基于单片机的液位控制器设计

合集下载

基于AT89C51单片机的水位控制系统设计

基于AT89C51单片机的水位控制系统设计

基于AT89C51单片机的水位控制系统设计1 引言1.1 设计目的在工农业生产中,常常需要测量液体液位。

随着国家工业的迅速发展,液位测量技术被广泛应用到石油、化工、医药、食品等各行各业中。

低温液体(液氧、液氮、液氩、液化天然气及液体二氧化碳等)得到广泛的应用,作为贮存低温液体的容器要保证能承受其载荷;在发电厂、炼钢厂中,保持正常的锅炉汽包水位、除氧器水位、汽轮机凝气器水位、高、低压加热器水位等,是设备安全运行的保证,因此一个安全合适的水位系统是很必要的。

1.2 设计要求利用单片机设计一个水位控制系统,要求用开关来模拟水位的状态,当设定完水位后,系统根据水位情况控制电磁阀的开启和关断。

具体要求如下:1、设计单片机工作系统电路。

2、通过键盘设置其预定水位,根据水位不同控制电机的旋转。

5、利用Proteus进行仿真。

1.3 设计方法本设计是采用AT89C51单片机为核心芯片,及其相关硬件来实现的水体液位控制系统,采用八个键盘来模拟水位, CPU循环检键盘输入状态,并用3位七段LED显示示液位高度,检测液位数据,实施报警安全提示,当水体液位低于用户设定的值时,系统自动打开泵上水,当水位到达设定值时,系统自动打开排水泵。

2 设计方法和原理2.1 水塔水位的控制原理单片机水塔水位控制原理如图l所示,图中的虚线表示允许水位变化的上、下限位置。

在正常情况下.水位应控制在虚线范围之内。

为此,在水塔内的不同高度处,安装固定不变的3根金属棒A、B、C。

用以反映水位变化的情况。

其中,A棒在下限水位.B棒在上、下限水位之间,C棒在上限水位(底端靠近水池底部.不能过低,要保证有足够大的流水量)。

水塔由电机带动水泵供水。

单片机控制电机转动,随着供水,水位不断上升.当水位上升到上限水位时,由于水的导电作用。

使B、C棒均与+5 V连通。

因此B、C两端的电压都为+5 V,即为“l”状态,此时应停止电机和水泵工作,不再向水塔注水;随着水量的减少,当水位处于上、下限之间时。

基于单片机的超声波水位控制器的设计

基于单片机的超声波水位控制器的设计

基于单片机的超声波水位控制器的设计一、引言在许多工业和民用领域,如水库、水塔、污水处理厂等,准确监测和控制水位是至关重要的。

传统的水位控制方法往往存在精度低、可靠性差、响应速度慢等问题。

随着电子技术和单片机技术的不断发展,基于单片机的超声波水位控制器应运而生,它具有精度高、响应快、易于实现自动化控制等优点,为水位控制提供了一种更加高效、可靠的解决方案。

二、超声波水位测量原理超声波是一种频率高于 20kHz 的机械波,它在空气中传播时遇到障碍物会发生反射。

超声波水位控制器就是利用这一原理来测量水位的。

控制器通过发射超声波脉冲,并测量从发射到接收反射波的时间间隔,根据声音在空气中的传播速度,就可以计算出传感器到水面的距离。

由于传感器的安装位置是固定的,因此可以通过计算得出水位的高度。

三、系统硬件设计(一)单片机选型在本设计中,选用了_____型号的单片机作为核心控制器。

该单片机具有性能稳定、运算速度快、资源丰富等优点,能够满足系统的控制和数据处理需求。

(二)超声波传感器选择了一款高精度的超声波传感器,其测量范围能够满足实际应用的需求,并且具有良好的稳定性和可靠性。

(三)显示模块为了实时显示水位信息,选用了_____显示模块。

它可以清晰地显示水位高度、报警状态等信息,方便操作人员查看。

(四)按键模块设置了按键模块,用于设定水位的上下限阈值,以及进行系统的参数设置和操作控制。

(五)报警模块当水位超过设定的上下限阈值时,报警模块会发出声光报警信号,提醒操作人员及时采取措施。

(六)电源模块为整个系统提供稳定的电源供应,确保系统的正常运行。

四、系统软件设计(一)主程序流程系统上电后,首先进行初始化操作,包括单片机内部资源的初始化、传感器的初始化、显示模块的初始化等。

然后进入主循环,不断地采集水位数据、进行数据处理和判断,并根据判断结果控制显示模块和报警模块。

(二)数据采集与处理程序通过单片机的定时器和中断功能,精确地测量超声波从发射到接收的时间间隔,并将其转换为水位高度。

基于单片机的水温水位控制系统设计

基于单片机的水温水位控制系统设计

基于单片机的水温水位控制系统设计设计基于单片机的水温水位控制系统需要考虑多个方面,包括硬件设计、传感器选择、控制算法等。

下面是一个简单的框架,供参考:1. 系统架构设计:•确定系统的功能模块,包括水温控制、水位控制、传感器接口、用户界面等。

2. 硬件设计:•选择合适的单片机,考虑到控制的实时性,通常选择性能较高的单片机,如Arduino、STM32等。

•设计电源电路,确保系统能够稳定工作。

•选择和设计合适的传感器接口电路,如温度传感器、水位传感器等。

3. 传感器选择和接口设计:•温度传感器:选择合适的温度传感器,如DS18B20,并设计接口电路进行连接。

•水位传感器:选择水位传感器,如浮球开关传感器,超声波水位传感器等,并设计接口电路。

4. 用户界面设计:•设计一个简单的用户界面,可以使用液晶显示屏(LCD)、LED 指示灯等,以显示当前水温、水位状态等信息。

•如果有需要,可以加入按键、旋钮等元件,以便用户进行设置和操作。

5. 控制算法设计:•制定水温和水位的控制算法,考虑到系统的实时性和稳定性。

•温度控制:可以使用PID(比例-积分-微分)控制算法,根据温度传感器的反馈调节加热器或冷却器的工作状态。

•水位控制:可以根据水位传感器的反馈,控制水泵的启停,以维持水位在设定范围内。

6. 通信模块设计(可选):•如果需要,可以考虑加入通信模块,如Wi-Fi模块、蓝牙模块,使系统可以通过手机或电脑进行远程监控和控制。

7. 安全保护设计:•考虑加入安全保护机制,如过温保护、过水位保护等,以确保系统运行的安全性。

8. 软件编程:•编写单片机的控制程序,根据设计的算法进行编程。

•确保程序的鲁棒性,考虑异常情况的处理。

9. 调试和测试:•在实际硬件上进行调试和测试,确保系统稳定可靠。

10. 性能优化:•对系统进行性能优化,如功耗优化、响应速度优化等。

以上是一个基本的设计框架,具体的实现需要根据具体需求和条件进行调整。

基于单片机的水位控制系统设计毕业论文

基于单片机的水位控制系统设计毕业论文

毕业论文(设计) 题目:基于单片机的水位控制系统设计系部名称:专业班级:学生姓名:学号:指导教师:教师职称:20年月日摘要传统的水位控制在生产中一直占有主导地位,但随着生产线的更新,不仅要求有更直观、准确、稳定的水位控制系统,同时还要求在降低生产设备的成本方面要求更新自动化程度和性价比高的水位控制系统。

单片机控制系统以其控制精度高、性能稳定可靠、设置操作方便、造价低等特点被应用到水位系统的控制中。

本系统采用单片机AT89C51为控制核心来实现水位的基本控制功能。

系统由键盘、数码显示、A/D转换、传感器、电源和控制部分组成。

本文以单片机端口的输出电平控制继电器的动作,实现电机的启动或者停止,从而达到自动控制水位的目的。

另外,系统可根据需要设定水位控制的高度,同时具备超限报警和故障报警功能,并辅以发光二极管显示相应水位的状态。

关键字:AT89C51,A/D转换,水位控制,数码显示,传感器,故障报警Level control system based on microcomtrollerAbstractThe traditional water level control in production has been a dominant position,but with production line, not only the update demanding more direct, precise and stable water level control system, at the same time also requires the cost in reducing production equipment requirements update automation degree and cost-effective of water level control system. Single—chip microcomputer control system with its high control accuracy,reliable performance,convenient operation, low cost set to be applied to the liquid level system characteristics of the control.This system uses the microcontroller AT89C51 as the water level control core to realize the basic control functions。

基于单片机的水温水位控制系统设计

基于单片机的水温水位控制系统设计

四、结论
基于单片机的智能水箱水位和水温控制系统具有结构简单、成本低、可靠性 高等优点。通过实时监测和控制水箱的水位和水温,可以满足不同用户的需求。 此外,通过优化系统的硬件设计和软件设计,可以进一步提高系统的性能和可靠 性。这种系统不仅可以应用于家庭用水领域,也可以应用于工业生产中的液体控 制,具有广泛的应用前景。
1、抗干扰设计
由于环境因素和设备本身的影响,系统可能会受到干扰。因此,需要在硬件 设计和软件设计中加入抗干扰措施,如滤波电路、软件去抖动等。
2、节能设计
为了降低系统的功耗,可以在软件设计中加入休眠模式和唤醒模式。当系统 不需要工作时,可以进入休眠模式,降低功耗。当有数据需要处理时,系统被唤 醒,进入工作状态。
2、软件设计
系统的软件设计主要实现以下功能:数据的采集、处理、显示和控制。首先, 单片机通过水位传感器和水温传感器采集当前的水位和水温数据。然后,单片机 对采集到的数据进行处理,判断水位和水温是否正常。如果异常,则启动相应的 执行机构进行调节。最后,单片机将处理后的数据通过显示模块进行显示。
三、系统优化
六、结论
本次演示设计了一种基于单片机的水温水位控制系统,实现了温度和水位的 自动检测、调节和控制。该系统具有成本低、可靠性高、易于实现等优点,同时 支持远程控制和节能模式等功能。在家庭、工业和科学研究中具有广泛的应用前 景。
参考自动化技术的普及,智能化设备在日常生活和工业生产中 的应用越来越广泛。其中,基于单片机的智能水箱水位和水温控制系统具有重要 应用价值。这种系统可以实现对水箱水位和水温的实时监测和控制,以适应不同 的应用需求。
系统软件采用C语言编写,主要包括以下几个部分:数据采集、数据处理、 控制输出和远程通信。
1、数据采集:通过I/O端口读取DS18B20和超声波水位传感器的数据。

基于单片机的造纸纸浆液位控制系统结构设计

基于单片机的造纸纸浆液位控制系统结构设计

基于单片机的造纸纸浆液位控制系统结构设计随着科技的不断进步和制造业的快速发展,控制系统在各个领域中都起到了至关重要的作用。

造纸工业作为重要的基础产业之一,纸浆液位控制在纸张生产过程中扮演着关键的角色。

本文将基于单片机的控制技术,设计一个可靠高效的造纸纸浆液位控制系统结构。

一、系统概述本系统旨在具备自动化控制纸浆液位的功能,以确保纸张生产过程中的稳定性和质量。

基于单片机控制技术,通过感应器探测纸浆液位数据并传输给控制单元,通过控制单元对阀门进行自动控制以达到设定的液位。

系统结构如下图所示:[插入相应结构图]二、系统硬件设计1. 传感器为了准确地感知纸浆液位,我们选择使用压力传感器作为主要的感应器。

压力传感器可以转换为电信号,方便单片机读取。

同时,将压力传感器与工作环境密封,以防止纸浆对传感器的腐蚀。

2. 单片机本系统采用先进的单片机作为控制核心,如STC89C52。

单片机具备较高的运算能力和控制精度,能够满足系统对于实时性和可靠性的要求。

3. 阀门控制为了实现对纸浆液位的精确控制,我们采用可调节电磁阀门进行控制。

单片机通过控制电磁阀门的开关状态,来调节液位。

4. 人机界面为了方便操作和监控,我们设计了一个人机界面终端。

采用液晶显示屏显示液位数据和系统状态,并提供按键用于操作参数设置和系统开关。

三、系统软件设计1. 硬件驱动程序首先,我们需要编写硬件驱动程序以实现单片机对传感器和电磁阀门的控制。

通过单片机的IO口读取传感器的电压值,并进行相应的数值处理,以获得准确的液位数据。

同时,通过控制IO口的输出状态,可以控制电磁阀门的开关。

2. 控制算法为了保持纸浆液位的稳定性,我们需要设计一个合适的控制算法。

可以采用PID控制算法,根据液位数据的误差和漏斗速度,通过计算得到控制输出,来调整电磁阀门的开关状态。

3. 人机交互程序为了方便操作者与系统进行交互,我们需要编写人机交互程序。

通过液晶显示屏显示液位数据和系统状态,并提供按键操作界面,实现参数设置、启停控制等功能。

基于单片机的液位控制系统的设计方案

基于单片机的液位控制系统的设计方案第1章绪论1.1 课题背景与研究意义在工农业生产中,常常需要测量液体液位。

随着国家工业的迅速发展,液位测量技术被广泛应用到石油、化工、医药、食品等各行各业中。

低温液体(液氧、液氮、液氩、液化天然气及液体二氧化碳等)得到广泛的应用,作为贮存低温液体的容器要保证能承受其载荷;在发电厂、炼钢厂中,保持正常的锅炉汽包水位、除氧器水位、汽轮机凝气器水位、高、低压加热器水位等,是设备安全运行的保证;在教学与科学研究中,也经常碰到需要进行液位控制的实验装置。

1.2 国内外研究现状及发展液位测量的方法比较多,依据测量方式的不同可分为接触式与非接触式两种类型。

●接触式测量法接触式测量法是指测量用传感器直接与容器内存储液体相接触,从而获得测量参数的方法。

1.人工检尺法人工检尺法可用于测量油罐液位,其历史十分悠久。

它利用浸入式刻度钢皮尺测量液位,这种方法具有测量简单、可靠性高、直观、成本低的优点,但人为读数误差大、无法实现自动检测和操作。

2.电参数测量法常见的有电阻法、光电法、测重法、电容法、浮标法及声光电的反射回波法等。

无论怎样,这些方法的关键是利用液位传感器将液位的相对位移量转换成为电压、电流、阻抗等便于进行电处理的物理量。

限于篇幅,下面仅简单介绍电容测量法的基本原理。

本方法所使用的电容通常由两块圆柱形极板或一个探极与罐壁构成。

当液位不同时,电容器的介电常数就不同,故电容量也不同。

在此基础上可以把电容量转化为电压、相移、频率、脉宽等物理量,再进行测量。

电容式液位测量装置通常结构简单、灵敏度高、稳定性好、动态响应快,适合于恶劣的工作环境,生产成本也不高;但电容液位测量器需要考虑温度补偿,且介质的成分、水分、温度、密度等不确定变化因素直接影响测量结果的准确性,另外检测电路比较复杂,尤其是检测微小电容量的变化。

●非接触式测量法非接触式测量法包括超声波法、调制型光学法、微波法等。

其特点是测量手段并不采用浮子之类的固态物,而是利用声、光、射线、磁场等的能量。

基于单片机液位控制的设计

单片机原理与应用课程设计报告题目:基于单片机地液位控制器设计学院: xxxxxxxxxxxxxxxxxx班级: xxxxxxxxxxxx学号: xxxxxx姓名: xxx联系方式: xxxxxxxx指导教师: xxxxxxxxxx报告成绩:xx年 xx月xx日目录1 绪论 (5)2 系统总体设计 (6)2.1设计思路 (6)2.2 系统框图 (6)2.3 设计原理分析 (7)2.4 电路工作原理................................................................................................错误!未定义书签。

3 系统硬件设计 (9)3.1 驱动电路设计 (9)3.2 报警电路设计 (9)3.3液位指示电路设计..................................................................... 错误!未定义书签。

3.4压力自动控制模拟和手动操作控制电路设计........................ 错误!未定义书签。

3.5晶振电路..................................................................................... 错误!未定义书签。

3.6 复位电路 (14)4 系统软件设计 (15)4.1 软件设计说明 (15)4.2主程序流程图 (15)4.3液位控制程序流程图 (15)5 设计地结果 (18)6 总结 ....................................................................................................... 错误!未定义书签。

附录错误!未定义书签。

摘要该设计是由单片机A T89C51控制地锅炉水位控制器,它主要有硬件和软件部分共同完成控制系统功能.其中硬件部分主要由水位检测电路、驱动电路、夜位指示电路以及压力自动控制模拟和手动控制等部分组成;软件部分主要由汇编语言所编写地程序组成.本系统可实现液位报警、控制和压力控制等功能,并对液位进行数字显示.电路主要实现功能是液位检测和报警,然后控制水泵地启停.液位控制主要地控制地对象是水泵,容器是锅炉,液位地检测可根据探测器探测得到.液位正常情况下控制在一定测量点距离段之间,当液位低于或高于正常水位段下限和上限是进行光报警,若液位在正常液位时,则解除报警.当液位低于液位下限时,水泵一直注水,而高于上限实则关闭水泵,并且当液位处于不同探测电时,可显示相应数字来显示液位.压力检测主要由一个开关来模拟压力地高低,并用指示灯地亮灭来模拟风机地运行和停止,另设手动操作按钮,用以人为启动水泵和风机.关键词:单片机控制检测报警ABSTRACTThe design of boiler water level controller is controlled by single chip microcomputer AT89C51, it mainly are part of the complete control system hardware and software functions. The hardware part is mainly composed of water level indication circuit detection circuit, drive circuit, night and pressure parts such as simulation of automatic control and manual control。

基于单片机的液位控制系统设计毕业设计论文

基于单片机的液位控制系统的设计
摘要
液位测量广泛应用于工业、经济、生活等领域。本设计以水箱供水为模型,用于对水箱液位信号进行测量监控记录。
基于单片机的液位测量装置具有测量准确、重复性好、功耗低、使用寿命长的特点,是广泛采用的技术。在深入学习科学发展观的同时,电子设备的设计也需融入可持续发展的设计理念。故此,在基于单片机的液位测量装置基础上,扩展实时监控、数据采集、计算机串行通信等功能,从而能够通过科学的方法将液位测量与统计科学结合,合理调度水资源,降低能源消耗。
作者签名:日 期:
学位论文原创性声明
本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。
作者签名:日期: 年 月 日
学位论文版权使用授权书
本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
Keywords:MCU;LiquidLevelMeasurement;Real-time monitoring;Serial C明和使用授权说明
原创性声明
本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

两个基于单片机的液位控制系统设计介绍

两个基于单片机的液位控制系统设计介绍基于单片机的液位控制系统设计一集成芯片LM1042是用于检测液位的专用的集成电路,内部集成了所有控制热阻探针、检测热阻探针的短路和开路所需的监控电路,具有很强的功能。

LM1042使用热阻探针技术来测量非可燃性液体液面高度,能提供一正比于液位高度的输出,可进行单次或重复测量,所有控制热阻探针、检测热阻探针的短路和开路所需的监控电路都集成在LM1042芯片内部。

此外该芯片可采用线性输入或其它传感器信号作为输入信号。

LM1042液位检测器可以选择热阻或线性信号作为输入,具有集成有热阻探针的控制电路,LM1042液位检测器在复位时切换,延时功能可避免瞬态信号的影响,另外LM1042液位检测器具有探针短路、集成芯片LM1042是用于检测液位的专用的集成电路,内部集成了所有控制热阻探针、检测热阻探针的短路和开路所需的监控电路,具有很强的功能。

LM1042内部电路框图LM1042使用热阻探针技术来测量非可燃性液体液面高度,能提供一正比于液位高度的输出,可进行单次或重复测量,所有控制热阻探针、检测热阻探针的短路和开路所需的监控电路都集成在LM1042芯片内部。

此外该芯片可采用线性输入或其它传感器信号作为输入信号。

LM1042液位检测器可以选择热阻或线性信号作为输入,具有集成有热阻探针的控制电路,LM1042液位检测器在复位时切换,延时功能可避免瞬态信号的影响,另外LM1042液位检测器具有探针短路、开路检测功能。

总体方案简介测量部分:液位传感器采用LM1042液位检测器,并在端口接ADC0809的一个模拟量通道。

ADC0809和并行口扩展芯片8155直接相连,ADC0809的A、B、C均接地来选择第一路模拟通道。

键盘部分:鉴于键盘并不常用,所以上下限的输入采用中断方式。

一个接中断口1,另一个接至定时计数器0,把定时计数器0扩展为外部中断口。

显示部分:该部分由液晶显示器1602实现液位的显示,液晶显示器上显示液位的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3主要芯片介绍
3.1核心芯片8051单片机
计算机芯片MCS-51是一个电脑晶片,英特尔公司生产系列。它是在MCS-48系列的基础上发展的高性能的8位单片机。所出的系列产品有8051、8031、8751。其代表就是8051。其他系列的单片机都以它为核心,所以本设计采用的核心芯片是8051单片机。CPU是它的核心设备,从功能上看,CPU包括两个部分:运算器和控制器,它执行对输入信号的分析和处理。
2.1系统硬件总体方案ቤተ መጻሕፍቲ ባይዱ
系统的原理是采用电容式液位传感器对液面进行控制,并把液位状态通过模数转换器ADC0809传到单片机中,再通过3位八段LED显示器显示出液位的测量值及报警安全提示。用LED显示是因为它具有显示清晰、亮度高、使用电压低、光电转换效能高、寿命长等特点,根据当前的液位值和用户设定的水位决定是否进行开、关水泵,需要是否开启和关闭驱动阀门的电动机。
IN2
1 1 1
IN3
1 0 0
IN4
1 0 1
IN5
1 1 0
IN6
1 1 1
IN7
3.2.3 ADC0809的引脚图及各引脚作用
ADC0809芯片为28引脚双列直插式封装,其引脚排列见图3-5。
图3-5AD0809的管脚图
IN0-IN7:8条模拟量输入通道。ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。
整个系统电控部分以ATMEL公司的8051为核心芯片,控制信号采集、处理、输出三个过程。这种芯片内置4KEPROM,因为系统要求控制线较多,如果采用8031外置EPROM程序控制结构,则造成控制线不够;而8051却可以利用P0、P2口作控制总线,大大简化了硬件结构,并可以直接控制键盘参数输入、LED数据显示,方便现场调试和维护,使整个系统的通用性和智能化得到了很大的提高。
表3-1寄存器初始状态
特殊功能寄存器
初始态
特殊功能寄存器
初始态
ACC
00H
B
00H
PSW
00H
SP
07H
07H
00H
TH0
00H
DPL
00H
TL0
00H
IP
xxx00000B
TH1
00H
IE
0x00000B
TL1
00H
TMOD
00H
TCON
00H
SCON
xxxxxxxxB
SBUF
00H
P0-P3
1111111B
液位控制器的硬件主要包括由单片机、液位传感器、键盘电路、数码显示电路、A/D转换器、报警电路、控制水泵电路等。
设计的主要内容是:基于单片机实现的液位控制器是以8051芯片为核心,由键盘、数码管显示、A/D模数转换、筒式电容传感器,电源和控制部分等组成。工作过程如下:水箱(水塔)液位发生变化时,即把电容变化量转化成电压信号;该信号经过反相比例运算放大电路放大后变成幅度为0~5 V标准信号,送入A/D转换器,A/D转换器把模拟信号变成数字信号量,由单片机进行实时数据采集,并进行处理,根据设定要求控制输出,同时数码管显示液位高度。通过键盘设置上限值,下限值。该系统控制器特点是直观地显示水位高度,可任意控制水位高度。
1绪论
随着微电子工业的迅速发展,单片机控制的智能型控制器广泛应用于电子产品中。并且目前,我国住宅小区楼房自来水供水系统主要采用高塔供水,即在楼顶或者另外建设的高塔上面建个蓄水池以保证用户水压的恒定。目前大多数的住宅小区都是采用人工加水的办法,即当水用完的时候,就人工开启水泵进行加水,十分不便。所以这一切问题的存在,都在呼唤一种简单经济的高塔水位检测报警控制系统的诞生。传统的控制方式存在控制精度低、能耗大的缺点,而自动控制系统,依据用水量的变化自动调节系统的运行参数,保持水压恒定以满足用水要求,从而提高了供水系统的质量。此装置成本低,安装方便,灵敏性好,是节约水源,方便家庭和单位控制水塔水位的理想装置。
Pin40:正电源脚,正常工作或对片内EPROM抄写程序时,接+5V电源。
Pin19:时钟XTAL1脚,片内振荡电路的输入端。
Pin18:时钟XTAL2脚,片内振荡电路的输出端。
8051的时钟有两种方式,一种是片内时钟振荡方式,但需在18和19脚外接石英晶体(2-12MHz)和振荡电容,振荡电容的值一般取10PF-30PF。另外一种是外部时钟方式,即将XTAL1接地,外部时钟信号从XTAL2脚输入。本设计采用外部时钟电路,外接晶振和电容组成振荡器。输入输出(I/O)引脚:Pin39-Pin32为P0.0-P0.7输入输出脚,Pin1-Pin8为P1.0-P1.7输入输出脚,Pin21-Pin28为P2.0-P2.7输入输出脚,Pin10-Pin17为P3.0-P3.7输入输出脚。
本次设计---基于单片机的液位控制器设计,利用单片机为控制核心,设计一个对供水箱水位进行监控的系统。根据监控对象的特征,要求实时检测水箱的液位高度,并与开始预设定值做比较,由单片机控制固态继电器的开断进行液位的调整,最终达到液位的预设定值。检测值若高于上限设定值时,要求报警,断开继电器,控制水泵停止上水;检测值若低于下限设定值,要求报警,开启继电器,控制水泵开始上水。现场实时显示测量值,从而实现对水箱液位的监控。
ADDA、ADDB、ADDC:模拟通道地址线。这3根地址线用于对模拟通道进行选择,其译码关系如表所示,ADDA为低位地址,ADDC为高位地址。
ALE:地址锁存信号。对应于ALE上跳沿时,ADDA、ADDB、ADDC地址状态送入地址锁存器中。
START:转换启动信号。在START信号上跳沿时,所有内部寄存器清0;在START下跳沿时,开始进行A/D转换。在A/D转换期间,START信号应保持低电平。该信号可简写为ST。
图3-6MC14499的管脚图
片内主要包含有一个20位移位寄存器、一个锁存器、一个多路输出器及译码驱动器和振荡器。移位寄存器主要保存外部串行输入的数据,锁存器保存显示器所需显示的数据,两者中的数据均为BCD码的形式,多路输出器输出从锁存器中取出的BCD码数据,经段译码器译码后,换成点七段码送至段驱动器的a~g和小数点DP八只输出脚上,而片内振荡器的振荡信号,经四分频及位译码后提供四个位控信号,由位驱动器分别送至四条位控制线(I,II,III,IV),以供对显示器的轮流扫描。
3.3MC14499芯片
3.3.1.MC14499的结构及功能介绍
串行输入BCD码-十进制码输出的硬件译码驱动器MC14499是MOTOROLA公司生产的一种叫新型的CMOS集成块。一片MC14499可以直接驱动和控制四块LED八段显示器,由于其显示方式为动态扫描,因此消耗功率较低,在单片机系统中,采用MC14499构成的显示器接口具有所需I/O口线占用数量少,单片控制显示器多的特点,因而得到较广泛的使用。LED译码驱动器的管脚配置如图3-6所示:
ADC0809是带有8位A/D转换器、8路多路开关以及与微型计算机兼容的控制逻辑的CMOS组件,其转换方法为逐次逼近型。在A/D转换器内部含有一个高阻抗斩波稳定比较器,以及一个逐次逼近型寄存器。8路的模拟开关由地址锁存器和译码器控制,可以在8个通道中任意访问一个通道的模拟信号。由于多路开关的地址输入部分能够进行锁存和译码,而且三态TTL输出也可以锁存,所以它易于与微型计算机接口。
图3-4ADC0809的内部结构
3.2.2ADC0809的通道选择
地址锁存与译码电路完成对A、B、C3个地址位进行锁存和译码,其译码输出用于通道的选择。通道选择如表3-2所示
表3-2ADC00809的通道选择
C(ADDC) B(ADDB) A(ADDA)
选择的通道
0 0 0
IN0
0 0 1
IN1
0 1 0
PCON
0xxxxxxxB
8051的复位方式可以是自动复位,也可以是手动复位,见图3-2。此外,RESET/Vpd是一复用脚,Vcc掉电期间,此脚可接上备用电源,以保证单片机内部RAM的数据不丢失,此设计采用自动复位电路
图3-2复位电路
Pin30:ALE/ 当访问外部程序器时,ALE(地址锁存)的输出用于锁存地址的低位字节。而访问内部程序存储器时,ALE端将有一个1/6时钟频率的正脉冲信号,这个信号可以用于识别单片机是否工作,也可以当作一个时钟向外输出。更有一个特点,当访问外部程序存储器,ALE会跳过一个脉冲。
如果单片机是EPROM,在编程其间,prog将用于输入编程脉冲。
Pin29: 当访问外部程序存储器时,此脚输出负脉冲选通信号,PC的16位地址数据将出现在P0和P2口上,外部程序存储器则把指令数据放到P0口上,由CPU读入并执行。在编程时,EA/Vpp脚还需加上21V的编程电压。
3.2ADC0809转换芯片
系统的原理是采用电容式传感器测量液体的液位值,通过单片机的转换与分析在LED上显示及输出控制;根据当前的液位值和用户设定的水位决定是否进行开关水泵,以及是否到达危险高、低水位,需要关闭阀门。
图3-1 8051管脚图
上图是8051的引脚配置,40个引脚中,正电源和地线两根,外置石英振荡器的时钟线两根,4组8位共32个I/O口,中断口线与P3口线复用。现在我们对这些引脚的功能加以说明:
在对单片机设计中,P0口作为程序存储器扩展口,且是扩展并行输入/输出接口的接口,另外也作为模数转换的数据传输口,P2口为程序存储器扩展口的高8位地址总线口,P1口为输入/输出口。Pin9:RESET/ 复位信号复用脚,当8051通电,时钟电路开始工作,在RESET引脚上出现2个时钟周期以上的高平,系统即初始复位。初始化后,程序计数器PC指向0000H, P0-P3输出口全部为高电平,堆栈指针写入07H,其它专用寄存器被清“0”。RESET由高电平下降为低电平后,系统即从0000H地址开始执行程序。8051的初始态如下:
相关文档
最新文档