超临界二氧化碳循环分析1

合集下载

二氧化碳的超临界干燥技术

二氧化碳的超临界干燥技术

二氧化碳的超临界干燥技术超临界干燥技术是一种以超临界流体作为干燥介质的新型干燥技术,能够高效快速地将水份从物料中脱除。

而二氧化碳作为一种常用的超临界流体,其物理化学性质独特,使得其在干燥领域有广泛的应用前景。

本文将主要探讨二氧化碳的超临界干燥技术。

1. 二氧化碳的特性二氧化碳是一种常见的无色、无味、无毒气体,具有高置换能力、可再生性、环保性等优良特性。

同时,二氧化碳具有较高的致密性,在温度和压力不断增大的条件下会出现超临界状态,此时二氧化碳的物理化学性质发生巨大变化,成为一种具有非常特殊性质的超临界流体。

2. 二氧化碳的超临界干燥技术是指以超临界二氧化碳为干燥介质,将物料进行超临界干燥处理的技术。

该技术具有以下几个优势:(1) 高效性。

二氧化碳具有较大的溶解性和浸润性,干燥速度较快,能够在短时间内将物料中的水份除去。

(2) 无毒性。

二氧化碳是一种环保性很高的干燥介质,对被处理物料不会产生有毒有害的副作用,同时对环境也不会造成污染。

(3) 可重复。

超临界二氧化碳干燥方法具有循环利用的特点,无需消耗大量的水资源等,能够实现绿色环保的干燥。

3. 二氧化碳的超临界干燥应用领域由于二氧化碳超临界干燥具有获得高质量、高效率、经济环保等优良特性,因此被广泛应用在生物制药、化工、食品加工等领域。

例如,二氧化碳超临界干燥可以用于蛋白质、抗生素等生物药品的干燥、微粒化、纯化等过程中;同时在食品加工领域,二氧化碳超临界干燥可以用于海藻类、水果、蔬菜等高水分含量的物料的干燥等方面。

4. 二氧化碳的超临界干燥技术发展趋势随着经济的不断发展和生产技术水平的不断提高,二氧化碳的超临界干燥技术在未来将会得到广泛的应用。

一方面,将会有越来越多的领域需要二氧化碳超临界干燥技术的应用,例如,农产品的干燥、生物医学制品的生产、新材料的制备等。

另一方面,随着新型超临界干燥设备的研发和技术的不断升级,二氧化碳超临界干燥技术的效率和品质将会更上一层楼,从而更好地服务于生产和生活。

跨临界二氧化碳与超临界二氧化碳_概述及解释说明

跨临界二氧化碳与超临界二氧化碳_概述及解释说明

跨临界二氧化碳与超临界二氧化碳概述及解释说明1. 引言1.1 概述本文将对跨临界二氧化碳与超临界二氧化碳进行综述和解释说明。

随着工业技术的不断发展和环境保护意识的增强,人们对专用气体的研究和应用越来越重视。

而跨临界二氧化碳与超临界二氧化碳作为一种特殊气体,在各个领域都具备广泛的应用潜力,并日益受到关注。

1.2 文章结构文章主要分为五个部分。

首先是引言部分,其中介绍了本文研究的背景和目标,给出了整体文章结构。

接下来我们将从概述、应用领域、优势与挑战以及结论这几方面对跨临界二氧化碳与超临界二氧化碳进行全面阐述。

1.3 目的本文旨在提供读者对于跨临界二氧化碳与超临界二氧化碳的基本认知,并深入探讨其在工业、环境保护和医疗等领域中的应用情况。

同时,我们将重点关注这两种气体相较传统气体的优势和挑战,以期为未来研究和发展提供参考。

以上为“1. 引言”部分内容,主要对本篇文章的概述、结构和目的进行了说明。

2. 跨临界二氧化碳与超临界二氧化碳概述2.1 跨临界二氧化碳定义和特性跨临界二氧化碳(Supercritical Carbon Dioxide,简称SC-CO2)是指在超过其临界温度(31.1摄氏度)和临界压力(73.8巴)的条件下,处于液态和气态之间的状态。

它具有介于传统液体溶剂和气体之间的特性。

跨临界二氧化碳在高压条件下具有较低的粘度和高扩散性,可以作为一种有效的萃取剂,在许多领域应用广泛。

2.2 超临界二氧化碳定义和特性超临界二氧化碳(Supercritical Carbon Dioxide,简称S-CO2)是指在比其临界点更高的温度和压力条件下存在的CO2状态。

超临界二氧化碳通常指代非常高压力和温度下的CO2,使其达到能够溶解物质,并表现出与液态相似的扩散性能。

与传统流体相比,S-CO2具有密度大、粘度小、热导率好、不易燃烧以及对环境无害等特点。

这些特性使得超临界二氧化碳成为一种重要的介质,被广泛应用于多个领域。

CO2跨临界制冷循环原理及新技术

CO2跨临界制冷循环原理及新技术

二氧化碳跨临界循环制冷CO 2作为制冷剂的应用历史•CO 2作为最早的制冷剂之一,在19世纪末到20世纪30年代得到了普遍的应用,到1930年,80%的船舶采用CO 2制冷。

•但由于当时采用的CO 2亚临界循环制冷效率低,特别是当环境温度稍高时,CO 2的制冷能力急剧下降,且功耗增大。

•同时,以R12为代表的CFC 或氟氯烃制冷剂的出现,以其无毒、不可燃、不爆炸、无刺激性、适中的压力和较高的制冷效率等特点,很快取代了CO 2在安全制冷剂方面的位置。

•近年来,制冷剂对臭氧层的破坏和全球温室效应等环保问题日益突出,而CO 2跨临界制冷循环的提出,CO 2作为制冷剂开始重新得到重视•该循环系统的最大特点就是工质的吸、放热过程分别在亚临界区和超临界区进行。

压缩机的吸气压力低于临界压力,蒸发温度也低于临界温度,循环的吸热过程仍在亚临界条件下进行,换热过程主要是依靠潜热来完成。

但是压缩机的排气压力高于临界压力,工质的冷凝过程与在亚临界状态下完全不同,换热过程依靠显热来完成。

CO作为制冷工质的优缺点2优点•良好的安全性和化学稳定性•具有与制冷循环和设备相适应的热物理性质•CO2优良的流动和传热特性•CO2制冷循环的压缩比较常规工质制冷循环低缺点•运行压力高•循环效率低带回热器和不带回热器的CO 2跨临界单级循环进行理论分析和实验性能测试2•典型的CO 2跨临界单级循环主要由压缩机、气体冷却器、节流阀和蒸发器组成.图1和图2分别给出了CO 2跨临界单级循环原理图和细图.图l 中:低压气态制冷剂经压缩机被压缩成高压气态制冷剂(过程l 一2),经气体冷却器进行定压放热(过程2—3),然后经节流阀进行节流降压(过程3—4),低压液态制冷剂在蒸发器内进行定压吸热(过程4一1),最后回到压缩机,从而完成一个循环.2•制冷循环增设回热器,可以减小节流损失、增大制冷量,从而提高系统性能.图3和图4分别给出了带回热器的CO 2跨临界单级循环原理图和细图.两个循环性能对比分析•图5给出了两个循环COP随蒸发温度的变化.随着蒸发温度的增加,两个循环COP均呈增加趋势,蒸发温度越高,系统性能越优;•在整个蒸发温度变化范围内,带回热器循环平均性能要比不带回热器循环提高4.55%左右;•对于理想压缩机循环,系统性能要比实际循环性能高33.3%以上,但这种理想循环是不存在的.•图6给出了两个循环COP 随气体冷却器出口温度的变化.•随着气体冷却器出门温度的增加,两个循环COP均呈下降趋势,温度越高,系统性能越差;•在气体冷却器出口温度变化范围内,带回热器循环平均性能要比不带回热器循环提高5.23%左右.•两个循环COP 随压缩机排气温度的变化,见图7.•在排气温度变化范围内,相同对比条件下,带回热器CO 2跨临界单级循环系统COP 要高于不带回热器循环,且带回热器单级循环排气温度要稍高些.•无论带回热器还是不带回热器循环,随着压缩机效率提高,系统COP 均变大,压缩机排气温度均有所降低,不带回热器循环降低幅度较大.•由图7还可以看出,两个单级循环都存在一个最优排气温度,使得在此温度下系统COP 最大,带回热器循环对应最优排气温度要高于不带回热器循环最优排气温度.结论•(1)在蒸发温度变化范围内,带回热器循环平均性能要比不带回热器循环提高约4.55%;在气体冷却器出口温度变化范围内,带回热器循环平均性能要比不带回热器循环提高约5.23%;相同对比条件下,带回热器CO跨临界单级循环系统COP高于不2带回热器循环的,且带回热器单级循环最优排气温度稍高些.•(2)两种单级循环的制热量、制冷量、制热COP和制冷COP,均随压缩机排气压力增加存在极值;随冷却水流量、冷冻水流量以及冷冻水进口温度增加而增加,随冷却水进口温度增加而下降.•(3)相同测试工况下,带回热器循环系统具有较高的性能.其中,制热量和制冷量分别比不带回热器的单级循环平均高约3.33%和5.35%,制热COP和制冷COP分别提高约11.36%和14.29%.CO2跨临界循环的应用前景与研究进展•1、汽车空调•2、热泵•3、食品冷藏•4、循环系统关键设备的研究进展•1、汽车空调•过去汽车空调中一般使用CFC12作为制冷工质,这使得汽车空调制冷剂的排放量在所有氟利昂的排放中占有相当大的比例。

超临界二氧化碳再压缩布雷顿循环变工况特性分析

超临界二氧化碳再压缩布雷顿循环变工况特性分析
! 第!"卷 第#期 !")*+年#月
原子能科学技术 ,-%./012345670/3203829:30;2%&%56
$%&'!"(%'# 73<'")*+
超临界二氧化碳再压缩布雷顿循环 变工况特性分析
杨映麟张尧立" 赵英汝郭奇勋
厦门大学 能源学院福建 厦门!>K**)"
摘要超临界二氧化碳再压缩布雷顿循环是高效紧 凑 的 能 量 转 换 方 式 目 前 许 多 研 究 在 分 析 循 环 的 特 性时常假设压缩机和透平的效率为恒定该假设与实 际 情 况 差 别 很 大 本 文 使 用 QJa1EBH, 作 为 工 具建立了超临界二氧化碳再压缩布雷顿循环模型对于压缩机和透平加入了真实压 缩 机 和 透 平 的 特 性曲线模型通过模拟计算发现循环输入功率和循环流量的改变 将 对 循 环 火用 效 率 和 各 组 件 的 火用 损 产 生 影 响 循 环 偏 离 设 计 工 况 时 适 当 控 制 输 入 功 率 和 循 环 流 量 可 调 节 循 环 输 出 功 率 和 火用 效 率 关 键 词 超 临 界 二 氧 化 碳 再 压 缩 特 性 曲 线 火用 效 率 偏 离 设 计 工 况 中图分类号:E>=>!!! 文献标志码,!!!文章编号*)))CK#>*")*+)#C*K"!C*) !"#*)'D!>+6LF'")*+'6%GN/82')))!
收 稿 日 期 ")*+C)*C)=修 回 日 期 ")*+C)>C*> 基 金 项 目 福 建 省 自 然 科 学 基 金 资 助 项 目 ")*Kf)!)")")*Kf)!*>D 作 者 简 介 杨 映 麟 *##) 男 苗 族 湖 南 邵 阳 人 硕 士 研 究 生 从 事 超 临 界 二 氧 化 碳 研 究 " 通 信 作 者 张 尧 立 1C.8/&L;8256&#N.G'39G'02 网 络 出 版 时 间 ")*+C)KC)D网 络 出 版 地 址 ;--<#F2M'02F/'23-F0.M93-8/&**'")==':E'")*+)K)D')#*#'))K';-.&

二氧化碳超临界

二氧化碳超临界

二氧化碳超临界
超临界二氧化碳是二氧化碳的超临界状态,也就是二氧化碳随着温度和压力的变化,超出了二氧化碳气液的临界温度,临界压力,临界容积状态的二氧化碳。

二氧人碳的密度和黏度,会随着压力的增加而变大,随着温度的升高而减小,压缩因子会随着温度,压力而变化,地质封存和促进油气开采条件下二氧化碳的密度大体在200-800kg/立方米之间,小于地下水的密度,所以把二氧化碳注入到地下含水层以后,二氧化碳在浮力的作用下会向上迁移而聚集于构造高点。

当温度高于31.1摄氏度,压力高于7.38Mpa时,二氧化碳便进入到了超临界状态,在二氧化碳地质储存中,大多数储层的温度和压力均达到了临界点以上,二氧化碳常常是以超临界状态储存于地质体中。

超临界二氧化碳是一种高密度注体,在物理特性上兼有了气体和液体的双重特性,密度是气体的几百倍,近于液体,这也让超临界二氧化碳有很强的溶剂化能力,具有常规液态溶剂的强度,在临界温度以下,气体被不断的压缩会有液相出现,然而,超临界流体被压缩只是增加其密度,不会形成液相,超临界流体的密度和温度与压力密切相关,超临界二氧化碳的密度随着压力升高而增大,随着温度升高而减小,在临界点附近,密度对于压力和温度十分的敏感,很小的温压变化就会导致密度的急剧变化。

超临界二氧化碳布雷顿循环的研究进展及应用前景

超临界二氧化碳布雷顿循环的研究进展及应用前景

超临界二氧化碳布雷顿循环的研究进展及应用前景摘要:超临界二氧化碳(S-CO2)应用布雷顿循环能够使系统结构紧凑、效率高具有良好的工程应用前景。

本文首先介绍了超临界二氧化碳工质的特点及布雷顿循环的优势,总结了近年来国内外针对超临界二氧化碳布雷顿循环系统及其关键部件的研究进展和相应成果,最后对超临界二氧化碳布雷顿循环在能源领域的潜在应用前景进行了说明。

关键词:超临界二氧化碳;布雷顿循环;关键部件引言当二氧化碳达到临界条件时(温度31.1℃,压力7.38MPa),处于超临界状态。

将超临界二氧化碳用于布雷顿循环,具有以下优势:S-CO2工质黏性小,S-CO2布雷顿循环比其他常用的循环在较高的运行温度下具有相对更高的效率优势;S-CO2工质密度大,S-CO2布雷顿循环的系统结构紧凑,循环设备占用空间小;CO2极易获取,设备体积相对较小,且运行时损耗小,保证了设备的使用寿命,使得S-CO2布雷顿循环的成本相对较小。

1 S-CO2布雷顿循环研究进展1.1国外研究美国、日本、韩国、捷克等国家均开展了超临界二氧化碳布雷顿循环的系统设计及实验研究。

美国具有多家研究机构较长时间的研究基础,其在超临界二氧化碳布雷顿循环的研究上处于世界领先地位。

美国桑迪亚国家实验室是最早开展S-CO2布雷顿循环的机构之一,其搭建了发电功率为124KW的简单布雷顿循环系统。

美国桑迪亚国家实验室正致力于研发兆瓦级超临界二氧化碳布雷顿循环,进一步增大循环效率并增强实用性。

美国西南研究院(SWRI)进行了1MW 级的超临界二氧化碳布雷顿循环设计研究,采用天然气燃烧作为热源,完成了实验系统的制造运行。

近年来,美国能源部资助科研项目的投入不断加大、加快,并在2016 年投入巨资建设10 MW试验装置,表明美国整体技术成熟度水平已达到较高级别,距离商业化为期不远。

韩国能源研究所(KIER)自2103年起,先后搭建了两种不同的S-CO2布雷顿循环实验平台,并进行了相关研究。

二氧化碳跨临界制冷循环

二氧化碳跨临界制冷循环

二氧化碳跨临界制冷循环摘要:CO2是一种环保型的自然工质,它对臭氧层不产生任何破坏作用且具有较小的温室效应。

本文概述跨临界C02制冷循环的原理,提出几个影响该循环的技术关键。

介绍跨临界CO2循环的相关应用领域,指出CO2作为性能良好的自然工质有着很好的发展前景。

关键词:二氧化碳;制冷;跨临界循环引言由于制冷剂中氯原子对大气臭氧层有破坏作用,《蒙特利尔协议》规定R12 等CFCS(氯氟碳)在制冷工质中被禁用,危害程度较小的R22 等HCFCS(氢氯氟碳)的禁用日期也一再提前。

目前已获应用的R134a,R410A,R407C 等HFCS (氢氟碳)仍是一类新的化学合成物,它们不仅制造成本昂贵,而且已被证明能产生较为严重的温室效应。

另外,随着研究的深入,有可能证明HFCS 在其它方面也有危害。

因此,在制冷系统中对地球生物圈中原来就有的“自然工质”进行研究,已成为近年来的前沿课题之一。

二氧化碳(R744)目前被称作是一种被遗忘的制冷剂,它在19世纪被广泛地使用,从20世纪30年代后被冷落。

现在,大家认为:已经到了使用现代的高新技术重新利用二氧化碳的时候了。

1.CO2制冷二氧化碳基本上不会引起环境问题,它无毒不燃,具有氨和烃类制冷剂所不可及的一些优点。

另外它价廉,与一般的制冷设备和润滑系统都相容。

它可以高度压缩,因此可以利用先进设备及设计大大减小压缩机的体积和管道直径。

它在高压下良好的传热效果是该制冷剂的另一个优点。

总而言之,在满足制冷要求的情况下,使用二氧化碳制冷剂可以大大降低设备的投资。

2.工作原理跨临界蒸汽压缩式制冷循环是利用气体液化后可吸收蒸发(汽化)潜热的特性以达到制冷的目的。

跨临界系统由压缩机C ,气体冷却器G ,内部热交换器I,节流阀V ,蒸发器E 与储存器A组成封闭回路,以CO2为工作介质,气体工质在压缩机C 中升压至超临界压力P2,在T 一S 图上为过程1一2 ,然后进入气体冷却器G 中,被冷却介质(空气或冷却水)所冷却。

超临界二氧化碳

超临界二氧化碳

一、国外研究现状1、美国桑迪亚国家实验室率先开展了超临界二氧化碳闭式循环的研究,通过实验对超临界二氧化碳闭式循环存在的包括压缩、轴承、密封、摩擦等问题进行了大量研究,循环实验装置获得了接近50%的发电效率。

2011年3月4日桑迪亚实验室在其网站上正式宣布已经掌握了超临界二氧化碳闭式循环的关键技术。

该试验台在早期超临界二氧化碳压缩特性实验装置的基础上添加涡轮、浸入式电加热器和回热器等装置而成,其中电加热器的功率为260kW,压气机压比为1.8。

来自中国科学院国家科学图书馆《科学研究动态监测快报》“先进能源科技专辑”2、麻省理工(MIT)提出了3 种热力循环参数方案:①基本设计方案:最高压力20 MPa、堆芯出口温度550℃、净效率达43%;②先进设计方案:最高压力20 MPa、堆芯出口温度650℃、净效率达47%;③高性能设计方案:最高压力20 MPa、堆芯出口温度700℃、净效率可达49%。

S-CO2冷却快堆(GFR)的总体方案。

反应堆热功率为2400 MW,电功率约1200 MW,采用2 环路或4环路设置,设计寿命60 a;系统热效率51%,净效率47%;堆芯进、出口温度分别为485.5、650℃,运行压力20 MPa。

3、东京工业大学(TIT)——气冷堆:反应堆热功率为600MW,堆芯出口温度为650℃,反应堆出口运行压力约为7 MPa,系统效率为45.8%。

以S-CO2作为二回路能量转换工质的核反应堆一般采用液态金属或气体冷却,以达到较高的堆芯出口温度。

美国对这方面的研究主要是利用S-CO2动力系统高效率、设备简化紧凑等特点开发多功能模块化中小型核反应堆。

二、国内研究现状1、国内清华大学核能与新能源技术研究院基于MIT提出的再压缩循环模式对S-CO2热力循环进行了初步分析,并对爱达荷国家实验室(INL)提出的柱状堆芯结构开展了初步的物理计算分析。

段承杰,杨小勇,王捷. 超临界二氧化碳布雷顿循环的参数优化[J],原子能科学技术,2011,45 (12): 1489-1494.颜见秋,李富,周旭华,等,气冷快堆燃料组件均匀化初步研究[J],原子能科学与技术,2009,43 (7): 626-629.2、理论计算:段承杰,王捷,杨小勇,反应堆超临界CO2 Brayton循环特性[J],原子能科学与技术,2010,44 (11): 1341-1348.三、S-CO2工程约束条件1、避免S-CO2高温下腐蚀金属构件和燃料元件,需限制最高温度,<670o C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超临界二氧化碳动力循环与氦动力循环的比较目前,世界上正在建设和研究的高温气冷堆都是使用He作为工质,这是因为He具有很好的稳定性、化学相容性及热传导性。

但是,He作为工质存在一些不足,例如动力循环需要较高的温度、难于压缩等,给反应堆和换热部件的结构材料、叶轮机械的设计带来很多困难。

出于降低反应堆结构材料要求、减少技术难度、提高反应堆的安全性与经济性等各方面的考虑,有学者进行了选取CO2作为循环工质的研究。

CO2虽然在稳定性、热传导性方面比He稍差,但CO2具有合适的临界参数,不需要很高的循环温度就可以达到满意的效率,且具有压缩性好、储量丰富等优点。

采用CO2作为循环工质可以降低循环温度和压缩功,从而提高反应堆的安全性,同时降低反应堆造价。

超临界CO2的闭式布雷顿循环被推荐在铅冷快堆及钠冷快堆中使用。

1. 二氧化碳布雷顿循环分析(1)二氧化碳布雷顿循环CO2与He在动力循环中最大的不同点就是气体性质随压力、温度的变化差别很大(表1-1)。

高压(7.5 MPa)环境中,CO2的导热系数λ、定压比热容c p 和压缩因子z均与低压(0.1 MPa)下的参数有很大差异;在循环工况下,He循环可以视为理想气体循环,除密度外,其余参数变化不大。

动力循环的工况,CO2的工作参数在其临界点(7.377 MPa,31℃)附近;因此,CO2动力循环除与He循环有相同的决定因素外,还取决于动力循环的不同实际工况,即超临界压力、跨临界压力及亚临界压力3种循环工况(图1-1)。

超临界循环:循环压力及温度均在临界参数以上;跨临界循环:循环高压侧压力高于临界压力,低压侧压力低于临界压力;亚临界压力循环:循环压力均低于临界压力,工作于气相区。

表1-1 CO2和He热物性比较(35℃)工质P/MPa ρ/kg·m-3 λ/W·(m·K)-1 C P/kJ·(kg·K)-1zCO2 7.5 277.6 0.03532 5.9306 0.4630.1 1.95 0.01497 0.828 0.879He 7.5 11.32 0.1604 5.198 1.0330.1 0.156 0.1571 5.198 0.999 (2)CO2简单循环与He循环的对比分析以英国改进型气冷堆(AGR)为例。

英国改进型气冷堆(AGR)实际运行时CO2温度高于670℃。

考虑到CO2高温下与不锈钢材料化学不相容,因此循环最高温度保守取为650℃,若要采用更高的循环温度,需要采用其他金属材料。

CO2和He 动力循环在给定条件下计算的最优参数见表1- 2,温熵图见图1-1。

其中He 循环的温熵图略有不同,采用2 个压缩机分级压缩。

图1-1 CO2循环及He循环温熵图表1-2 CO2简单循环与He循环比较从表1-2 可看出,CO2循环计算所需初参数比He 循环多出压力项。

如前文所述,He 在循环工况下取决于温度,只需给定循环的温度范围便可计算出不同压力比(ε)下循环效率(η),而CO2的c p还取决于压力。

给定超临界和跨临界压力CO2循环的最高压力(P max)是由于现有技术条件的限制,保守取为20 MPa。

表2 中的所列的最高η是P max达到限定值的效率,并未达到实际计算的最大η。

He 循环的P max为现有模块化高温气冷堆He 循环最高压力(7MPa)。

图1-2 分别给出了表2 中所列初参数下η与ε关系。

在所计算ε下,亚临界压力CO2循环与He循环相似,η随ε先增大到一个极大值点再缓慢下降。

而超临界和跨临界循环,同样受到P max的限制,在计算ε下并未达到极大值。

3 种CO2循环在相应限制条件下达到的最高η与温度条件几乎相同情形下的He 循环相近。

但是,这 3 种循环均低于He 在t max=800℃下的η,且相同温度条件下,CO2循环达到最高η的ε要大于He 循环达到最高η的ε。

图1-2 CO2简单循环与He循环效率在气体汽轮机循环中,氦气透平带动压缩机,因此压缩机耗功也是关注的问题。

定义压缩功与膨胀功之比w c /w t为氦气透平做功返回率。

从图1-3中可看出,CO2循环的w c /w t小;这是因为CO2的z <1,易于压缩,而He的z ≈1,较难压缩的缘故。

He 循环t max提高至800℃后,各压力比下的w c /w t均有所降低,但仍然高于t max=650℃下的CO2各循环。

在CO2的3种循环中,超临界及跨临界压力循环的w c /w t显著变小;这是因为压缩过程在临界点附近进行,而在临界点附近,c p显著减小,导致z 减小,更易于压缩;尤其是跨临界压力循环的w c /w t,比相同温度下He 循环几乎小了一个量级。

图1-3 CO2简单循环与He循环氦气透平做功返回率从表1-2 还可看出,CO2循环单位质量的工质换热量均比He 循环要少,这意味着相同换热功率下CO2循环的质量流量m 较大(图1-4)。

这是由于CO2的c p较He 小,相同功率,工质温升差别不大的情况下,CO2循环需要更大的m。

图1-4 热功率310MW时,质量流量与压力比关系但是,这并不意味CO2循环没有优势。

流体体积决定了做功和换热部件的尺寸大小,单位体积的做功量或换热量越大,相同功率下的做功换热部件体积越小,成本越低。

CO2气体密度较大,因此各部件气体体积流量(V)较小(图1-5)。

图1-5 热功率310MW时,氦气透平出口体积流量与压力比关系以堆芯换热功率310 MW为例,对表1-1中的2种循环进行计算,结果见表1-3。

表1-3 CO2简单循环与He循环比较从表1-3可以看出,相同热功率,在几乎相同的温度条件下,CO2循环所消耗的压缩功远小于He 循环所需的压缩功。

3种CO2循环所需要的V均小于同等温度条件下和较优工况下He循环的工质体积流量;这表明3种CO2循环中单位体积流量的CO2气体做功能力均优于2种条件下He循环单位体积He的换热做功能力。

特别是对于CO2的超临界循环和跨临界循环,其工质的V几乎与He 循环相差一个量级,大大减小了做功部件的体积。

从表1-3还可以看出,CO2流经叶轮机械前后的V变化远比He流经叶轮机械的V变化大;因此,CO2循环的叶轮机械进出口叶高变化比He循环的大。

这些都是由于循环工况下CO2的密度比He大很多,因此虽然m大,但是V却远远小于He循环。

2. 超临界CO2循环改进—超临界CO2再压缩布雷顿循环二氧化碳超临界循环需采用多个回热器(若只采用1个回热器,由于回热器低压侧流体比热较小,换热时高压侧流体温升不够,会导致换热器出现夹点),使热量得以更好利用。

二氧化碳再压缩循环示意图如图2-1所示,循环温熵图如图2-2所示。

图2-1 二氧化碳再压缩示意图图2-2 二氧化碳再压缩循环温熵图透平出口的二氧化碳流体先进入高温回热器进行放热(5至5'),后进入低温回热器(5'至6),而后,一部分流体直接通往高温压缩机被压缩(6至2'),另一部分流体先冷却后(6至1)再进入压缩机压缩(1至2)。

然后,通过低温回热器回热(2至2')到与直接被高温压缩机压缩的流体相同的温度,混合后一起再流经高温回热器(2'至3)、换热器(3至4),最后流入透平做功(4至5)。

(1)循环数学模型定义Brayton 循环压比ε=P max / P min 、温比τ=t max / t min 。

其中,P 为压力,t 为温度。

假设经过预冷器的分流量为x (0≤x≤1),低温回热器的回热度αlrec 可表示为: m a xm i n 65m a x m i n 22l r e c)()()(''t mc h h t mc h h x p p ∆-=∆-=α (2-1) 其中:max t ∆为高压侧或低压侧出入口温差最大值;h 为比焓,J/kg ;m 为质量流量,kg/s ;c p 为比定压热容,kJ/(kg·K)。

高温回热器的回热度αhrec 表示为: ),(),(''''''2555525523t p h h h h t p h h h h h r e c--=--=α (2-2)αhrec 与αlrec 的计算方法差异是由分流引起的。

其中,回热器高压侧的出口温度须分别满足条件t 2 +△t ≤ t 6 ≤ t 5' 以及t 2' +△t ' ≤ t 5' ≤ t 5,△t 与△t ' 分别为避免回热器内传热恶化而设置的工程上所允许的最小温差,通常取为8℃。

整个循环的效率η可表示为: 3416)(x 1h h h h ---=η (2-3)式(2-3)是从能量损失角度来计算循环效率,可看出,采用分流设计,Brayton 循环释放到环境中未被利用的热量减少,热源吸收的热量也减少,因此,循环效率大幅提高。

分流措施可在CO 2超临界Brayton 循环中使用是因CO 2物性受工作环境下的压力、温度影响较大。

在无分流回热时有:—C p,h △t h = —C p,l △t 1,下标h 表示回热器高压侧,l 表示低压侧。

其中, —C p,h >—C p,l ,因 此,流 量 相 等 的 情 况 下 导 致△t h <△t 1,即进入堆芯的气体温度较低,在相同的ε、τ下,高压侧流经堆芯或换热器的流体需吸收较多的热量,降低了循环效率。

而分流循环则是牺牲一部分功用于压缩流体,从而使流体回热后温度得到升高。

相同条件下的循环在堆芯或换热器吸收的热量减少,同时预冷损失的热量降低,增加了循环效率。

(2)超临界CO2动力循环优化分析由数学模型可知,超临界CO 2 Brayton 再压缩循环的循环效率可表示为: η = η(ϕ,ε,τ,η,ξ,κi ) (2-4) 其中:ϕ为初始点的工况;η为压气机和透平的等熵效率;ξ为各部件压力损失;κi 为以下4个变量任选其二,即经过预冷器的流量份额x 、低温回热器低压侧出口温度与高压侧入口(即回热器冷端)温度之差△t 、低温回热器回热度αlrec 及高温回热器回热度αhrec 。

只要确定了以上参数,并保证回热器不出现传热恶化现象,即可唯一确定超临界CO 2 Brayton 循环的效率。

作为实际气体的循环,影响循环效率的参数较复杂,有的参数并非完全独立,选取有一定范围的限制。

为简化讨论,选定二氧化碳超临界Brayton 循环的最高 参数分别为压力20MPa 、温度650℃,并作为计算初始点。

英国AGR 反应堆的运行,证实了CO 2在670℃以下的安全性。

循环其余各节点的压力、温度均在临界点参数之上。

相关文档
最新文档