重组胶原蛋白与牛源_型胶原蛋白红外光谱研究

重组胶原蛋白与牛源_型胶原蛋白红外光谱研究
重组胶原蛋白与牛源_型胶原蛋白红外光谱研究

产生红外吸收光谱必备的条件

1 产生红外吸收光谱必备的条件? 答:1 辐射后具有能满足物质产生振动跃迁所需的能量2分子振动有瞬间偶极距变化。 2 过度过冷现象对溶液的影响?避免过度过冷现象的方法? 溶液中析出固相的纯溶剂之后,剩余的溶液浓度增加,而在计算机中使用的却是原始浓度,从而引入误差,所以要避免过度的过冷现象。避免过度过冷现象的方法:①加入少量的晶种作为晶核。②增加搅拌速度。 4简答:红外区可分为哪几个区?答:①近红外区,②中红外区或基频红外区, ③远红外区。 5 简述红外光谱,紫外光谱,核磁共振谱以及质谱各自的原理. 答:1.当分子振动引起分子偶极矩变化时,就能形成稳定的交变电场,其频率与分子振动频率相同,可以和相同频率的红外辐射发生相互作用,使分子吸收红外辐射的能量跃迁到高能态,从而产生红外吸收光谱. 2.紫外光谱是分子中电子吸收的变化而产生的,当样品分子或原子吸收电子后外层电子由基态跃迁到激发态.不同结构的样品分子其跃迁方式不同,而且吸收光的波长范围不同,吸光的频率也不同,可根据波长范围吸光度鉴别不同物质结构方面的差异. 3.当原子核吸收的辐射能量与核能级相等时,就发生能级跃迁,从而产生核磁共振信号. 4.质谱分析法是通过对样品离子的质量和强度的测定来进行成分和结构分析的一种方法. 6简述几种主要因素影响差热分析仪所测结果答案:1.样品量:样品量少,样品分辨率高,但灵敏度下降,一般根据样品热效应大小调节样品量,一般为3~5mg。 2.升温速度,一般升温速度范围在每分钟5~20度。 3.气氛:一般使用惰性气体,

如N2、Ar、He等,气流速度恒定,控制在10ml/min,否则会引起基线波动。7.简述判断分子离子峰的方法. 第一,看质谱中质量最大的峰,多数情况下质谱中高质量端的峰就是分子离子峰;第二,最高质量的峰与临近碎片离子峰之间的质量差是否合理;第三,根据氮规则判断第四,如果分子离子峰太弱,或经过判断后认为分子离子峰没有出现,可通过改进实验技术测定相对分子质量。 8简要说明质谱分析的原理、特点?答案:质谱分析方法是通过样品离子的质量个强度的测定来进行成分和结构分析的一种方法。特点:1应用范围广:可以进行同位素分析,又可做有机结构分析,可以是气、固、液样品2灵敏度高,样品用量少,灵敏度高达50pg50*10-12,用微克量级的样品,即可得到分析结果。 3分析速度快,可实现多组分同时检测。4但仪器结构复杂,价格昂贵。 9拉曼光谱与红外光谱的不同之处有哪些? 答:拉曼光谱红外光谱 光谱范围40~400,光谱范围400~4000 水不能作为溶剂,水能作为溶剂 样品可盛放于玻璃容器,不能玻璃容器盛放样品 样品表面可直接测定;测定时须研磨成KBr压片 10氢谱谱峰发生分裂,产生自旋—自旋裂分现象的原因? 答:这是由于在分子内部相邻碳原子上氢核自旋会相互干扰,通过成键电子之间的传递,形成相邻质子之间的自旋—自旋耦合,而导致自旋—自旋裂分。 11熔体破裂现象---不稳定流动 答案:高聚物熔体在挤出时,如果剪切速率超过某个极限值时,从口模处理的挤

红外光谱与拉曼光谱的异同点

红外光谱与拉曼光谱的异同点 红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基本上是没有红外吸收光谱效应的。 拉曼光谱一般也是发生在红外区,它不是吸收光谱,而是在入射光子与分子振动、转动量子化能级共振后以另外一个频率出射光子。入射和出射光子的能量差等于参与相互作用的分子振动、转动跃迁能级。与红外吸收光谱不同,拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。 一、相同点在于: 对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级。 二、不同点在于: 两者产生的机理不同;红外光谱的入射光及检测光均为红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光;红外光谱测定的是光的吸收,而拉曼测定的是光的散射;红外光谱对于水溶液、单晶和聚合物的检测比较困难,但拉曼光谱几乎可以不必特别制样处理就可以进行分析,比较方便;红外光谱不可以用水做溶剂,但是拉曼可以,水似拉曼光谱的一种优良溶剂;拉曼光谱的是利用可见光获得的,所以拉曼光谱可用普通的玻璃毛细管做样品池,拉曼散射光能全部透过玻璃,而红外光谱的样品池需要特殊材料做成的。 本质区别:红外是吸收光谱,拉曼是散射光谱;拉曼光谱光谱与红外光谱两种技术包含的信息通常是互补的。 主要区别:

拉曼光谱、红外光谱、XPS的原理及应用..

拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD 检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术 (五) 拉曼频移,拉曼光谱与分子极化率的关系 1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,

红外拉曼光谱复习题

红外、拉曼光谱习题 三.问答题 1. 分子的每一个振动自由度是否都能产生一个红外吸收?为什么? 答:(1)产生条件:激发能与分子的振动能级差相匹配,同时有偶极矩的变化。并非所有的分子振动都会产生红外吸收光谱,具有红外吸收活性,只有发生偶极矩的变化时才会产生红外光谱。 (2)产生红外吸收的条件: 1)红外辐射的能量应与振动能级差相匹配。即 v E E ?=光; 2)分子在振动过程中偶极矩的变化必须不等于零。 故只有那些可以产生瞬间偶极距变化的振动才能产生红外吸收。 2. 如何用红外光谱区别下列各对化合物? a P-CH 3-Ph-COOH 和Ph-COOCH 3 b 苯酚和环己醇 答:a 、在红外谱图中P-CH 3-Ph-COOH 有如下特征峰:vOH 以3000cm-1为中心 有一宽而散的峰。而Ph-COOCH3没有。 b 、苯酚有苯环的特征峰:即苯环的骨架振动在1625~1450cm-1之间,有几个 吸收峰,而环己醇没有。 3. 下列振动中哪些不会产生红外吸收峰? (1)CO 的对称伸缩 (2)CH 3CN 中C —C 键的对称伸缩 (3)乙烯中的下列四种振动 (A ) (B ) (C ) (D )

答:(1)0 ≠ ?μ,有红外吸收峰 (2)0 ≠ ?μ,有红外吸收峰 (3)只有D无偶极矩变化,无红外吸收峰 4、下列化合物在红外光谱中哪一段有吸收?各由什么类型振动引起? HO— CH = O CH3—CO2CH2C≡CH (A)(B) 答:(A)HO C-H :v OH3700~3200cm-1 δOH1300~1165cm-1 v CH(O)2820~2720cm-1双峰 v C=O1740~1720cm-1 苯骨架振动:1650~1450 cm-1 苯对位取代:860~800 cm-1 v=CH3100~3000cm-1 (B)CH3—COCH2C≡CH : v C=O1750~1735cm-1 v C—O—C1300~1000cm-1 v C≡C2300~2100cm-1 v≡CH3300~3200cm-1 v as C—H2962±10cm-1、2926±5cm-1 v s C—H2872±10cm-1、2853±10cm-1 δas C—H1450±20cm-1、1465±20cm-1 δs C—H1380~1370cm-1 5、红外光谱(图10-28)表示分子式为C8H9O2N的一种化合物,其结构与下列结构式哪一个符合? O

第8章红外光谱分析

第八章红外光谱分析自测试题 一、判断题(对的打√, 错的打×) 1、Cl 2、H2O分子的振动可以引起红外吸收而产生吸收谱带。( ×) 2、在红外光谱中≡C-H 的吸收波数大于 -CH2-H。(√) 3、化合物的不饱和度为2时, 化合物中可能含有两个双键, 或一个双键和一个环, 或一个三键。(√) 4、红外光谱可区别分子的顺反异构,但不能区分手性分子。(√) 5、烯烃分子的对称性越强,C=C双键的振动吸收越强。( ×) 6、H2O分子中的H-O-H对称伸缩振动不产生红外吸收。( ×) 7、从红外光谱有无羰基的特征吸收可区分醇和酸。(√) 二、选择题 1、下面四种气体,不吸收红外光的有( D ) A、H2O B、CO2 C、CH4 D、N2 2、在有机化合物的红外吸收光谱分析中,出现在4000~1350cm-1频率范围的吸收峰可用于鉴定官能团,这一段频率范围称为( B ) A、指纹区 B、基团频率区 C、基频区 D、和频区 3、并不是所有的分子振动形式其相应的红外谱带都能观察到,这是因为:( B ) A、分子既有振动运动,又有转动运动,太复杂 B、分子中有些振动能量是简并的 C、分子中某些振动能量相互抵消了 D、因为分子中有H、C、H、O以外的原子存在 4、甲烷分子的振动自由度是( C ) A、5 B、6 C、9 D、10 5.丁二烯中C=C伸缩振动如下:有红外活性的是(B )

A.CH2═CH—CH═CH2B.CH2═CH—CH═CH2 A.A B.B C.A、B都有D.A、B都没有 6、某物质能吸收红外光波,产生红外吸收谱图,那么分子结构必然是( C ) A、具有不饱和键 B、具有共轭体系 C、发生偶极矩的净变化 D、具有对称性 7、红外光谱仪使用的光源是(B) A、空心阴极灯 B、能斯特灯 C、氘灯 D、碘钨灯 8、在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带( B ) A、向高波数方向移动 B、向低波数方向移动 C、不移动 D、稍有振动 9、不考虑费米共振的影响,下列伸缩振动吸收峰最强的是(D) A、C—H B、N—H C、P—H D、O—H 10、羰基化合物,C=O伸缩振动频率出现最高者为(D) A、R—CO—R B、R—CO—Cl C、R—CO—H D、R—CO—F 11、下列化合物中,C═C伸缩振动吸收强度最大的化合物是( A )A.R—CH═CH2B.R—CH═CH—R’(顺式) C.R—CH═CH—R’(反式)D.R—CH═CH—R 12、某种化合物,其红外光谱上3000~2800 cm-1,1460 cm-1,1375 cm-1,720 cm-1等处有主要吸收带,该化合物可能是(A) A、烷烃 B、烯烃 C、炔烃 D、芳烃 13、一种氯苯的红外光谱图在900 cm-1,690cm-1间无吸收带,它的可能结构为(C) A、对二氯苯 B、间三氯苯 C、六氯苯 D、四取代氯苯

红外光谱与拉曼光谱的区别

红外光谱与拉曼光谱的区别 1) 拉曼谱峰比较尖锐,识别混合物,特别是识别无机混合物要比红外光谱容易。 2) 在鉴定有机化合物方面,红外光谱具有较大的优势,主要原因是红外光谱的标准数据库比拉曼光谱的丰富。 3)在鉴定无机化合物方面,拉曼光谱仪获得400cm-1以下的谱图信息要比红外光谱仪容易得多。所以一般说来,无机化合物的拉曼光谱信息量比红外光谱的大。4)拉曼光谱与红外光谱可以互相补充、互相佐证。 红外光谱与拉曼光谱的比较 1、相同点 对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数与拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。 2、不同点 (1)红外光谱的入射光及检测光均是红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光; (2)红外谱测定的是光的吸收,横坐标用波数或波长表示,而拉曼光谱测定的是光的散射,横坐标是拉曼位移; (3)两者的产生机理不同。红外吸收是由于振动引起分子偶极矩或电荷分布变化产生的。拉曼散射是由于键上电子云分布产生瞬间变形引起暂时极化,是极化率的改变,产生诱导偶极,当返回基态时发生的散射。散射的同时电子云也恢复原态; (4)红外光谱用能斯特灯、碳化硅棒或白炽线圈作光源而拉曼光谱仪用激光作光源;(5)用拉曼光谱分析时,样品不需前处理。而用红外光谱分析样品时,样品要经过前处理,液体样品常用液膜法和液体样品常用液膜法,固体样品可用调糊法,高分子化合物常用薄膜法,体样品的测定可使用窗板间隔为2.5-10 cm的大容量气体池; (6)红外光谱主要反映分子的官能团,而拉曼光谱主要反映分子的骨架主要用于分析生物大分子;(7)拉曼光谱和红外光谱可以互相补充,对于具有对称中心的分子来说,具有一互斥规则:与对称中心有对称关系的振动,红外不可见,拉曼可见;与对称中心无对称关系的振动,红外可见,拉曼不可见。 拉曼光谱和红外光谱的区别 红外光谱和拉曼光谱都属于分子振动光谱,都是研究分子结构的有力手段。红外光谱测定的是样品的透射光谱。当红外光穿过样品时,样品分子中的基团吸收红外光产生振动,使偶极矩发生变化,得到红外吸收光谱。拉曼光谱测定的是样品的发射光谱。当单色激光照射在样品上时,分子的极化率发生变化,产生拉曼散射,检测器检测到的是拉曼散射光。 单色激光照射样品后,产生瑞利散射和拉曼散射。瑞利散射是激光的弹性散射,不负载样品的任何信息。拉曼散射又分为斯托克斯散射和反斯托克斯散射,拉曼散射负载有样品的信息。

决定红外光谱普带频率和谱带强度的相关因素

一.决定红外光谱谱带频率的相关因素 基团频率主要是由基团中原子的质量和原子间的化学键力常数决定。然而,分子内部结构和外部环境的改变对它都有影响,因而同样的基团在不同的分子和不同的外界环境中,基团频率可能会有一个较大的范围。因此了解影响基团频率的因素,对解析红外光谱和推断分子%( 结构都十分有用。影响基团频率位移的因 素大致可分为内部因素和外部因素。 内部因素: 1. 电子效应包括诱导效应、共轭效应和中介效应,它们都是由于化学键的电子分布不均匀引起的。 (1)诱导效应( I 效应)由于取代基具有不同的电负性,通过静电诱导作用,引起分子中电子分布的变化。从而改变了键力常数,使基团的特征频率发生了位移。例如,一般电负性大的基团或原子吸电子能力强,与烷基酮羰基上的碳原子数相连时,由于诱导效应就会发生电子云由氧原子转向双键的中间,增加了 C=O 键的力常数,使 C=O 的振动频率升高,吸收峰向高波数移动。随着取代原子电负性的增大或取代数目的增加,诱导效应越强,吸收峰向高波数移动的程度越显著。 诱导效应 吸电子诱导效应使羰基双键性增加,振动频率增大。 (2)中介效应( M 效应)当含有孤对电子的原子( O、 S、 N 等)与具有多重键的原子相连时,也可起类似的共轭作用,称为中介效应。由于含有孤对电子的原子的共轭作用,使 C=O 上的电子云更移向氧原子, C=O 双键的电子云密度平均化,造成 C=O 键的力常数下降,使吸收频率向低波数位移。对同一基团,若诱导效应和中介效应同时存在,则振动频率最后位移的方向和程度,取决于这两种效应的结果。当诱导效应大于中介效应时,振动频率向高波数移动,反之,振动频率向低波数移动。 2 .氢键的影响氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。游离羧酸的 C=O 键频率出现在 1760 cm-1 左右,在固体或液体中,由于羧酸形成二聚体, C=O 键频率出现在 1700 cm-1 。分子内氢键不受浓度影响,分子间氢键受浓度影响较大。 3. 振动耦合当两个振动频率相同或相近的基团相邻具有一公共原子时,由于一

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

红外光谱谱图质量影响因素汇总

红外光谱谱图质量影响因素汇总 1、扫描次数对红外谱图的影响:傅里叶变换红外光谱仪测量物质的光谱时, 检测器在接受样品光谱信号的同时也接受了噪声信号, 输出的光谱既包括样品的信号也包括噪声信号。 信噪比:与扫描次数的平方成正比。增加扫描次数可以减少噪声、增加谱图的光滑性。 2、扫描速度对红外谱图的影响:扫描速度减慢, 检测器接收能量增加; 反之, 扫描速度加快, 检测器接收能量减小。当测量信号小时( 包括使用某些附件时) 应降低动镜移动速度, 而在需要快速测量时,提高速度。扫描速度降低, 对操作环境要求更高, 因此应选择适当的值。 采用某一动镜移动速度下的背景, 测定不同扫描速度下样品的吸收谱图, 随扫描速度的加快, 谱图基线向上位移。用透射谱图表示时,趋势相反。所以在实验中测量背景的扫描速度与测量样品的扫描速度要一致。 3、分辨率对红外谱图的影响:红外光谱的分辨率等于最大光程差的倒数, 是由干涉仪动镜移动的距离决定的, 确切地说是由光程差计算出来的。分辨率提高可改善峰形, 但达到一定数值后, 再提高分辨率峰形变化不大, 反而噪声增加。分辨率降低可提高光谱的信噪比, 降低水汽吸收峰的影响, 使谱图的光滑性增加。 样品对红外光的吸收与样品的吸光系数有关,如果样品对红光外有很强的吸收, 就需要用较高的分辨率以获得较丰富的光谱信息;如果样品对红光外有较弱的吸收, 就必须降低光谱的分辨率、提高扫描次数以便得到较好的信噪比。 4、数据处理对红外谱图质量的影: (1)平滑处理:红外光谱实验中谱图常常不光滑,影响谱图质量。不光滑的原因除了样品吸潮以外还有环境的潮湿和噪声。平滑是减少来自各方面因素所产生的噪声信号, 但实际是降低了分辨率, 会影响峰位和峰强, 在定量分析时需特别注意。 (2)基线校正:在溴化钾压片制样中由于颗粒研磨得不够细或者不够均匀, 压出的锭片不够透明而出现红外光散射, 所以不管是用透射法测得的红外光谱,还是用反射法测得的光谱, 其光谱基线不可能在零基线上, 使光谱的基线出现漂移和倾斜现象。需要基线校正时,首先判断引起基线变化的原因, 能否进行校正。基线校正后会影响峰面积, 定量分析要慎重。 (3)样品量的控制对谱图的影响:在红外光谱实验中, 固体粉末样品不能直接压片, 必须用稀释剂稀释、研磨后才能压片。稀释剂溴化钾与样品的比例非常重要, 样品太少不行,样品太多则信息太丰富而特征峰不突出, 造成分析困难或吸收峰成平顶。对于白色样品或吸光系数小的样品, 稀释剂溴化钾与样品的比例是100:1; 对于有色样品或吸光系数大的样品稀释剂溴化钾与样品的比例是150:1。 5、影响吸收谱带的因素还有分子外和分子内的因素:如溶剂不同, 振动频率不同, 溶剂的极性不同, 介电常数不同, 引起溶质分子振动频率不同, 因为溶剂的极性会引起溶剂和溶 质的缔合, 从而改变吸收带的频率和强度。氢键的形成使振动频率向低波数移动、谱带加宽和强度增强(分子间氢键可以用稀释的办法消除, 分子内氢键不随溶液的浓度而改变)。 6、影响吸收谱带的其他因素还有:共轭效应、张力效应、诱导效应和振动耦合

红外光谱(1)

红外光谱:当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并使得这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波长关系的曲线,即为红外光谱,所以又称之为红外吸收光谱。 红外吸收光谱基本原理:产生红外吸收的条件:红外光谱是由于分子振动能级(同时伴随转动能级)跃迁而产生的,物质吸收红外辐射应满足两个条件:1.红外辐射光的频率与分子振动的频率相当,才能满足分子振动能级跃迁所需的能量,而产生吸收光谱。2.必须是能引起分子偶极矩变化的振动才能产生红外吸收光谱。伸缩振动:以v表示,是沿着键的方向的振动,只改变键长,对键角没有影响,它的吸收频率相对在高波数区。 弯曲振动或变形振动:以δ表示,为垂直于化学键方向的振动,只改变键角而不影响键长,它的吸收频率相对在低波数区。 分子的红外活性:1.对称分子——没有偶极矩,辐射不能引起共振,无红外活性;例如:N2、O2、Cl2 均无红外吸收光谱。2.非对称分子——有偶极矩,具有红外活性。 炔烃特点:1.键越强,力常数k越大,振动频率越高(波数值大)。2.成键原子质量越大,振动频率越低(波数值小)。弯曲振动(C-H:1340cm-1)要比伸缩振动(C-H:3000cm-1)的振动频率小。(C三N伸缩振动:2252cm-1) 红外分析方法:1.液体样品:液膜法、溶液法;2.固体样品:压片法、调糊法、薄膜法; 紫外吸收带的强度:A=-logI/I0=εcl(A:吸光度,ε摩尔消光系数, c: 溶液的摩尔浓度,l: 样品池长度.I0、I分别为入射光、透射光的强度) 紫外-可见光谱:分子吸收紫外-可见光区10-800 nm的电磁波而产生的吸收光谱,简称紫外可见光谱。(紫外光谱只适用于分析分子中具有不饱和结构的化合物)紫外-可见光谱的基本原理:分子轨道和电子跃迁类型:1.分子轨道可分为成键分子轨道、反键分子轨道和非键分子轨道。2.电子跃迁主要是价电子吸收一定能量的光能由成键轨道跃迁到反键轨道,分子从基态变为激发态。通常有机化合物的价电子包括成键的ζ电子、π电子和非键电子。这些电子可能发生的跃迁类型有ζ→ζ?、π→π?、n →ζ?和n →π?等跃迁。电子跃迁吸收电磁波的波长取决于发生跃迁的两个分子轨道间的能量差。 生色基:产生紫外(或可见)吸收的不饱和基团(通常都含有π电子)。 助色基(助色效应):当具有非键电子的原子或基团连在双键或共轭体系上时,会形成非键电子与π电子的共轭(P-π共轭),从而使电子的活动范围增大,吸收向长波方向位移,颜色加深,这种效应称为助色效应。能产生助色效应的原子或原子团称为助色基。(-OH、-Cl、-NH2、-NR2、-SR) 红移现象:由于取代基或溶剂的影响使最大吸收峰向长波方向移动的现象称为红移现象。 蓝移现象:由于取代基或溶剂的影响使最大吸收峰向短波方向移动的现象。 增色效应:使ε值增加的效应称为增色效应。 减色效应:使ε值减少的效应称为减色效应。 溶剂的影响:苯胺在中性溶液中,于280 nm处有吸收,加酸后发生蓝移,且吸收强度减弱。当溶液由中性变为酸性时,若谱带发生蓝移,应考虑到可能有氨基与苯环的共轭结构的存在。苯酚在中性溶液中于270 nm处有吸收,加碱后发生红移,吸收波长为287 nm。当溶液由中性变为碱性时,若谱带发生红移时,应考虑到可能有羟基与芳环的共轭结构存在。

红外光谱与拉曼光谱比较

拉曼光谱红外光谱 相同点给定基团的红外吸收波数与拉曼位移完全相同,两者均在红外光区,都反映分子的结构信息 产生机理电子云分布瞬间极化产生诱导偶极振动引起偶极矩或电荷分布变化 入射光可见光红外光 检测光可见光的散射红外光的吸收 谱带范围40-4000cm-1 400-4000cm-1 水可做溶剂不能作为溶剂 样品测试装置玻璃毛细管做样品池不能用玻璃仪器 制样固体样品可以直接测需要研磨制成溴化钾片 拉曼光谱红外光谱 拉曼位移相当于红外吸收频率。红外中能得到的信息在拉曼中也会出现。互补 拉曼光谱也同样有三要素,此外,还有退偏振比。解析三要素(峰位、峰强、峰形) 非极性基团谱带强(S-S、C-C、N-N)极性基团的谱带强烈(C=O、C-Cl) 容易表征碳链振动较容易测定链上的取代基红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基本上是没有红外吸收光谱效应的。 拉曼光谱一般也是发生在红外区,它不是吸收光谱,而是在入射光子与分子振动、转动量子化能级共振后以另外一个频率出射光子。入射和出射光子的能量差等于参与相互作用的分子振动、转动跃迁能级。与红外吸收光谱不同,拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。 相同点在于:对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级 不同点在于:两者产生的机理不同;红外光谱的入射光及检测光均为红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光;红外光谱测定的是光的吸收,而拉曼测定的是光的散射;红外光谱对于水溶液、单晶和聚合物的检测比较困难,但拉曼光谱几乎可以不必特别制样处理就可以进行分析,比较方便;红外光谱不可以用水做溶剂,但是拉曼可以,水似拉曼光谱的一种优良溶剂;拉曼光谱的是利用可见光获得的,所以拉曼光谱可用普通的玻璃毛细管做样品池,拉曼散射光能全部透过玻璃,而红外光谱的样品池需要特殊材料做成的。 本质区别:红外是吸收光谱,拉曼是散射光谱;拉曼光谱光谱与红外光谱两种技术包含的信息通常是互补的。 主要区别:(1)光谱的选择性法则是不一样的,红外光谱是要求分子的偶极矩发生变化才能测到,而拉曼是分子的极化性发生变化才能测到; (2)红外很容易测量,而且信号很好,而拉曼的信号很弱; (3)使用的波长范围不一样,红外光谱使用的是红外光,尤其是中红外,而拉曼可选择的波长很多,从可见光到NIR,都可以使用;(4)拉曼和红外大多数时候都是互相补充的,就是说,红外强,拉曼弱,反之也是如此; (5)在鉴定有机化合物方面,红外光谱具有较大的优势,无机化合物的拉曼光谱信息量比红外光谱的大。 (6)理论基础和检测方法存在明显的不同。我们说物质分子总在不停地振动,这种振动是由各种简正振动叠加而成的。当简正振动能产生偶极矩的变化时,它能吸收相应的红外光,即这种简正振动具有红外活性;具有拉曼活性的简正振动,在振动时能产生极化度的变化,它能与入射光子产生能量交换,使散射光子的能量与入射光子的能量产生差别,这种能量的差别称为拉曼位移,它与分子振动的能级有关,拉曼位移的能量水平也处于红外光谱区。 红外光谱法的检测直接用红外光检测处于红外区的分子的振动和转动能量;而拉曼光谱法的检测是用可见激光来检测处于红外区的分子的振动和转动能量,它是一种间接的检测方法。

拉曼光谱与红外光谱的对比

红外光谱与拉曼光谱的对比 一.基本原理 红外光谱:是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基本上是没有红外吸收光谱效应的。 拉曼光谱:一般也是发生在红外区,它不是吸收光谱,而是在入射光子与分子振动、转动量子化能级共振后以另外一个频率出射光子。入射和出射光子的能量差等于参与相互作用的分子振动、转动跃迁能级。与红外吸收光谱不同,拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。 相同点:对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级 不同点:两者产生的机理不同;红外光谱的入射光及检测光均为红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光;红外光谱测定的是光的吸收,而拉曼测定的是光的散射; 二. 仪器构成 1.红外光谱 色散型红外光谱仪: 1.1光源:通常是一种惰性固体,用电加热使之发射高强度的连续红外辐射。 1.2 吸收池 1.3 单色器:由色散原件、准直镜和狭缝构成 1.4 检测器:常用的是真空热电偶、热释电检测器和碲镉汞检测器 Fourier变换红外光谱仪:没有色散元件,主要由光源(硅碳棒、高压汞灯)、

红外光谱谱图质量影响因素分析6.20-2

红外光谱谱图质量影响因素分析 耿春英徐沛龙林青 (青岛大学国家重点实验室培育基地, 山东青岛266071) 摘要:红外光谱是多项科研项目必需的表征手段,但是由于红外谱图质量的影响因素复杂,人们对其了解甚少,所以一般不易得到理想的红外谱图。本文通过十二烷基硫酸钠对影响红外谱图的诸多因素,如样品的制备、扫描次数、扫描速度、分辨率和数据处理等进行大量的实验和详细的分析,得知一个高质量的红外光谱图,不仅需要掌握红外光谱的分析方法、样品的制备技术,还要了解样品的性质和结构、选择合适的制样方法和科学的操作技术才能得到满意的结果。 关键词:红外光谱,操作技术,影响因素,谱图质量 中图法分类号:TH744.1-65 文献标识码A Analysis of factors affecting quality of infrared spectrum Geng Chunying Xu peilong lin qing (Laboratory of New Fibre Materials and Modern Textile, the growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, PRC) Abstract: In order to obtain a qualified infrared spectrum, it is essential to master the methods for IR spectra analysis and the techniques for sample preparation. Additionally, being aware of sample characteristics, choosing the proper testing approach and scientific operation technology are necessary to record a satisfying infrared spectrum. Based on plentiful infrared spectroscopy experiments, this paper gives a detailed study on the effects of various factors on the quality of infrared spectrum. Key words: infrared spectroscopy, operation technology, influence factor, quality of infrared spectrum. 傅里叶变换红外光谱是根据物质的分子振动时所吸收的光的频率不同而得到的红外谱图,同一个基团在不同的分子和状态中振动频率不同。红外光谱技术作为一种非侵入性的检测技术,可以无损伤地提供丰富的分子结构特征和物质成分信息,从分子水平上反映物质的结构差异,为研究物质的性质提供有力的依据[1-4],在各个领域具有广泛的应用前景。红外光谱与物质的性质和结构密切相关,所以在红外光谱实验中,要想得到一个高质量的红外谱图必须要掌握样品的性质和结构。此外,谱图的质量还与样品的制备和科学的操作技术有着重要的关系。本文对影响红外谱图质量的主要因素进行了多次实验,并详细分析了样品的制

红外吸收光谱峰位的影响因素

光谱峰位的影响因素 分子内基团的红外吸收会受到邻近基团及整个分子其他部分的影响,也会因测定条件及样品的物理状态而改变。所以同一基团的特征吸收会在一定范围内波动。影响因素有: 1. 化学键的强度 一般地说化学键越强,则力常数K 越大,红外吸收频率 ν 越大。如碳碳三键,双键和单键的伸缩振动吸收频率随键强度的减弱而减小。 伸缩振动频率 (cm -1) 2150 1715 1200 2. 诱导效应 诱导效应可以改变吸收频率。如羰基连有拉电子基团可增强碳氧双键,加大C=O 键的力常数K ,使C=O 吸收向高频方向移动。 C=O 伸缩振动频率(cm -1 ) 1715 1815 ~ 1785 3. 共轭效应 共轭效应常使C =O 双键的极性增强,双键性降低,减弱键的强度使吸收向低频方向移动。例如羰基与α、β不饱和双键共轭,从而削弱了碳氧双键,使羰基伸缩振动吸收频率向低波数位移。 C=O 伸缩振动频率(cm -1) 1715 1685 ~ 1670 4. 成键碳原子的杂化状态 一般化学键的原子轨道s 成分越多,化学键力常数K 越大,吸收频率越高。 sp sp 2 sp 3

C?H伸缩振动频率(cm-1)3300 3100 2900 5. 键张力的影响 主要是环状化合物环的大小不同影响键的力常数,使环内或环上基团的振动频率发生变化。具体变化在不同体系也有不同。例如:环丙烷的C-H伸缩频率在3030 cm-1,而开链烷烃的C-H伸缩频率在3000 cm-1以下。 6.氢键的影响 氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。形成氢键后基团的伸缩频率都会下降。游离羧酸的C=O键频率出现在1760 cm-1 左右,在固体或液体中,由于羧酸形成二聚体,C=O键频率出现在1700 cm-1 。分子内氢键不受浓度影响,分子间氢键受浓度影响较大。 例如:乙醇的自由羟基的伸缩振动频率是3640 cm-1,而其缔合物的振动频率是3350 cm-1。形成氢键还使伸缩振动谱带变宽。 7. 振动的耦合 若分子内的两个基团位置很近,振动频率也相近,就可能发生振动耦合,使谱带分成两个,在原谱带高频和低频一侧各出现一个谱带。例如乙酸酐的两个羰基间隔一个氧原子,它们发生耦合。羰基的频率分裂为1818和1750 cm-1。(预期如果没有耦合其羰基振动将出现在约1760 cm-1)。弯曲振动也能发生耦合。 8. 物态变化的影响 通常同种物质气态的特征频率较高,液态和固态较低。如丙酮v C=O(气)=1738 cm-1, v C=O(液)=1715 cm-1。溶剂也会影响吸收频率。 七. 定量分析 定量依据是Lambert-Beer定律:吸光度(A) A=ε*C * L 其中:ε为摩尔吸光系数,A= -lgT = -lg(I t/I o)= lg(I o/I t) 定量时吸光度的测定常用基线法。如图所示,图中I 与I0之比就是透射比。 思考:如何按图从坐标T%计算A? 如何做标准曲线?

红外光谱谱图质量影响因素分析_耿春英

第26卷第3期  青岛大学学报(工程技术版) Vol.26No.3 2 0 1 1年9月JOURNAL OF QINGDAO UNIVERSITY(E&T)Sep .2 0 1 1文章编号:1006 9798(2011)03 0074 0 4红外光谱谱图质量影响因素分析 耿春英,徐沛龙,林 青 (青岛大学国家重点实验室培育基地,山东青岛266071 )摘要:为了在红外光谱实验中得到高质量的红外谱图,详细分析了样品制备技术、扫描次 数、扫描速度、分辨率和数据处理等因素对红外谱图的影响,并以十二烷基硫酸钠为样品 进行了实验验证。实验和分析结果表明, 要获得高质量的红外光谱图,不仅需要掌握红外光谱的分析方法、样品的制备技术,还要了解样品的性质和结构,选择合适的制样方法和 科学的操作技术。该结果对实际的仪器使用者和科研工作者具有指导和借鉴意义。 关键词:红外光谱;操作技术;影响因素;谱图质量 中图分类号:O657.33文献标识码:A 收稿日期:2011-05-26 作者简介:耿春英(1953-) ,女,副教授,主要从事光谱学研究。 傅里叶变换红外光谱是根据物质的分子振动时所吸收的光的频率不同而得到的红外谱图, 同一个基团在不同的分子和状态中振动频率不同。红外光谱技术作为一种非侵入性的检测技术,可以无损伤地提供丰富的分子结构特征和物质成分信息,从分子水平上反映物质的结构差异,为研究物质的性质提供有力的依据[ 1 4],在各个领域具有广泛的应用前景。红外光谱与物质的性质和结构密切相关,所以在红外光谱实验中,要想得到一个高质量的红外谱图必须要掌握样品的性质和结构。此外,谱图的质量还与样品的制备和科学的操作技术有着重要的关系。本文对影响红外谱图质量的主要因素进行了多次实验,并详细分析了样品的制备、扫描次数、扫描速度、分辨率和数据处理等因素对谱图质量的影响。研究结果对实际的仪器使用者和科研工作者具有很好的指导和借鉴作用。 1  样品制备技术对谱图的影响 图1 十二烷基硫酸钠样品适量与过量红外谱图比较 红外光谱分析中, 样品的制备方法与制备技术非常重要。最常见的是固体物质,固体不仅由于分子之间的作用力大,缔合力强,而且由于颗粒大小、晶形和结晶场效应等因素,使固体光谱与溶液光谱发生显著的差异。红外光谱的形状,特别是谱带的强度与制样技术有密切的关 系。对于固体粉末需要溴化钾压片,常常由于研磨不匀或压 的不透明而产生光的散射,使红外谱图基线上移,产生干涉 条文使谱图不光滑,使吸收峰的频率产生明显的位移。充分 研磨样品, 掌握研磨时间和方法是很重要的。对于不同样品需要灵活采用不同的测试方法。要消除以上现象,样品颗粒 直径必须小于入射光的波长(2μm)[4 5]。这是红外光谱测试中固体粉末制样的关键。固体样品制样时除了要求样品颗 粒大小外,关键还有稀释剂溴化钾与样品的比例。样品比例 高,则信息太丰富特征峰不突出,造成分析困难或吸收峰成 平顶;若样品比例过高,发射的红外光全部被样品吸收,这 时的透过率接近于零, 无法进行分析。十二烷基硫酸钠样品适量与过量红外谱图的比较见图1所示。从图1可以看出,

红外光谱1部分

第二章 红外光谱 (高校教师研究生班) 红外光谱(IR):一种分子吸收光谱,又称为分子的振—转光谱。 当用连续波长的红外光照射某一物质时,该物质就吸收一定波长的红外光的光能,并将被吸收的光能转化为分子的振动和转动能。以波长为横坐标,百分吸光率或百分透过率为纵坐标把谱图记录下来,就可以得到该物质的红外光谱。 表2.1 红外光谱的分类 大多数的有机化合物和许多无机化合物的化学键的振动基频都出现在中 红外区。中红外的吸收光谱在化合物的结构解析和定量分析方面有重要的意义,所以中红外是我们研究的主要对象。 用频率表示红外光谱不方便,通常用波数(cm -1)表示,波数与波长的关系为: 波数[cm -1 ] =波长 4 10 波长的单位是微米(μm); 1cm =104 μm 即1 cm 内有多少个波数 2.1 基本原理 2.1.1 分子的振转光谱 分子总是在不断地运动,各种运动状态都有一定的能态。 分子的总能量为:E = E 0+ E 平 + E 转 + E 振 + E 电 E 0—分子的内能,其能量不随分子的运动而改变。

E 平——是温度的函数,平动时不产生偶极矩的变化,无红外吸收。 所以红外光谱只与分子的转动能、振动能和分子内电子的运动能有关。 分子可以吸收红外光的辐射能从低能态跳到高能态,但不是任意的,必须满足量子化条件(选律)。不论是振动能还是转动能,都有能级差( ),只有当辐射光光子的能量正好等于两能级间的能量差时,分子才能吸收辐射能从低能级跳到高能级,产生吸收光谱。 振动能级的 = 0.5~1 eV , 中红外光的辐射能正好在此范围。 当振动发生时总伴随有转动能级产生,所以,IR 光谱称为振—转光谱。 2.1.2 双原子光谱的振动光谱 对于双原子分子(以HCl 为例),可看把两个原子看成质量不等的两个 小球m 1和m 2 ,把它们的化学键类比为 质量可以不计的弹环,两原子在平衡位置 的振动可以近似为简谐振动,根据虎克定 律,简谐振动的频率为: μ κ πυ21 = (2.1) 用波数(cm -1)表示为: υ (cm -1)= μ κ πc 21 (2.2) 式中: C —光 速 κ—力常数 [单键约为5×102 N ·m -1;双键和三键是单键的2倍或3倍] μ—折合质量:μ= m 1·m 2 / m 1+ m 2 [ m 1、m 2 是两个原子的质量(克)] 已知: 130421=c π; κ=5.1 (毫达因/埃); 972.05 .3515.351=+?=μ(HCl ) 根据[2.2]式: υ (cm -1) = 1304 972 .01 .5=2990 [cm-1] 实际测得HCl 分子的H 、Cl 伸缩振动频率为2886cm -1。表明:把双原子 E E m 1 2 m

相关文档
最新文档