本文总结 (33)6.2 未来工作展望 (33)致谢 (34)参考文献: (35)第1章前言1.1 人脸识别的应用和研究背景随着社会科学技术的发展进步,特别是最近几年计算机的软硬件技术高速发展,以及人们越来越将视野集中到快速高效的智能身份识别,使生物识别技术在科学研究中取得了重大的进步和发展。
【毕业论文】基于人工神经网络的人脸识别方法研究

2.1 生物识别技术 .................................................................................................... 7
2.1.1 生物识别的定义 .....................................................................................................7 2.1.2 生物识别技术 ........................................................................................................7
基于PCA的人脸识别算法研究毕业论文
基于PCA的人脸识别算法研究毕业论文目录摘要 .................................................. 错误!未定义书签。
Abstract .............................................. 错误!未定义书签。
第1章绪论 .. (1)1.1选题背景及意义 (1)1.2国外研究现状 (2)1.2.1 国外研究现状 (2)1.2.2 国研究现状 (3)1.3人脸识别技术的研究容与技术难点 (3)1.3.1 人脸识别技术研究容 (3)1.3.2 人脸识别技术研究难点 (3)1.4本文研究容与结构安排 (4)第2章人脸识别相关技术介绍 (5)2.1系统概述 (5)2.2人脸识别主要技术 (5)2.2.1 二维人脸识别算法介绍 (5)2.2.2 三维人脸识别算法介绍 (6)2.3常用的人脸图像库 (6)2.4人脸的特征提取 (7)2.4.1 几何特征提取法 (7)2.4.2 代数特征提取法 (8)2.5本章小结 (10)第3章基于PCA的人脸识别算法 (12)3.1引言 (12)3.2K-L变换 (12)3.2.1 K-L变换原理 (13)3.2.2 K-L变换性质 (14)3.3SVD定理 (15)3.4距离的计算 (17)3.5基于PCA的人脸识别 (18)3.5.1 人脸的表示 (18)3.5.2 特征脸空间的构造 (18)3.5.3 特征提取 (19)3.5.4 人脸识别 (20)3.6MATLAB仿真实现 (20)3.7结果分析 (26)3.8本章小结 (28)第4章与基于Fisherface方法的特征提取原理对比 (29)4.1PCA方法的优缺点 (29)4.2基于Fisherface法的人脸特征提取理论介绍 (29)4.3FisherFace方法的优缺点 (31)4.4两种方案的理论对比 (31)4.5本章小结 (32)结论 (33)参考文献 (34)致谢 (36)附录 1 (37)附录 2 (44)附录 3 (48)附录 4 (57)第1章绪论1.1选题背景及意义当今时代社会高速发展,技术不断进步。
基于人脸识别的课堂考勤系统设计与实现-毕业论文
课堂是学生学习的主要场所,课堂学习是学生获取知识、培养能力、提高素质的主要渠道。
系统科学的课堂考勤是保证各项教学计划有效落实和顺利执行的重要条件。
有效的课堂考勤是创造良好学习氛围,形成良好班风、学风及增强学生的组织性和纪律性的必要条件,同时也是保证学校教学秩序的稳定、提高教学质量的重要措施。
研究基于人脸识别的课堂考勤系统,借助信息技术,以人脸识别为手段,彻底摒弃传统课堂考勤中人工统计管理的落后方式,克服不规范的考勤行为,解决学校以往考勤管理工作中出现的问题,为学校的考勤制度实施提供科学的依据。
本论文主要工作及应用创新如下:(1)提出了基于稀疏表示和神经网络相结合的人脸识别算法。
针对人脸识别过程中识别速度较慢的问题,依据压缩感知理论,利用小波变换对图像进行稀疏化处理。
然后采用改进BP人工神经网络对图像进行训练。
采用较少的元素表示人脸图像,不仅能对人脸图像进行降维,还能滤去局部光照、表情细节以及其他面部部件引入的高频干扰信息,突出人脸的主要特征,得到适合于计算机识别的低维图像,提高了人脸识别速度。
(2)设计了完整的基于人脸识别的学生课堂考勤系统。
通过摄像头采集人脸图像,然后对人脸图进行预处理,并对人脸进行标定,分割出人脸图像;采用基于稀疏表示和神经网络相结合的人脸识别算法,进行人脸识别,然后把识别结果信息保存到数据库中,完成学生课堂考勤操作。
(3)设计并开发了基于C/S和B/S混合体系结构的学生课堂考勤系统。
人脸识别采用C/S模式开发,考勤信息管理的设置与查询采用B/S模式开发。
数据库服务器主要为考勤资料和考勤数据的存取提供服务。
Web服务器为请假管理、考勤数据的查询和输出提供服务。
学生可以通过网络查询个人的考勤情况,不受环境限制。
学生课堂考勤的根本目的是加强课堂管理,学生课堂考勤系统可为学校课堂管理提供科学、可靠的考勤手段,有利于提高课堂学生到课率和教师工作效率,从而保障教学效果与质量。
关键字:课堂考勤,人脸识别,稀疏表示,神经网络The classroom is the main place for student studying and obtaining knowledge. It is also a main channel for student to improve their abilities. A scientific classroom attendance system can ensure that various teaching programs are implemented effectively.The effective classroom attendance system can create a good atmosphere for learning and a good class style for enhancing student’s organization and discipline. And the effective classroom attendance system is also one of important measures for ensuring the stability of the teaching order, improving the quality of teaching and learning activities.This study researches on classroom attendance system based on face recognition. By using of information technology and face recognition, abandon artificial statistical management completely and overcome the nonstandard behavior in the traditional classroom attendance system, a novel classroom attendance system is proposed. It can solve the problem in school attendance management work, and provide scientific basis for implementing the school's classroom attendance regulationThe main work and innovation can be shown as follows:(1)A novel face recognition algorithm based on sparse representation and neural network is proposed. Aim to improve the speed in face recognition process, according to compressed sensing theory, wavelet transform is used to sparsing image, then a BP artificial neural network is used to train face image. A fewer elements can express the original face image, not only to reduce the dimension of face image, and filter out the local light, expression details and other facial high-frequency information. as a result, a low-dimensional and suitable face image is obtained, and the experiment has shown that the face recognition speed is improved.(2)A complete student classroom attendance system based on face recognition is designed. By collecting face images through a camera, and face image preprocessing, a human face is calibrated and split. Then the face is recognized by based on sparse representation and neural networks. At last, the result is saved to the database and student attendance classroom checking is finished.(3)A combination based on C/S and B/S hybrid architecture is used in developing student classroom attendance system. Database is a server-side. Face recognition bases on C/S model, and attendance management setting bases on B/S mode. The database server provides service for saving attendance data. Web server provides leaving management, data query and data output. So students can check their attendance records through the network,and be free from environmental restrictions.The main purpose of student classroom attendance is to enhance classroom management. Student classroom attendance system provides a scientific reliable means for classroom attendance management. It can improve efficiency of teacher’s teaching and student’s study, and ensure the teaching effect and quality.Keywords: Classroom Attendance, Face Recognition, Sparse Representation, Neural Network目录摘要 (I)Abstract (II)目录............................................................................................................................................................. I V 第1章绪论. (1)1.1 选题背景与研究意义 (1)1.2 基于人脸识别的考勤系统国内外研究现状 (1)1.2.1人脸识别技术国内外研究现状 (2)1.2.2考勤管理系统国内外研究现状 (3)1.3 本论文研究目的 (4)1.4 论文研究思路和内容安排 (5)1.5 小结 (6)第2章人脸识别基本理论 (7)2.1 人脸识别基本原理 (7)2.2 人脸基本特征 (8)2.2.1 人脸肤色特征 (8)2.2.2 人脸灰度特征 (10)2.3 人脸检测方法 (11)2.3.1 基于特征的人脸检测 (11)2.3.2 基于模板匹配的人脸检测 (12)2.3.3 基于统计学习的人脸检测 (12)2.4 人脸识别主要方法概述 (12)2.4.1 基于几何特征的人脸识别 (13)2.4.2 基于子空间分析的人脸识别 (13)2.4.3 基于模板匹配的人脸识别 (14)2.4.4 基于神经网络的人脸识别 (15)2.4.5 基于Adaboost 的人脸识别算法 (15)2.5 人脸图像处理技术 (16)2.5.1 灰度化 (16)2.5.2 图像去噪处理 (17)2.5.3 二值化 (18)2.5.4 形态学处理 (18)2.5.5 图像旋转 (19)2.5.6 图像缩放 (20)2.6 小结 (21)第3章基于稀疏表示和神经网络的人脸识别算法研究 (22)3.1 压缩感知理论 (22)3.1.1信号的稀疏表示 (23)3.1.2信号的观测矩阵 (23)3.1.3信号的重构算法 (24)3.2小波变换原理 (25)3.3 基于BP神经网络人脸识别 (26)3.3.1 人工神经网络 (26)3.3.2 人脸识别BP神经网络模型设计 (26)3.3.3 改进BP神经网络模型 (28)3.3.4 基于BP神经网络的人脸识别流程设计 (29)3.4 基于稀疏表示和神经网络的人脸识别算法原理 (29)3.4.1 基于稀疏表示和神经网络的人脸识别算法流程 (29)3.4.2 基于小波变换的人脸稀疏表示实验 (30)3.4.3 人脸识别实验及结果 (31)3.5 小结 (32)第4章课堂考勤系统需求分析及其结构设计 (33)4.1系统需求分析 (33)4.1.1 学生课堂考勤系统主要特点 (33)4.1.2 系统设计目标及原则 (34)4.2系统功能模块 (34)4.2.1 系统功能模块分析 (34)4.2.2 系统工作流程 (36)4.2.3 系统体系结构设计 (36)4.3系统结构设计 (38)4.3.1 基于摄像头的人脸图像采集系统 (38)4.3.2 摄像头实时图像人脸检测流程 (39)4.3.3人脸识别模块设计 (40)4.3.4 学生考勤信息管理模块设计 (40)4.4 数据库设计 (41)4.4.1 数据库设计目标 (41)4.4.2 数据库设计原则 (41)4.4.3 概念设计 (41)4.4.4 主要数据表结构 (43)4.5 小结 (44)第5章基于人脸识别的课堂考勤系统开发与实现 (46)5.1 开发工具及开发环境简介 (46)5.1.1 MFC (46)5.1.2 (46)5.1.3 开发环境 (47)5.2 人脸图像采集模块开发与实现 (47)5.2.1 摄像头获取人脸图像功能实现 (47)5.2.2 捕捉功能和显示图像功能实现 (48)5.2.3 人脸图像采集实现 (48)5.3 人脸识别模块开发与实现 (49)5.3.1 人脸定位模块开发 (49)5.3.2 人脸识别模块开发与实现 (50)5.4 课堂考勤信息管理模块开发与实现 (52)5.4.1 考勤查询管理 (54)5.4.2 考勤录入管理 (55)5.4.3 角色信息管理 (56)5.4.4 学生信息管理 (56)5.4.5 院系班级信息管理 (57)5.5 小结 (57)第6章总结与展望 (58)6.1 总结 (58)6.2 展望 (58)参考文献 (60)个人简历、申请学位期间的研究成果及发表的学术论文 (63)致谢 (64)第1章绪论1.1 选题背景与研究意义建立科学规范的教学管理体系,以确保学校快速发展,是教师提高教学质量,学生提高学习成绩的重要前提和必要条件。
人脸识别 毕业论文设计
毕业设计(论文)题目名称:基于主成分分析(PCA)的人脸识别门禁软件开发 ----人脸识别院系名称:计算机学院班级:计科092班学号:4学生:冠君指导教师:陆筱霞2013 年 6 月基于主成分分析(PCA)的人脸识别门禁软件开发----人脸识别Face recognition access control software development based on principal component analysis(PCA)---- Face Recognition院系名称:计算机学院班级:计科092班学号:4学生:冠君指导教师:陆筱霞2013 年 6 月中文摘要随着安全入口控制需求的快速增长,生物统计识别技术得到了新的重视。
由于人脸的易采集、非接触等优点使得人脸特征作为人生物特征应用受到越来越多的关注,其中最主要就是人脸识别。
本文主要介绍一个人脸识别门禁系统的核心功能模块。
本文的设计是基于OpenCV库的,以VS2012软件作为开发工具,主要从需求分析,系统概要设计,关键技术、详细设计和实现几方面来介绍开发过程,最后进行运行测试。
在人脸检测基础上,提取人脸进行识别。
在人脸识别方法上,本软件主要采用主成分分析法(PCA)。
将大数据维度进行降维,投影到低维空间,利用欧氏距离计算置信度,达到阀值的训练数据作为判定识别标准。
关键词:人脸检测;人脸识别;主成分分析法(PCA);AbstractWith the rapid growth of security access control, biometric identification technology has been a new emphasis. Easy acquisition of the face, the non-contact, etc. makes facial feature as biometric applications are more and more attention, of which the most important is face recognition. This paper describes a face recognition access control system is the core functional modules.This design is based on the OpenCV library to VS2012 software as a development tool, mainly from the needs analysis, outline design, key technologies, detailed design and implementation aspects to introduce the development process, and finally run the test.On the basis of face detection, the extraction of face identification. Face recognition methods, the software using principal component analysis (PCA). The dimensions of the big data dimensionality reduction, projected to low-dimensional space using the Euclidean distance to calculate the confidence to reach the threshold of training data as the decision to identify standards.Key words: Face Detection;Face recognition; principal component analysis(PCA);目录中文摘要 (3)Abstract (4)目录 (I)第一章绪论 (1)1.1 前言 (1)1.2课题应用背景与研究意义 (1)1.3 人脸识别类软件的发展现状 (2)1.4 系统可行性研究 (2)1.4.1 为什么选用OpenCV (2)1.4.2 开发环境的配置 (2)1.5 本毕业设计工作和论文结构安排 (3)1.5.1 本毕业设计工作 (3)1.5.2 论文结构安排 (4)第二章系统需求分析 (4)2.1 功能需求 (4)2.2非功能需求 (5)2.2.1系统的易用性 (5)2.2.2系统可靠性 (5)2.2.3 系统可扩展性 (5)第三章系统概要设计 (5)3.1 设计思想 (5)3.1.1 人脸数据获取方式 (5)3.1.2 人脸训练识别方式 (6)3.1.3 添加功能提示 (6)3.2 系统功能结构设计 (6)第四章系统详细设计 (6)4.1 OpenCV主要函数介绍 (6)4.2 关键功能部分函数设计实现 (9)4.2.1摄像头操作: (9)4.1.2人脸检测功能: (9)4.1.3图像特征训练提取: (10)4.1.4训练图像保存: (10)4.1.5身份识别验证功能: (10)第五章系统运行测试 (11)5.1 人脸识别系统模块测试 (11)5.2 运行效果图 (12)5.3 测试效率测评 (16)第六章小结 (18)附录 (19)附录A:主要源程序 (19)附录B: 软件使用说明书 (30)附录C: 光盘 (31)第一章绪论1.1 前言人类进入21世纪,随着计算机和网络技术的日渐发达,信息安全的隐患日益突出,自911之后,各国越来越重视社会公共安全,信息识别和检测显得前所未有的重要。
人脸识别 毕业设计
人脸识别毕业设计人脸识别毕业设计随着科技的飞速发展,人脸识别技术逐渐成为了一种热门的研究方向。
人脸识别作为一种生物特征识别技术,可以通过对人脸图像的采集和分析,实现对个体身份的自动识别和验证。
在日常生活中,人脸识别技术已经广泛应用于安全领域、金融行业、社交媒体等各个领域。
在我即将毕业的设计中,我选择了人脸识别作为我的研究方向。
人脸识别技术的应用前景广阔,但同时也面临着一些挑战。
首先,人脸识别技术需要高质量的人脸图像作为输入,但在实际应用中,由于光照条件、姿态变化等因素的影响,采集到的人脸图像往往存在一定的噪声和失真。
因此,如何提高人脸图像的质量,是我研究的一个重要问题。
其次,人脸识别技术需要高效的算法来实现对人脸图像的识别和匹配。
目前,常用的人脸识别算法包括基于特征的方法、基于模型的方法和基于深度学习的方法。
我计划通过对比不同算法的性能和效果,选择适合我的毕业设计的算法。
除了算法的选择,我还计划设计一个实验平台来测试和评估我的人脸识别系统。
这个平台将包括一个人脸图像数据库、一个人脸图像采集设备和一个人脸识别系统。
通过这个平台,我可以收集大量的人脸图像数据,并对我的人脸识别系统进行性能测试和优化。
在我的毕业设计中,我还计划研究人脸识别技术的一些应用场景。
例如,我可以将人脸识别技术应用于智能门禁系统中,实现对进出人员身份的自动识别和验证。
此外,我还可以将人脸识别技术应用于人脸表情分析中,实现对人脸表情的自动识别和情感分析。
人脸识别技术虽然已经取得了很大的进展,但仍然存在一些问题和挑战。
例如,人脸识别技术对于光照条件和姿态变化的敏感性较高,容易受到环境因素的影响。
此外,人脸识别技术还面临着隐私和安全的问题。
因此,在我的毕业设计中,我还计划研究如何提高人脸识别技术的鲁棒性和安全性。
总的来说,人脸识别技术作为一种热门的研究方向,具有广阔的应用前景和挑战。
在我的毕业设计中,我计划通过对比不同算法的性能和效果,设计一个实验平台来测试和评估我的人脸识别系统,并研究人脸识别技术的一些应用场景和问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人脸识别毕业论文 LELE was finally revised on the morning of December 16, 2020毕业设计(论文)题目名称:基于主成分分析(PCA)的人脸识别门禁软件开发 ----人脸识别院系名称:计算机学院班级:计科092班学号:200900814214学生姓名:陈冠君指导教师:陆筱霞2013 年 6 月基于主成分分析(PCA)的人脸识别门禁软件开发----人脸识别Face recognition access control software development based on principal component analysis(PCA) ---- Face Recognition院系名称:计算机学院班级:计科092班学号:200900814214学生姓名:陈冠君指导教师:陆筱霞2013 年 6 月中文摘要随着安全入口控制需求的快速增长,生物统计识别技术得到了新的重视。
由于人脸的易采集、非接触等优点使得人脸特征作为人生物特征应用受到越来越多的关注,其中最主要就是人脸识别。
本文主要介绍一个人脸识别门禁系统的核心功能模块。
本文的设计是基于OpenCV库的,以VS2012软件作为开发工具,主要从需求分析,系统概要设计,关键技术、详细设计和实现几方面来介绍开发过程,最后进行运行测试。
在人脸检测基础上,提取人脸进行识别。
在人脸识别方法上,本软件主要采用主成分分析法(PCA)。
将大数据维度进行降维,投影到低维空间,利用欧氏距离计算置信度,达到阀值的训练数据作为判定识别标准。
关键词:人脸检测;人脸识别;主成分分析法(PCA);AbstractWith the rapid growth of security access control, biometric identification technology has been a new emphasis. Easy acquisition of the face, the non-contact, etc. makes facial feature as biometric applications are more and more attention, of which the most important is face recognition. This paper describes a face recognition access control system is the core functional modules.This design is based on the OpenCV library to VS2012 software as a development tool, mainly from the needs analysis, outline design, key technologies, detailed design and implementation aspects to introduce the development process, and finally run the test.On the basis of face detection, the extraction of face identification. Face recognition methods, the software using principal component analysis (PCA). The dimensions of the big data dimensionality reduction, projected to low-dimensional space using the Euclidean distance to calculate the confidence to reach the threshold of training data as the decision to identify standards.Key words: Face Detection;Face recognition; principal component analysis(PCA);目录中文摘要 (2)Abstract (3)目录 .................................................................................................................................................... 第一章绪论.. 01.1 前言 01.2课题应用背景与研究意义 01.3 人脸识别类软件的发展现状 (1)1.4 系统可行性研究 (1)1.4.1 为什么选用OpenCV (1)1.4.2 开发环境的配置 (2)1.5 本毕业设计工作和论文结构安排 (3)1.5.1 本毕业设计工作 (3)1.5.2 论文结构安排 (3)第二章系统需求分析 (4)2.1 功能需求 (4)2.2非功能需求 (4)2.2.1系统的易用性 (4)2.2.2系统可靠性 (5)2.2.3 系统可扩展性 (5)第三章系统概要设计 (5)3.1 设计思想 (5)3.1.1 人脸数据获取方式 (5)3.1.2 人脸训练识别方式 (5)3.1.3 添加功能提示 (5)3.2 系统功能结构设计 (6)第四章系统详细设计 (6)4.1 OpenCV主要函数介绍 (6)4.2 关键功能部分函数设计实现 (9)4.2.1摄像头操作: (9)4.1.2人脸检测功能: (9)4.1.3图像特征训练提取: (9)4.1.4训练图像保存: (10)4.1.5身份识别验证功能: (10)第五章系统运行测试 (11)5.1 人脸识别系统模块测试 (11)5.2 运行效果图 (12)5.3 测试效率测评 (16)第六章小结 (18)附录 (20)附录A:主要源程序 (20)附录B: 软件使用说明书 (30)附录C: 光盘 (31)第一章绪论1.1 前言人类进入21世纪,随着计算机和网络技术的日渐发达,信息安全的隐患日益突出,自911之后,各国越来越重视社会公共安全,信息识别和检测显得前所未有的重要。
现今社会中主要采用号码、磁卡和口令等识别方法,随着技术的发展,这些传统的身份识别方法已受到越来越多的挑战,存在的易丢失、易伪造、易遗忘等诸多问题,可靠性也大为降低,生物体征作为每个人独一无二的特征,进入人们眼界,成为新的信息识别和检测技术的载体,从而指纹、虹膜以及人脸等作为主要依据,得以发展。
相对于其它的人体生物特征,人脸存在易采集、非接触、静态等优点,比较容易被接受。
在科技发展的时代,得到很大程度的发展,应用也越来越广泛。
尤其在国家安全、军事安全和公共安全领域发挥重要作用,典型代表就是智能门禁、海关身份验证、智能视频监控等应用。
近年来,随着计算机性能提高和算法的不断成熟,人脸识别技术得到很大发展,在证件验证、出入口安全监控、信息安全、视频监控等许多应用都和人脸识别技术密切相关。
1.2课题应用背景与研究意义本课题根据学校要求,选用实际公司项目研究,在对人脸识别技术研究分析的基础上,选定该题目。
人类进入21世纪,随着计算机和网络技术的日渐发达,信息安全的隐患日益突出,自911之后,各国越来越重视社会公共安全,信息识别和检测显得前所未有的重要。
现今社会中主要采用号码、磁卡和口令等识别方法,随着技术的发展,这些传统的身份识别方法已受到越来越多的挑战,存在的易丢失、易伪造、易遗忘等诸多问题,可靠性也大为降低,生物体征作为每个人独一无二的特征,进入人们眼界,成为新的信息识别和检测技术的载体,从而指纹、虹膜以及人脸等作为主要依据,得以发展。
相对于其它的人体生物特征,人脸存在易采集、非接触、静态等优点,比较容易被接受。
在科技发展的时代,得到很大程度的发展,应用也越来越广泛。
本课题主要关注就是人脸识别,主要内容包括:图像获取及人脸检测提取,人脸特征提取,人脸识别。
实现方面,可以使用C++实现相关算法,也可以利用现有的函数库。
本课题主要是基于OpenCV开发的人脸识别门禁软件。
1.3 人脸识别类软件的发展现状人脸识别系统的研究开始于20世纪60年代。
其优势在于其自然性和不被被测试个体察觉的特点。
人脸识别就是通过观察比较人脸来区分和确定人的身份的。
不被察觉的特点会使识别方法不令人反感,而且不容易引起人注意故而不易被欺骗。
相对指纹识别而言,人脸识别的非接触特点,使得其更加友好,自然,被人们接受。
随着科技的发展和安全需求的增加,人脸识别技术应用已经受到重视。
在公安刑侦领域,人脸识别技术应用十分广泛,目前还逐渐向民用市场推广,离人们的生活越来越近。
发展前景不可限量,随着数字化、信息化社会的到来,人们对人脸识别技术的了解和认识越来越多,人脸识别技术也越将越来越来成熟和完善。
1.4 系统可行性研究可行性研究是为了对问题进行研究,以最小代价在最短时间确定问题是否可解。
经过对项目详细研究,初拟系统实现报告,对可能将要遇到的问题及解决方案进行设计和安排,明确开发风险和效益。
1.4.1 为什么选用OpenCV近年来,大数据量,时势性图像处理广泛应用于各个领域。
各种各样的图像处理软件包围图像分析和处理提供便利的同时也存在许多问题。
英特尔公司提供的OpenCV类库在VC++环境下进行图像处理和计算机视觉编程的方法、和免费试用的优势,缩短相关程序开发周期,具有强大的实用价值,是指在相关软件包中占据领先,成为一种流行的图像处理软件。
选用OpenCV主要因为里面封装的类库可以直接使用,非常方便。
它不依赖与其它的外部库,拥有400多个免费的图像处理函数,涉及领域涵盖了机器视觉的大多应用。
1.4.2 开发环境的配置对于OpenCV的配置,可以使用CMake编译生成针对编辑器的工程,产生符合编译器的库。
也可以直接使用源码中本身带有的编译好的库。
在这里我们使用自带的库文件。
1)安装OpenCV :将获取的安装文件安装到D:\opencv2.4.4\opencv,并将对应使用的bin目录D:\opencv2.4.4\opencv\build\x86\vc11\bin添加到环境变量PATH中;2)配置VS2012“项目”--〉“属性”--〉“VC++目录”中配置包含目录:添加D:\opencv2.4.4\opencv\build\include库目录:添加D:\opencv2.4.4\opencv\build\x86\vc11\lib对于依赖项配置有两种方法,一种在项目属性页中“链接器”--〉“输入”中附加依赖项中添加需要用到的.lib文件。