十年中考数学真题分类汇编(2009-2019)
2019全国中考数学真题分类汇编之29:数学文化(含答案)

2019年全国中考数学真题分类汇编:数学文化一、选择题1. (2019年乐山市)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( )()A 1,11 ()B 7,53 ()C 7,61 ()D 6,50 【考点】二元一次方程组的解法与应用 【解答】解:设人数人,物价y 钱.⎩⎨⎧=+=-y x yx 4738解得:⎩⎨⎧==537y x ,故选B.2.(2019年重庆市)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为,乙的钱数为y ,则可建立方程组为( )A .B .C .D .【考点】二元一次方程组的解法与应用 【解答】解:设甲的钱数为,乙的钱数为y ,依题意,得:.故选:A .3. (2019年山东省德州市)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长尺,木长y尺,则可列二元一次方程组为()A. B. C D【考点二元一次方程组的解法与应用、数学文化【解答】解:设绳长尺,长木为y尺,依题意得,故选:B.4.(2019年湖北省襄阳市)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为人,所列方程正确的是()A.5﹣45=7﹣3 B.5+45=7+3 C.=D.=【考点】一元一次方程的应用【解答】解:设合伙人数为人,依题意,得:5+45=7+3.故选:B.5. (2019年湖北省宜昌市)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC 中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为()A.6B.6C.18D.【考点】二次根式的应用【解答】解:∵a=7,b=5,c=6.∴p==9,∴△ABC的面积S==6;故选:A.6.(2019年福建省)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读个字,则下面所列方程正确的是( ) A .+2+4=34685 B .+2+3=34685C .+2+2=34685D .+12+14=34685【考点】由实际问题抽象出一元一次方程【解答】解:设他第一天读个字,根据题意可得:+2+4=34685, 故选:A .7.(2019年吉林省长春市)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为,买鸡的钱数为y ,可列方程组为( ) A . B .C D .【考】由实际问题抽象出二元一次方程组【解答】解:设人数为,买鸡的钱数为y ,可列方程组为: . 故:D .8.(2019年甘肃兰州)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为斤,一只燕的重量为y 斤,则可列方程组为( ) A . B .CD .【考由际问抽出二元一次方程组 【解答】解:由题意可得, , 故:C .9.(019年湖南省长沙市)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为尺,绳子长为y 尺,则所列方程组正确的是()A.B.C.D.考点由实际问题抽象出二元一次方程组【解答】解:由题意可得,,故选A.10.(2019年浙江省舟山市)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹两,牛每头y两,根据题意可列方程组为()A.B.C.D【考】二元一次方程组的应用【解答】解:设马每匹两,牛每头y两,根据题意可列方程组为:.故:D.11.(2019年浙江省宁波市)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【考点】勾股定理【解答】解:设直角三角形的斜边长为c ,较长直角边为b ,较短直角边为a , 由勾股定理得,c 2=a 2+b 2,阴影部分的面积=c 2﹣b 2﹣a (c ﹣b )=a 2﹣ac +ab =a (a +b ﹣c ), 较小两个正方形重叠部分的宽=a ﹣(c ﹣b ),长=a , 则较小两个正方形重叠部分底面积=a (a +b ﹣c ),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积, 故选:C . 二、填空题1. (2019年上海市)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛 . 斛米.(注:斛是古代一种容量单位) 【考点】二元一次方程组的解法【解答】解:设1个大桶可以盛米斛,1个小桶可以盛米y 斛, 则,故++y +5y =5, 则+y =56.答:1大桶加1小桶共盛56斛米.故答案为:56.2. (2019年辽宁省大连市)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu ,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为 . 【考点】二元一次方程组的应用【解答】解:设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛, 根据题意得:, 故案为.3(2019年江苏省南通市)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有个人共同出钱买鸡,根据题意,可列一元一次方程为.【解答】一元一次方程的应用【考点】解:设有个人共同买鸡,根据题意得:9﹣11=6+16.故答案为:9﹣11=6+16.4.(2019年湖南省株洲市)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.【解答】一元一次方程的应用【考点】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.5.(2019年湖北省咸宁市)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长尺,绳子长y尺,可列方程组为.【解答】二元一次方程组的应用【考点】解:设木条长尺,绳子长y尺,依题意,得:.答案为:..(2019年江苏省泰安市)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重两,每枚白银重y两,根据题意可列方程组为____.【解答】由实际问题抽象出二元一次方程组【考点】解:设每枚黄金重两,每枚白银重y两,由题意得:,故案为:.7(201年宁夏自治)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程2+5﹣14=0即(+5)=14为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是(++5)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×14+52,据此易得=2.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程2﹣4﹣12=0的正确构图是.(只填序号)【解答】一元二次方程的应用【考点】解:∵2﹣4﹣12=0即(﹣4)=12,∴构造如图②中大正方形的面积是(+﹣4)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×12+42,据此易得=6.故答案为:②.8.(2019年甘肃白银)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数614040401000036000806403109204849791803139699出现“正面朝上”的次数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为0.5(精确到0.1).【解答】利用频率估计概率【考点】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.三、解答题1.(2019年甘肃省)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?【考点】一元一次方程的解法及应用【解答】解:设共有人,根据题意得:+2=,去分母得:2+12=3﹣27,解得:=39,∴=15,则共有39人,15辆车.2.(2019年湖北省黄石市)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?【解答】一元一次方程的应用【考点】解:(1)设当走路慢的人再走600步时,走路快的人的走步,由题意得:600=100:60∴=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+60y100∴y=500答:走路快的人走500步才能追上走路慢的人.。
word完整版最近十年2009 2018河南中考数学压轴题汇编选择填空解答含详解答案

选择、最近十年(2009----2018)河南中考数学压轴题汇编()填空、解答含详解答案参考答案与试题解析小题)17一.填空题(共.如图所示,折叠纸片,使点AD=5AB=3,1.动手操作:在矩形纸片ABCD中,、PBCA′在边上移动时,折痕的端点A′A落在BC边上的处,折痕为PQ,当点边上边上移动,则点A′在BC、Q也随之移动.若限定点PQ分别在AB、AD.可移动的最大距离为2【解答】解:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3﹣1=2.故答案为:22.如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使上,则阴影部分的面积为(结果点C在OA上,点D、E在OB上,点F在保留π).第1页(共12页),【解答】解:连接OF是正方形,AOD=45°,四边形CDEF∵∠,∴OD=CD=DE=EF,中,OE=2EF于是Rt△OFE222,=OF+OEOF=,EF∵22,+(EF∴2EF)=5,解得:EF=1,∴EF=OD=CD=1.×1=﹣S=SS﹣S=﹣﹣×1×11∴CDEFOABOCD正方形扇形阴影△,于点AD=E,以AD的长为半径的⊙A交,.如图矩形3ABCD中,AB=1BC.则图中阴影部分的面积为【解答】解:连接AE.根据题意,知AE=AD=.则根据勾股定理,得BE=1.根据三角形的内角和定理,得∠BAE=45°.则∠DAE=45°.则阴影部分的面积=﹣﹣.第2页(共12页)边上的一动DB=30°,BC=3.点是BC6.如图,在Rt△ABC中,∠ACB=90°,∠翻E,将∠B沿直线DEABB、C重合),过点D作DE⊥BC交于点点(不与点1AEF 的长为为直角三角形时,BD折,点B落在射线BC上的点F处.当△.或2,EF=EBDF=BD,EFB=∠B=30°,【解答】解:根据题意得:∠,BCDE⊥∵,∠FED=120°﹣∠EFD=60°,∠BEF=2∴∠FED=90°,﹣∠BEF=60°∴∠AEF=180°,,BC=3ACB=90°,∠B=30°∵在Rt△ABC中,∠,BAC=60°×=,∠∴AC=BC?tan∠B=3,如图①若∠AFE=90°,ACB=90°△ABC中,∠∵在Rt,∠AFC=90°∠∴∠EFD+∠AFC=FAC+,EFD=30°FAC=∴∠∠,FAC=∴CF=AC?tan∠×=1;=1∴BD=DF=,EAF=90°如图②若∠,BAC=30°FAC=90°﹣∠则∠,=1×∴CF=AC?tan∠FAC=,=2∴BD=DF=.21为直角三角形时,BD的长为:或AEF∴△123第页(共页).若平移该抛物)A轴交于点(0,37.如图,抛物线的顶点为P(﹣2,2),与y,则抛物线上A′2),点A的对应点为线使其顶点P沿直线移动到点P′(2,﹣.PA12段扫过的区域(阴影部分)的面积为,于点D作AD⊥PP′【解答】解:连接AP,A′P′,过点A,,AP=A′P′AP∥A′P′由题意可得出:是平行四边形,∴四边形APP′A′,平移该抛物线使其顶)0,3),与y轴交于点A(P∵抛物线的顶点为(﹣2,2,),﹣2P沿直线移动到点P′(2点,,∠AOP=45°=2∴PO=,⊥OP又∵AD是等腰直角三角形,∴△ADO,2=4PP′=2∴×AD=DO=sin45°?OA=∴×3=,4PA×=12.∴抛物线上段扫过的区域(阴影部分)的面积为:.故答案为:12B,把∠BC是边上一点,连接AEEBC=4AB=3ABCD8.如图,矩形中,,,点124第页(共页)或的长为折叠,使点沿AEB落在点B′处.当△CEB′为直角三角形时,BE.3为直角三角形时,有两种情况:CEB′【解答】解:当△①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,222,=CE∵EB′+CB′222,解得x=x),+2(=4﹣∴x∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.第5页(共12页)顺时针旋转A,∠中,AB=1DAB=60°,把菱形ABCD绕点9.如图,在菱形ABCD,其中点C,的运动路径为则图中阴影部分的面积为30°得到菱形AB′C′D′.,和BC′【解答】解:连接CD′,∵∠DAB=60°,CAB=30°∴∠DAC=∠,C′AB′=30°∵∠分别共线.C、D′、及A、B、C′∴AAC=∴∴扇形ACC′的面积为:=,AD′=AB∵AC=AC′,中,∴在△OCD′和△OC'B.AAS)∴△OCD′≌△OC′B(CO=C′OOB=OD′,∴BC′O=30°,∠∵∠CBC′=60°COD′=90°∴∠1﹣∵CD′=AC﹣AD′=C′O=1OB+222)1(=﹣中,BO1+(﹣BO)△∴在RtBOC′,解得BO=,C′O=﹣∴S=?BO?C′O=﹣OC′B△∴图中阴影部分的面积为:S﹣2S=+﹣.OC′BACC′△扇形.+故答案为:﹣第6页(共12页)AEABCD.如图矩形中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿10.的长为落在∠ABC的角平分线上时,DE或的对应点折叠,当点DD′,作NCD于点AB于点M,作【解答】解:如图,连接BD′,过D′MN⊥AB,交PBC于点交D′P⊥BC的角平分线上,落在∠ABC∵点D的对应点D′,∴MD′=PD′,,则PD′=BM=x设MD′=x,﹣xAM=AB﹣BM=7∴,AD=AD′=5又折叠图形可得22,4,解得x=3﹣x)或=25∴x(+7.4MD′=3或即,中,设ED′=aEND′在Rt△,aEN=43=2,﹣AM=7MD′=3时,﹣3=4,D′N=5﹣①当222,a)+(4﹣∴a=2,,即DE=解得a=,aEN=3﹣4=1,﹣D′N=54=3AM=7MD′=4②当时,﹣,127第页(共页)222,﹣a∴a=1)+(3.a=,即解得DE=.故答案为:或上F是边BCE在边AB上,AE=3,点的边长是12.如图,正方形ABCD16,点CDB′落在B′处.若△EBF沿EF折叠,点BC不与点B,重合的一个动点,把△的长为16DB′或4.恰为等腰三角形,则时,B′D=B′C【解答】解:(i)当,B′GE=90°GH∥AD,则∠点作过B′,DC=8当B′C=B′D时,AG=DH=.,AB=16,得BE=13由AE=3.由翻折的性质,得B′E=BE=13,AE=8﹣3=5∴EG=AG﹣,B′G===12∴∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4..或故答案为:164第8页(共12页),BCE为射线上一个动点,连接AEAB14.如图,已知AD∥BC,⊥BC,AB=3,点BCAD,的垂线,分别交折叠,点将△ABE沿AEB落在点B′处,过点B′作AD.M,N的长为BE或.当点B′为线段MN的三等分点时,于点解:如图,【解答】由翻折的性质,得.BE=B′EAB=AB′,,得时,设EN=x①当MB′=2,B′N=1.B′E=,AB′M△B′EN∽△,,即==2,x=.BE=B′E==,得EN=x,B′N=2时,设②当MB′=1,B′E=,AB′MB′EN△∽△129第页(共页),,即==2BE=B′E==解得=,x,或.故答案为:,N分别是边BC+1,点M,Rt15.如图,在△ABC中,∠A=90°,AB=AC,BC=AC 始终落在边,使点所在的直线折叠∠BB的对应点B′AB上的动点,沿MN.为直角三角形,则上,若△MB′CBM的长为+或1,1【解答】解:①如图的中点,BC重合,M是当∠B′MC=90°,B′与A;BM=∴BC=+,2,当∠MB′C=90°②如图,A=90°,AB=AC∵∠,∴∠C=45°是等腰直角三角形,∴△CMB′,CM=MB′∴,B′B,使点B的对应点∵沿MN所在的直线折叠∠,BM=B′M∴,∴CM=BM,∵BC=+1BM=+1,∴CMBM=BM++,∴BM=1+或BM的长为1,为直角三角形,则综上所述,若△MB′C页(共10第12页).+或1故答案为:上一动点,连接ANB为边MAN=90°,点C在边AM上,AC=4,点17.如图,∠的中点,,BCBC所在直线对称,点D,E分别为AC,△BCA′BC与△ABC关于为直角三角形时,A′EFA′B所在直线于点F,连接A′E.当△DE连接并延长交.4的长为4AB或为直角三角形时,存在两种情况:解:当△A′EF【解答】,1时,如图①当∠A'EF=90°所在直线对称,BCA′BC与△ABC关于∵△,∠,∠ACB=A'CB∴A'C=AC=4的中点,,BC分别为∵点D,EAC的中位线,ABC、∴DE是△,∥∴DEAB,∠MAN=90°∴∠CDE=,∠∴∠CDE=A'EF页(共第1112页)∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,222,=BCAC由勾股定理得:AB﹣=4;AB=∴②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;4或4综上所述,AB的长为;;故答案为:44或第12页(共12页)。
十年高考真题分类汇编(2010-2019) 数学 专题09 不等式 Word版无答案原卷版

十年高考真题分类汇编(2010—2019)数学专题09不等式1.(2019·全国1·理T4文T4)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5-12(√5-12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是( )A.165 cmB.175 cmC.185 cmD.190 cm2.(2019·全国2·理T6)若a>b,则( )A.ln(a-b)>0B.3a<3bC.a3-b3>0D.|a|>|b|3.(2019·天津·理T2文T2)设变量x,y满足约束条件{x+y-2≤0,x-y+2≥0,x≥-1,y≥-1,则目标函数z=-4x+y的最大值为 ( ) A.2 B.3 C.5 D.64.(2019·浙江·T3)若实数x,y满足约束条件{x-3y+4≥0,3x-y-4≤0,x+y≥0,则z=3x+2y的最大值是( )A.-1B.1C.10D.125.(2018·天津·理T2文T2)设变量x,y满足约束条件{x+y≤5,2x-y≤4,-x+y≤1,y≥0,则目标函数z=3x+5y的最大值为 ( )A.6B.19C.21D.456.(2018·北京·理T8文T8)设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则( )A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤ 时,(2,1)∉A7.(2017·全国2·理T5文T7)设x,y 满足约束条件{2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z=2x+y 的最小值是( )A.-15B.-9C.1D.98.(2017·全国3·文T5)设x,y 满足约束条件 {3x +2y -6≤0,x ≥0,y ≥0,则z=x-y 的取值范围是( )A.[-3,0]B.[-3,2]C.[0,2]D.[0,3]9.(2017·全国1·文T7)设x,y 满足约束条件{x +3y ≤3,x -y ≥1,y ≥0,则z=x+y 的最大值为( )A.0B.1C.2D.310.(2016·北京·理T2)若x,y 满足{2x -y ≤0,x +y ≤3,x ≥0,则2x+y 的最大值为( )A.0B.3C.4D.511.(2016·天津·理T2)设变量x,y 满足约束条件{x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z=2x+5y 的最小值为 ( )A.-4B.6C.10D.1712.(2016·山东·理T4文T4)若变量x,y 满足{x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A.4B.9C.10D.1213.(2016·浙江·理T3)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影,由区域{x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=( ) A.2√2B.4C.3√2D.614.(2016·浙江·文T4)若平面区域{x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A.3√55 B.√2C.3√22D.√515.(2015·浙江·文T6)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x,y,z,且x<y<z,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a,b,c,且a<b<c.在不同的方案中,最低的总费用(单位:元)是( ) A.ax+by+cz B.az+by+cx C.ay+bz+cx D.ay+bx+cz16.(2015·陕西·理T9)设f(x)=lnx,0<a<b,若p=f(√ab ),q=f (a+b 2),r=12[f(a)+f(b)],则下列关系式中正确的是( ) A.q=r<p B.p=r<q C.q=r>pD.p=r>q17.(2015·福建·理T5)若直线x a+y b=1(a>0,b>0)过点(1,1),则a+b 的最小值等于( ) A.2 B.3 C.4 D.518.(2015·湖南·文T7)若实数a,b 满足1a +2b =√ab ,则ab 的最小值为( ) A.√2B.2C.2√2D.419.(2015·重庆·文T10)若不等式组{x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( ) A.-3B.1C. 43D.320.(2015·山东·理T6)已知x,y 满足约束条件{x -y ≥0,x +y ≤2,y ≥0.若z=ax+y 的最大值为4,则a=( )A.3B.2C.-2D.-321.(2015·福建·文T10)变量x,y 满足约束条件{x +y ≥0,x -2y +2≥0,mx -y ≤0,若z=2x-y 的最大值为2,则实数m 等于( ) A.-2B.-1C.1D.222.(2015·陕西·理T10文T11)某企业生产甲、乙两种产品均需用A,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )B(吨)1 2 8A.12万元B.16万元C.17万元D.18万元23.(2014·全国1·理T9)不等式组{x +y ≥1,x -2y ≤4的解集记为D,有下面四个命题:p 1:∀(x,y)∈D,x+2y ≥-2,p 2:∃(x,y)∈D,x+2y ≥2, p 3:∀(x,y)∈D,x+2y ≤3,p 4:∃(x,y)∈D,x+2y ≤-1, 其中的真命题是( ) A.p 2,p 3 B.p 1,p 2 C.p 1,p 4D.p 1,p 324.(2014·全国1·文T11)设x,y 满足约束条件{x +y ≥a ,x -y ≤-1,且z=x+ay 的最小值为7,则a=( )A.-5B.3C.-5或3D.5或-325.(2014·北京·理T6)若x,y 满足{x +y -2≥0,kx -y +2≥0,y ≥0,且z=y-x 的最小值为-4,则k 的值为( )A.2B.-2C.12D.-1226.(2014·重庆·文T9)若log 4(3a+4b)=log 2√ab ,则a+b 的最小值是( ) A.6+2√3 B.7+2√3 C.6+4√3D.7+4√327.(2014·福建·文T9)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( ) A.80元 B.120元 C.160元 D.240元28.(2014·四川·理T4)若a>b>0,c<d<0,则一定有( ) A.ac >bdB.a c <bdC.a d >bcD.a d <bc29.(2014·大纲全国·文T3)不等式组{x (x +2)>0,|x |<1的解集为( )A.{x|-2<x<-1}B.{x|-1<x<0}C.{x|0<x<1}D.{x|x>1}30.(2014·浙江·文T7)已知函数f(x)=x 3+ax 2+bx+c,且0<f(-1)=f(-2)=f(-3)≤3,则( ) A.c ≤3 B.3<c ≤6C.6<c ≤9D.c>931.(2014·全国2·理T9)设x,y 满足约束条件{x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z=2x-y 的最大值为( )A.10B.8C.3D.232.(2014·全国2·文T9)设x,y 满足约束条件{x +y -1≥0,x -y -1≤0,x -3y +3≥0,则z=x+2y 的最大值为( )A.8B.7C.2D.133.(2013·重庆·文T7)关于x 的不等式x 2-2ax-8a 2<0(a>0)的解集为(x 1,x 2),且x 2-x 1=15,则a=( ) A.52B.72C.154D.15234.(2013·全国2·文T3)设x,y 满足约束条件{x -y +1≥0,x +y -1≥0,x ≤3,则z=2x-3y 的最小值是( )A.-7B.-6C.-5D.-335.(2013·全国2·理T9)已知a>0,x,y 满足约束条件{x ≥1,x +y ≤3,y ≥a (x -3).若z=2x+y 的最小值为1,则a=( )A.14B.12C.1D.236.(2013·湖北·文T9)某旅行社租用A,B 两种型号的客车安排900名客人旅行,A,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( ) A.31 200元 B.36 000元 C.36 800元 D.38 400元37.(2012·全国·文T5)已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x,y)在△ABC 内部,则z=-x+y 的取值范围是( ) A.(1-√3,2) B.(0,2) C.(√3-1,2)D.(0,1+√3)38.(2010·全国·文T11)已知▱ABCD 的三个顶点为A(-1,2),B(3,4),C(4,-2),点(x,y)在▱ABCD 的内部,则z=2x-5y 的取值范围是( ) A.(-14,16) B.(-14,20) C.(-12,18) D.(-12,20)39.(2019·天津·文T10)设x ∈R,使不等式3x 2+x-2<0成立的x 的取值范围为_____________. 40.(2019·天津·文T13)设x>0,y>0,x+2y=4,则(x+1)(2y+1)xy的最小值为_____________.41.(2019·天津·理T13)设x>0,y>0,x+2y=5,则√xy的最小值为____________.42.(2019·全国2·文T13)若变量x,y 满足约束条件{2x +3y -6≥0,x +y -3≤0,y -2≤0,则z=3x-y 的最大值是.43.(2018·天津·理T13文T13)已知a,b ∈R,且a-3b+6=0,则2a+18b 的最小值为_____________.44.(2018·江苏·T13)在△ABC 中,角A,B,C 所对的边分别为a,b,c,∠ABC=120°,∠ABC 的平分线交AC 于点D,且BD=1,则4a+c 的最小值为 .45.(2018·全国1·理T13文T14)若x,y 满足约束条件{x -2y -2≤0,x -y +1≥0,y ≤0,则z=3x+2y 的最大值为.46.(2018·全国2·理T14文T14)若x,y 满足约束条件{x +2y -5≥0,x -2y +3≥0,x -5≤0.则z=x+y 的最大值为.47.(2018·全国3·文T15)若变量x,y 满足约束条件 {2x +y +3≥0,x -2y +4≥0,x -2≤0,则z=x+13y 的最大值是.48.(2018·北京·理T12文T13)若x,y 满足x+1≤y ≤2x,则2y-x 的最小值是 .49.(2018·浙江·T12)若x,y 满足约束条件{x -y ≥0,2x +y ≤6,x +y ≥2,则z=x+3y 的最小值是 ,最大值是 .50.(2017·全国3·理T13)若x,y 满足约束条件{x -y ≥0,x +y -2≤0,y ≥0,则z=3x-4y 的最小值为.51.(2017·全国1·理T14)设x,y 满足约束条件 {x +2y ≤1,2x +y ≥-1,x -y ≤0,则z=3x-2y 的最小值为.52.(2017·江苏·T10)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 . 53.(2017·天津·理T12文T13)若a,b ∈R,ab>0,则a 4+4b 4+1ab 的最小值为 .54.(2017·山东·文T12)若直线x a+y b=1(a>0,b>0)过点(1,2),则2a+b 的最小值为 .55.(2016·全国3·理T13)若x,y 满足约束条件{x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z=x+y 的最大值为______________.56.(2016·全国2·文T14)若x,y 满足约束条件 {x -y +1≥0,x +y -3≥0,x -3≤0,则z=x-2y 的最小值为.57.(2016·全国3·文T13)设x,y 满足约束条件 {2x -y +1≥0,x -2y -1≤0,x ≤1,则z=2x+3y-5的最小值为.58.(2016·全国1·理T16文T16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B 需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 59.(2015·全国2·理T14)若x,y 满足约束条件{x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z=x+y 的最大值为_______________.60.(2015·全国2·文T14)若x,y 满足约束条件{x +y -5≤0,2x -y -1≥0,x -2y +1≤0,则z=2x+y 的最大值为.61.(2015·全国1·文T15)若x,y 满足约束条件{x +y -2≤0,x -2y +1≤0,2x -y +2≥0,则z=3x+y 的最大值为.62.(2015·重庆·文T14)设a,b>0,a+b=5,则√a +1+√b +3的最大值为________________. 63.(2015·江苏·理T7)不等式2x2-x<4的解集为 .64.(2015·广东·文T11)不等式-x 2-3x+4>0的解集为 .(用区间表示)65.(2015·全国1·理T15)若x,y 满足约束条件{x -1≥0,x -y ≤0,x +y -4≤0,则yx 的最大值为 .66.(2014·安徽·文T13)不等式组{x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为 .67.(2014·江苏·理T10)已知函数f(x)=x 2+mx-1,若对于任意x ∈[m,m+1],都有f(x)<0成立,则实数m 的取值范围是 .68.(2014·湖南·文T13)若关于x 的不等式|ax-2|<3的解集 为{x |-53<x <13},则a=.69.(2013·广东·理T9)不等式x 2+x-2<0的解集为 .70.(2013·全国1·文T14)设x,y 满足约束条件 {1≤x ≤3,-1≤x -y ≤0,则z=2x-y 的最大值为.71.(2012·全国·理T14)设x,y 满足约束条件{x -y ≥-1,x +y ≤3,x ≥0,y ≥0,则z=x-2y 的取值范围为.72.(2011·全国·文T14)若变量x,y 满足约束条件{3≤2x +y ≤9,6≤x -y ≤9,则z=x+2y 的最小值为.。
十年真题(2010-2019)高考数学(理)分类汇编专题03 函数概念与基本初等函数(新课标Ⅰ卷)(原卷版)

专题03函数概念与基本初等函数历年考题细目表历年高考真题汇编1.【2019年新课标1理科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a2.【2018年新课标1理科09】已知函数f(),g()=f()++a.若g()存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)3.【2017年新课标1理科05】函数f()在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(﹣2)≤1的的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]4.【2017年新课标1理科11】设、y、为正数,且2=3y=5,则()A.2<3y<5 B.5<2<3y C.3y<5<2 D.3y<2<55.【2016年新课标1理科08】若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.a log b c<b log a c D.log a c<log b c6.【2014年新课标1理科03】设函数f(),g()的定义域都为R,且f()是奇函数,g()是偶函数,则下列结论正确的是()A.f()•g()是偶函数B.|f()|•g()是奇函数C.f()•|g()|是奇函数D.|f()•g()|是奇函数7.【2014年新课标1理科06】如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为的函数f (),则y=f()在[0,π]的图象大致为()A.B.C.D.8.【2013年新课标1理科11】已知函数f(),若|f()|≥a,则a的取值范围是()A.(﹣∞,0] B.(﹣∞,1] C.[﹣2,1] D.[﹣2,0]9.【2011年新课标1理科02】下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=23B.y=||+1 C.y=﹣2+4 D.y=2﹣||10.【2011年新课标1理科12】函数y的图象与函数y=2sinπ,(﹣2≤≤4)的图象所有交点的横坐标之和等于()A.8 B.6 C.4 D.211.【2010年新课标1理科04】如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,),角速度为1,那么点P到轴距离d关于时间t的函数图象大致为()A.B.C.D.12.【2010年新课标1理科08】设偶函数f()满足f()=2﹣4(≥0),则{|f(﹣2)>0}=()A.{|<﹣2或>4} B.{|<0或>4} C.{|<0或>6} D.{|<﹣2或>2}13.【2010年新课标1理科11】已知函数,若a,b,c互不相等,且f(a)=f(b )=f (c ),则abc 的取值范围是( ) A .(1,10) B .(5,6) C .(10,12)D .(20,24)14.【2015年新课标1理科13】若函数f ()=ln ()为偶函数,则a = .考题分析与复习建议本专题考查的知识点为:函数,函数的单调性与最值,函数的奇偶性与周期性,幂函数与二次函数,指数函数,对数函数,分段函数,函数的图象,函数与方程等.历年考题主要以选择填空题型出现,重点考查的知识点为:函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等.预测明年本考点题目会比较稳定,备考方向以知识点函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等为重点较佳.最新高考模拟试题1.已知()21f x ax bx =-+是定义域为[a ,a +1]的偶函数,则2b a a -=( )A .0B .34C 2D .42.已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足()()01212<--x x x f x f .若(3)1f =,则不等式()2log 1f x <的解集为( )A .1,82⎛⎫ ⎪⎝⎭B .)8,1(C .10,(8,)2⎛⎫⋃+∞ ⎪⎝⎭D .(,1)(8,)-∞⋃+∞3.函数22()log (34)f x x x =--的单调减区间为( )A .(,1)-∞-B .3(,)2-∞-C .3(,)2+∞D .(4,)+∞4.已如定义在R 上的函数()f x 的周期为6.且()[]()()11,3,02,0,3xx x f x f x x ⎧⎛⎫-+∈-⎪ ⎪=⎨⎝⎭⎪-∈⎩,则()()78f f -+=( ) A .11B .134C .7D .1145.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .3y x =B .y x 1=-C .y x 1=-D .x y 2=6.设函数2,,()=,.x e x a f x x x a x a ⎧≤⎨-+>⎩则下列结论中正确的是( )A .对任意实数a ,函数()f x 的最小值为14a -B .对任意实数a ,函数()f x 的最小值都不是14a -C .当且仅当12a ≤时,函数()f x 的最小值为14a -D .当且仅当14a ≤时,函数()f x 的最小值为14a -7.已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是( ) A .2()(2)3-∞+∞,,U B .2(2)3, C .22()33-,D .22()()33-∞-+∞,,U 8.设函数1212,2()3log (2),2x x f x x x -⎧+≥=⎨+-<⎩,则((0))f f =( )A .5B .8C .9D .179.已知函数()ln ln()f x x a x =+-的图象关于直线1x =对称,则函数()f x 的值域为( ) A .(0,2)B .[0,)+∞C .(2]-∞D .(,0]-∞10.已知函数()f x 是R 上的偶函数,且对任意的x R ∈有(3)()f x f x +=-,当(3,0)x ∈- 时,()25f x x =-,则(8)f =( )A .11B .5C .-9D .-111.已知函数122,0()2,()()2,0x acosx x f x g x a R x a x -+≥⎧==∈⎨+<⎩,若对任意11)[x ∈+∞,,总存在2x R ∈,使12()()f x g x =,则实数a 的取值范围是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫+∞⎪⎝⎭ C .1,[1,2]2⎛⎫-∞ ⎪⎝⎭U D .371,,224⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦U12.已知函数()22(1),0log ,0x x f x x x ⎧+⎪=⎨>⎪⎩…,若方程f ()=a 有四个不同的解1,2,3,4,且1<2<3<4,则()3122341x x x x x ++的取值范围为( ) A .(﹣1,+∞)B .(﹣1,1]C .(﹣∞,1)D .[﹣1,1)13.已知定义在实数集R 上的函数()f x 的图象经过点(1,2)--,且满足()()f x f x -=,当0≤<a b 时不等式()()0f b f a b a->-恒成立,则不等式(1)20f x -+<的解集为( )A .(0,2)B .(2,0)-C .(,0)(2,)-∞+∞UD .(,2)(0,)-∞-+∞U14.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数 D .奇函数,且在(0,10)是减函数15.已知()f x 与函数sin y a x =-关于点(12,0)对称,()g x 与函数xy e =关于直线y x =对称,若对任意(]10,1x ∈,存在2[,2]2x π∈使112()()g x x f x -≤成立,则实数a 的取值范围是( )A .1(,]sin1-∞ B .1[,)sin1+∞ C .1(,]cos1-∞D .1[,)cos1+∞16.函数()(),f x g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,设()()()11h x f x g x =+++,则下列结论中正确的是( ) A .()h x 的图象关于(1,0)对称 B .()h x 的图象关于(1,0)-对称 C .()h x 的图象关于1x =对称D .()h x 的图象关于1x =-对称17.偶函数()f x 在[]0,2上递增,且()1a f =,121log 4b f ⎛⎫= ⎪⎝⎭,2log c f ⎛= ⎝⎭大小为( )A .c a b >>B .a c b >>C .b a c >>D .a b c >>18.设函数2,1(),12x x f x x x -⎧≤⎪=⎨>⎪⎩,则满足()()2f f a f a =⎡⎤⎣⎦的a 的取值范围是( )A .(],0-∞B .[]0,2C .[)2,+∞D .(][),02,-∞⋃+∞19.设函数2()x x f x e e x -=++,则使()()21f x f x >+成立的x 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .1,13⎛⎫- ⎪⎝⎭D .1,(1,)3⎛⎫-∞-⋃+∞ ⎪⎝⎭20.已知函数()f x 的定义域为(0,)+∞,对于定义域内任意x ,[]2()log 3f f x x -=,则函数()()7g x f x x =+-的零点所在的区间为( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)21.已知函数()f x 是奇函数,当0x >时,()lg f x x =,则1100f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的值为 ______ 22.设函数ln(2),1()24,1x x f x x x +≥-⎧=⎨--<-⎩,若()1f a =-,则a =_______.23.函数()32351f x x x x =-+-图象的对称中心为_____ 24.已知函数()()2log ,011,1x x f x f x x <≤⎧=⎨->⎩,则20192f ⎛⎫= ⎪⎝⎭__________.25.已知f()是定义在R 上的偶函数,且(4)(2)f x f x +=-.若当[3,0]x ∈- 时,()6x f x -=,则()919f =__________26.已知直线l 与曲线31y x x =-+有三个不同的交点()11,A x y ,()22,B x y ,()33,C x y ,且||||AB AC =,则()31iii x y =+=∑__________.27.已知实数a ,b R ∆(0,2),且满足2244242a b a b b --=--,则a +b 的值为_______.28.设函数2,,()1,.x e x x a f x ax x a ⎧-<=⎨-≥⎩ 若1a =,则()f x 的最小值为__________; 若()f x 有最小值,则实数a 的取值范围是_______.29.在平面直角坐标系xoy 中,对于点(),A a b ,若函数()y f x =满足:[]1,1x a a ∀∈-+,都有[]1,1y b b ∈-+,就称这个函数是点A 的“限定函数”.以下函数:①12y x =,②221y x =+,③sin y x =,④()ln 2y x =+,其中是原点O 的“限定函数”的序号是______.已知点(),A a b 在函数2xy =的图象上,若函数2xy =是点A 的“限定函数”,则a 的取值范围是______.30.函数()211log 1axf x x x+=+-为奇函数,则实数a =__________.。
十年真题(2010-2019)高考数学(理)分类汇编专题09 立体几何与空间向量选择填空题(新课标Ⅰ卷)(解析版

专题09立体几何与空间向量选择填空题历年考题细目表填空题2010 三视图与直观图2010年新课标1理科14历年高考真题汇编1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π【解答】解:如图,由P A=PB=PC,△ABC是边长为2的正三角形,可知三棱锥P﹣ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC,∵E,F分别是P A,AB的中点,∴EF∥PB,又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面P AC,∴正三棱锥P﹣ABC的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D.半径为,则球O的体积为.故选:D.2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.3.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6.故选:A.4.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.5.【2016年新课标1理科06】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:,R=2.它的表面积是:4π•2217π.故选:A.6.【2016年新课标1理科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD =m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.7.【2015年新课标1理科06】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【解答】解:设圆锥的底面半径为r,则r=8,解得r,故米堆的体积为π×()2×5,∵1斛米的体积约为1.62立方,∴ 1.62≈22,故选:B.8.【2015年新课标1理科11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:4πr2πr22r×2πr+2r×2rπr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.9.【2014年新课标1理科12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6 C.4D.4【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC6,AD=4,显然AC最长.长为6.故选:B.10.【2013年新课标1理科06】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V.故选:A.11.【2013年新课标1理科08】某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积22×π×4=8π所以这个几何体的体积是16+8π;故选:A.12.【2012年新课标1理科07】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V6×3×3=9.故选:B.13.【2012年新课标1理科11】已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1,∴OO1,∴高SD=2OO1,∵△ABC是边长为1的正三角形,∴S△ABC,∴V三棱锥S﹣ABC.故选:C.14.【2011年新课标1理科06】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选:D.15.【2010年新课标1理科10】设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa2【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选:B.16.【2017年新课标1理科16】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG BC,即OG的长度与BC的长度成正比,设OG=,则BC=2,DG=5﹣,三棱锥的高h,3,则V,令f()=254﹣105,∈(0,),f′()=1003﹣504,令f′()≥0,即4﹣23≤0,解得≤2,则f()≤f(2)=80,∴V4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为,则OG,∴FG=SG=5,SO=h,∴三棱锥的体积V,令b()=54,则,令b′()=0,则430,解得=4,∴(cm3).故答案为:4cm3.17.【2011年新课标1理科15】已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为.【解答】解:矩形的对角线的长为:,所以球心到矩形的距离为:2,所以棱锥O﹣ABCD的体积为:8.故答案为:818.【2010年新课标1理科14】正视图为一个三角形的几何体可以是(写出三种)【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.考题分析与复习建议本专题考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以选择填空题型出现,重点考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质等.预测明年本考点题目会比较稳定,备考方向以知识点空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质等为重点较佳.最新高考模拟试题1.在四棱锥P ABCD -中,所有侧棱都为42,底面是边长为26的正方形,O 是P 在平面ABCD 内的射影,M 是PC 的中点,则异面直线OP 与BM 所成角为( ) A .30o B .45oC .60oD .90o【答案】C 【解析】由题可知O 是正方形ABCD 的中心, 取N 为OC 的中点,所以OP MN P , 则BMN ∠是异面直线OP 与BM 所成的角. 因为OP ⊥平面ABCD , 所以MN ⊥平面ABCD ,因为在四棱锥P ABCD -中,所有侧棱都为42,底面是边长为26的正方形, 所以23OC =,所以321225OP =-=,因此5MN =,又在PBC ∆中,2223232245cos 22328PB PC BC BPC PB PC +-+-∠===•⨯,所以22252cos 32824222208BM PB PM PB PM BPC =+-••∠=+-⨯⨯⨯=, 即25BM =, 所以1cos 2MN BMN MB ∠==, 则异面直线OP 与BM 所成的角为60o . 故选C2.已知,m n 是两条不重合的直线,,αβ是两个不重合的平面,下列命题正确的是( )A .若m αP ,m βP ,n α∥,n β∥,则αβPB .若m n ∥,m α⊥,n β⊥,则αβPC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m n ⊥,m αP ,n β⊥,则αβ⊥ 【答案】B 【解析】A 选项,若m αP ,m βP ,n α∥,n β∥,则αβP 或α与β相交;故A 错;B 选项,若m n ∥,m α⊥,则n α⊥,又n β⊥,,αβ是两个不重合的平面,则αβP ,故B 正确;C 选项,若m n ⊥,m α⊂,则n α⊂或n α∥或n 与α相交,又n β⊂,,αβ是两个不重合的平面,则αβP 或α与β相交;故C 错;D 选项,若m n ⊥,m αP ,则n α⊂或n α∥或n 与α相交,又n β⊥,,αβ是两个不重合的平面,则αβP 或α与β相交;故D 错; 故选B3.已知正方体1111ABCD A B C D -的棱长为1,在对角线1A D 上取点M ,在1CD 上取点N ,使得线段MN平行于对角面11A ACC ,则||MN 的最小值为( ) A .1 B .2C .2D .3 【答案】D 【解析】作1MM AD ⊥,垂足为1M ,作1NN CD ⊥,垂足为1N ,如下图所示:在正方体1111ABCD A B C D -中,根据面面垂直的性质定理,可得11,MM NN ,都垂直于平面ABCD ,由线面垂直的性质,可知11MM NN P ,易知:1111//M M A N N ACC 平面,由面面平行的性质定理可知://11M N AC ,设11DM DN x ==,在直角梯形11MM N N 中,222211(2)(12)633MN x x x ⎛⎫=-+-=-+ ⎪⎝⎭,当13x =时,||MN 的最小值为33, 故本题选D.4.如图,某几何体的三视图如图所示,则此几何体的体积为( )A .3B .23C .3D .3【答案】A 【解析】解:根据几何体得三视图转换为几何体为:故:V 11321332=⨯⨯⨯=故选:A .5.已知正四棱锥P ABCD -的所有顶点都在球O 的球面上,2PA AB ==,则球O 的表面积为( )A .2πB .4πC .8πD .16π【答案】C 【解析】解:∵正四棱锥P ﹣ABCD 的所有顶点都在球O 的球面上,P A =AB =2, ∴连结AC ,BD ,交于点O ,连结PO , 则PO ⊥面ABCD ,OA =OB =OC =OD 221122222AC ==+=, OP 22422PB OB =-=-=,∴O 是球心,球O 的半径r 2=,∴球O 的表面积为S =4πr 2=8π. 故选:C .6.已知长方体全部棱长的和为36,表面积为52,则其体对角线的长为( ) A .4 B 29C .223D .17【答案】B 【解析】设长方体的三条棱的长分别为:,,x y z , 则2()524()36xy yz zx x y z ++=⎧⎨++=⎩,22222()2()95229x y z x y z xy yz zx ++=++-++=-=.故选:B .7.如图所示,边长为a 的空间四边形ABCD 中,∠BCD=90°,平面ABD⊥平面BCD ,则异面直线AD 与BC所成角的大小为()A.30°B.45°C.60°D.90°【答案】C【解析】由题意得BC=CD=a,∠BCD=90°,∴BD=2a,∴∠BAD=90°,取BD中点O,连结AO,CO,∵AB=BC=CD=DA=a,∴AO⊥BD,CO⊥BD,且AO=BO=OD=OC=22a,又∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊥BD,∴AO⊥平面BCD,延长CO至点E,使CO=OE,连结ED,EA,EB,则四边形BCDE为正方形,即有BC∥DE,∴∠ADE(或其补角)即为异面直线AD与BC所成角,由题意得AE=a,ED=a,∴△AED为正三角形,∴∠ADE=60°,∴异面直线AD与BC所成角的大小为60°.故选:C.8.鲁班锁起于中国古代建筑中首创的榫卯结构,相传由春秋时代鲁国工匠鲁班所作. 下图是经典的六柱鲁班锁及六个构件的图片,下图是其中一个构件的三视图,则此构件的体积为A .334000mmB .333000mmC .332000mmD .330000mm【答案】C 【解析】由三视图得鲁班锁的其中一个零件是:长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长体的一个几何体,如图,∴该零件的体积:V =100×20×20﹣40×20×10=32000(mm 3).故选:C .9.在正方体1111ABCD A B C D -中,动点E 在棱1BB 上,动点F 在线段11A C 上,O 为底面ABCD 的中心,若1,BE x A F y ==,则四面体O AEF -的体积( )A .与,x y 都有关B .与,x y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关【答案】B 【解析】因为V O -AEF =V E -OAF ,所以,考察△AOF 的面积和点E 到平面AOF 的距离的值, 因为BB 1∥平面ACC 1A 1,所以,点E 到平面AOE 的距离为定值, 又AO∥A 1C 1,所以,OA 为定值,点F 到直线AO 的距离也为定值, 即△AOF 的面积是定值,所以,四面体O AEF -的体积与,x y 都无关,选B 。
2019年全国各地中考数学试题分类汇编(第二期) 专题35 尺规作图(含解析)

尺规作图一.选择题1.(2019•贵阳•3分)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A.2 B.3 C.D.【分析】利用基本作图得到CE⊥AB,再根据等腰三角形的性质得到AC=3,然后利用勾股定理计算CE的长.【解答】解:由作法得CE⊥AB,则∠AEC=90°,AC=AB=BE+AE=2+1=3,在Rt△ACE中,CE==.故选:D.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).2. (2019•河北•3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.3. (2019•河南•3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF =FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD 的长.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠F AO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.二.填空题1.2.3.4.三.解答题1. (2019•江苏无锡•10分)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.【分析】(1)连结AE并延长交圆E于点C,作AC的中垂线交圆于点B,D,四边形ABCD 即为所求.(2)①连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB于点F,点F即为所求;②结合网格特点和三角形高的概念作图可得.【解答】解:(1)如图1,连结AO并延长交圆O于点C,作AC的中垂线交圆于点B,D,四边形ABCD即为所求.(2)①如图2,连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB 于点F,F即为所求②如图3所示,AH即为所求.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握圆的有关性质和平行四边形的性质及三角形垂心的性质.2. (2019•江苏宿迁•10分)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)【分析】(1)连接OF,可证得OF∥BC,结合平行线的性质和圆的特性可求得∠1=∠OFB =∠2,可得出结论;(2)由(1)可知切点是∠ABC的角平分线和AC的交点,圆心在BF的垂直平分线上,由此即可作出⊙M.【解答】解:(1)证明:如图①,连接OF,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M为所求.①①作∠ABC平分线交AC于F点,②作BF的垂直平分线交AB于M,以MB为半径作圆,即⊙M为所求.证明:∵M在BF的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M与边AC相切.【点评】本题主要考查圆和切线的性质和基本作图的综合应用.掌握连接圆心和切点的半径与切线垂直是解题的关键,3. (2019•江西•6分)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹).(1)在图1中作弦EF,使EF//BC;(2)在图2中以BC为边作一个45°的圆周角.F(1)EF就是所求作的弦;(2)角BCQ或角CBQ就是所求作的角。
十年真题(2010-2019)高考数学(理)分类汇编专题03 函数概念与基本初等函数(新课标Ⅰ卷)(解析版)

专题03函数概念与基本初等函数历年考题细目表历年高考真题汇编1.【2019年新课标1理科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.2.【2018年新课标1理科09】已知函数f(),g()=f()++a.若g()存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g()=0得f()=﹣﹣a,作出函数f()和y=﹣﹣a的图象如图:当直线y=﹣﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g()存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.3.【2017年新课标1理科05】函数f()在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(﹣2)≤1的的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]【解答】解:∵函数f()为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f()在(﹣∞,+∞)单调递减,﹣1≤f(﹣2)≤1,∴f(1)≤f(﹣2)≤f(﹣1),∴﹣1≤﹣2≤1,解得:∈[1,3],故选:D.4.【2017年新课标1理科11】设、y、为正数,且2=3y=5,则()A.2<3y<5 B.5<2<3y C.3y<5<2 D.3y<2<5 【解答】解:、y、为正数,令2=3y=5=>1.lg>0.则,y,.∴3y,2,5.∵,.∴lg0.∴3y<2<5.另解:、y、为正数,令2=3y=5=>1.lg>0.则,y,.∴1,可得2>3y,1.可得5>2.综上可得:5>2>3y.解法三:对取特殊值,也可以比较出大小关系.故选:D.5.【2016年新课标1理科08】若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.a log b c<b log a c D.log a c<log b c【解答】解:∵a>b>1,0<c<1,∴函数f()=c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f()=c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c>ba c;故B错误;log a c<0,且log b c<0,log a b<1,即1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣b log a c<﹣a log b c,即b log a c>a log b c,即a log b c<b log a c,故C正确;故选:C.6.【2014年新课标1理科03】设函数f(),g()的定义域都为R,且f()是奇函数,g()是偶函数,则下列结论正确的是()A.f()•g()是偶函数B.|f()|•g()是奇函数C.f()•|g()|是奇函数D.|f()•g()|是奇函数【解答】解:∵f()是奇函数,g()是偶函数,∴f(﹣)=﹣f(),g(﹣)=g(),f(﹣)•g(﹣)=﹣f()•g(),故函数是奇函数,故A错误,|f(﹣)|•g(﹣)=|f()|•g()为偶函数,故B错误,f(﹣)•|g(﹣)|=﹣f()•|g()|是奇函数,故C正确.|f(﹣)•g(﹣)|=|f()•g()|为偶函数,故D错误,故选:C.7.【2014年新课标1理科06】如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为的函数f (),则y=f()在[0,π]的图象大致为()A.B.C.D.【解答】解:在直角三角形OMP中,OP=1,∠POM=,则OM=|cos|,∴点M到直线OP的距离表示为的函数f()=OM|sin|=|cos|•|sin||sin2|,其周期为T,最大值为,最小值为0,故选:C.8.【2013年新课标1理科11】已知函数f(),若|f()|≥a,则a的取值范围是()A.(﹣∞,0] B.(﹣∞,1] C.[﹣2,1] D.[﹣2,0]【解答】解:由题意可作出函数y=|f()|的图象,和函数y=a的图象,由图象可知:函数y=a的图象为过原点的直线,当直线介于l和轴之间符合题意,直线l为曲线的切线,且此时函数y=|f()|在第二象限的部分解析式为y=2﹣2,求其导数可得y′=2﹣2,因为≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=a的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.9.【2011年新课标1理科02】下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=23B.y=||+1 C.y=﹣2+4 D.y=2﹣||【解答】解:对于A.y=23,由f(﹣)=﹣23=﹣f(),为奇函数,故排除A;对于B.y=||+1,由f(﹣)=|﹣|+1=f(),为偶函数,当>0时,y=+1,是增函数,故B正确;对于C.y=﹣2+4,有f(﹣)=f(),是偶函数,但>0时为减函数,故排除C;对于D.y=2﹣||,有f(﹣)=f(),是偶函数,当>0时,y=2﹣,为减函数,故排除D.故选:B.10.【2011年新课标1理科12】函数y的图象与函数y=2sinπ,(﹣2≤≤4)的图象所有交点的横坐标之和等于()A.8 B.6 C.4 D.2【解答】解:函数y1,y2=2sinπ的图象有公共的对称中心(1,0),作出两个函数的图象,如图,当1<≤4时,y1<0而函数y2在(1,4)上出现1.5个周期的图象,在(1,)和(,)上是减函数;在(,)和(,4)上是增函数.∴函数y1在(1,4)上函数值为负数,且与y2的图象有四个交点E、F、G、H相应地,y1在(﹣2,1)上函数值为正数,且与y2的图象有四个交点A、B、C、D且:A+H=B+G=C+F=D+E=2,故所求的横坐标之和为8.故选:A.11.【2010年新课标1理科04】如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,),角速度为1,那么点P到轴距离d关于时间t的函数图象大致为()A.B.C.D.【解答】解:通过分析可知当t=0时,点P到轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在轴上此时点P到轴距离d为0,排除答案B,故选:C.12.【2010年新课标1理科08】设偶函数f()满足f()=2﹣4(≥0),则{|f(﹣2)>0}=()A.{|<﹣2或>4} B.{|<0或>4} C.{|<0或>6} D.{|<﹣2或>2}【解答】解:由偶函数f()满足f()=2﹣4(≥0),可得f()=f(||)=2||﹣4,则f(﹣2)=f(|﹣2|)=2|﹣2|﹣4,要使f(|﹣2|)>0,只需2|﹣2|﹣4>0,|﹣2|>2解得>4,或<0.应选:B.13.【2010年新课标1理科11】已知函数,若a,b,c互不相等,且f(a)=f (b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【解答】解:作出函数f()的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.14.【2015年新课标1理科13】若函数f()=ln()为偶函数,则a=.【解答】解:∵f()=ln()为偶函数,∴f(﹣)=f(),∴(﹣)ln(﹣)=ln(),∴﹣ln(﹣)=ln(),∴ln(﹣)+ln()=0,∴ln()()=0,∴lna=0,∴a=1.故答案为:1.考题分析与复习建议本专题考查的知识点为:函数,函数的单调性与最值,函数的奇偶性与周期性,幂函数与二次函数,指数函数,对数函数,分段函数,函数的图象,函数与方程等.历年考题主要以选择填空题型出现,重点考查的知识点为:函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等.预测明年本考点题目会比较稳定,备考方向以知识点函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等为重点较佳.最新高考模拟试题1.已知()21f x ax bx =-+是定义域为[a ,a +1]的偶函数,则2b a a -=( )A .0B .34C D .4【答案】B 【解析】∵f ()在[a ,a +1]上是偶函数, ∴﹣a =a +1⇒a 12=-, 所以f ()的定义域为[12-,12], 故:f ()12=-2﹣b +1, ∵f ()在区间[12-,12]上是偶函数,有f (12-)=f (12),代入解析式可解得:b =0;∴2b a a -13144=-=.故选:B .2.已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足()()01212<--x x x f x f .若(3)1f =,则不等式()2log 1f x <的解集为( )A .1,82⎛⎫ ⎪⎝⎭B .)8,1(C .10,(8,)2⎛⎫⋃+∞ ⎪⎝⎭D .(,1)(8,)-∞⋃+∞【答案】A 【解析】因为对121x x ∀<≤,满足()()01212<--x x x f x f ,所以()y f x =当1≤x 时,是单调递减函数,又因为)1(+x f 为偶函数,所以()y f x =关于1x =对称,所以函数()y f x =当1>x 时,是增函数,又因为(3)1f =,所以有1)1(=-f ,当2log 1x ≤时,即当02x <≤时,()()222log 1log (11log 2221)1f x f x x x x f <⇒<-⇒>-⇒>∴<≤当2log 1x >时,即当2x >时,()()222log 1log (3)log 3828x x f x f x f x <⇒<⇒∴<<⇒<<,综上所述:不等式()2log 1f x <的解集为1,82⎛⎫ ⎪⎝⎭,故本题选A.3.函数22()log (34)f x x x =--的单调减区间为( )A .(,1)-∞-B .3(,)2-∞-C .3(,)2+∞D .(4,)+∞【答案】A 【解析】函数()()22log 34f x x x =--,所以 2340(4)(1)04x x x x x -->⇒-+>⇒>或1x <-,所以函数()f x 的定义域为4x >或1x <-,234y x x =--当3(,)2-∞时,函数是单调递减,而1x <-,所以函数()()22log 34f x x x =--的单调减区间为(),1-∞-,故本题选A 。
十年真题(2010-2019)高考数学(理)分类汇编专题15 算法(新课标Ⅰ卷)((原卷版)

专题15算法历年考题细目表题型年份考点试题位置单选题2019 程序框图2019年新课标1理科08单选题2017 程序框图2017年新课标1理科08单选题2016 程序框图2016年新课标1理科09单选题2015 程序框图2015年新课标1理科09单选题2014 程序框图2014年新课标1理科07单选题2013 程序框图2013年新课标1理科05单选题2012 程序框图2012年新课标1理科06单选题2011 程序框图2011年新课标1理科03单选题2010 程序框图2010年新课标1理科07历年高考真题汇编1.【2019年新课标1理科08】如图是求的程序框图,图中空白框中应填入()A.A B.A=2 C.A D.A=12.【2017年新课标1理科08】如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+23.【2016年新课标1理科09】执行下面的程序框图,如果输入的=0,y=1,n=1,则输出,y的值满足()A.y=2 B.y=3 C.y=4 D.y=54.【2015年新课标1理科09】执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.85.【2014年新课标1理科07】执行如图的程序框图,若输入的a,b,分别为1,2,3,则输出的M=()A.B.C.D.6.【2013年新课标1理科05】执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4] B.[﹣5,2] C.[﹣4,3] D.[﹣2,5]7.【2012年新课标1理科06】如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数8.【2011年新课标1理科03】执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.50409.【2010年新课标1理科07】如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.考题分析与复习建议本专题考查的知识点为:算法的逻辑结构,顺序结构、条件结构、循环结构,程序框图和算法思想,求程序框图中的执行结果和确定控制条件.历年考题主要以选择填空题型出现,重点考查的知识点为:算法的循环结构,程序框图和算法思想.预测明年本考点题目会比较稳定,备考方向以算法的循环结构,程序框图和算法思想为重点较佳.最新高考模拟试题1.我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图于这个题目,执行该程序框图,若输入=20,则输出的结果为()A.3B.4C.5D.62.如图所示的程序框图,若=5,则运算多少次停止( )A.2 B.3 C.4 D.53.正整数n 除以m 后的余数为,记为r n MOD m =,如4195MOD =.执行如图的程序框图,则输出的数n 是( )A .19B .22C .27D .474.执行如图所示的程序框图,输出n 的值为( )A .6B .7C .8D .95.为了计算11111123420192020S =-+-++-L ,设计如图所示的程序框图,则在空白框中应填入( )A .1i i =+B .2i i =+C .3i i =+D .4i i =+6.如图程序框图的算法思路于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为16,20,则输出的a =( )A .14B .4C .2D .07.执行如图所示的程序框图,则输出的S 值为( )A.4B.5 C.8D.98.某程序框图如图所示,若该程序运行后输出的值是95,则a的值是()A.7B.6C.5D.4 9.执行如图的程序框图,如果输出的S=3,则输入的t=()A .1? -B .3?- C .1或3 D .1或3-10.如图是一个算法流程图,则输出的结果是( )A .3B .4C .5D .611.《九章算术》中有如下问题“今有牛、羊、马食人苗,苗主责之粟五斗,主日‘我羊食半马.’马主日‘ 我马食半牛.’今欲衰偿之,问各出几何?”翻译为今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说“我羊所吃的禾苗只有马的一半.”马主人说“我马吃的禾苗只有牛的一半”打算按此比率偿还,问牛、马、羊的主人各应赔偿多少粟?已知1斗=10升,针对这一问题,设计程序框图如图所示,若输出k 的值为2,则m =( )A .503B .507.C .103D .100712.在如图所示的计算1592017++++L 程序框图中,判断框内应填入的条件是( )A .2017?i ≤B .2017?i <C .2013?i <D .2021?i ≤ 13.如图所示的程序框图所实现的功能是( )A .输入a 的值,计算()2021131a -⨯+ B .输入a 的值,计算()2020131a -⨯+ C .输入a 的值,计算()2019131a -⨯+D .输入a 的值,计算()2018131a -⨯+ 14.执行如图所示的程序框图,如果输入的]2,0[∈x ,那么输出的y 值不可能为A.1 B.0C.1D.215.阅读如图所示的程序框图,则输出的()A.30B.29C.90D.5416.执行如图所示的程序框图,若输出的,则判断框内应填入的条件是()A.B.C.D.17.执行如图所示的程序框图,则输出的()A.3B.4C.5D.618.执行下面程序框图,若输入的的值分别为0和44,则输出的值为()A.4B.7C.10D.1319.执行如图所示的程序框图,若输出结果为1,则可输入的实数值的个数为()A.1B.2C.3D.420.运行程序框图,如果输入某个正数后,输出的,那么的值为()A.3B.4C.5D.6。