先进制造技术论文-超精密加工技术
超精密加工技术在机械工程中的应用研究

超精密加工技术在机械工程中的应用研究近年来,随着机械工程领域的快速发展,对高精度和高效率的加工需求不断增加。
超精密加工技术作为一项先进的制造技术,正逐渐引起人们的关注和重视。
本文将探讨超精密加工技术在机械工程中的应用研究,并分析其对机械工程行业的影响。
首先,超精密加工技术指的是通过微细切削或电火花等方法,对工件进行超精细的加工过程。
这项技术以其高精度、高效率和高稳定性的特点,被广泛应用于机械工程领域中的精密零部件制造。
例如,在航空航天领域,利用超精密加工技术,可以制造出尺寸精度达到亚微米级的发动机轴承和航空仪表,从而提高了飞行器的性能和安全性。
其次,超精密加工技术在机械工程领域中的应用还可提升产品质量。
在制造过程中,超精密加工技术能够确保零部件的尺寸精度和表面质量,有效地避免了加工误差和缺陷的产生。
尤其是在微电子、光学和医疗设备等高精密产品的制造中,采用超精密加工技术可以大幅度提升产品的品质和使用寿命,满足了现代科学技术的要求。
另外,超精密加工技术也在机械工程中的研发和创新中发挥着重要作用。
通过对加工参数、材料选择和工艺控制等方面的研究,可以提高超精密加工技术的加工精度和加工效率。
同时,超精密加工技术也促进了机械工程的创新发展,推动了制造业的技术进步。
例如,通过引入激光加工和纳米加工等先进技术,不仅可以提高超精密加工的效率,还可以实现对各种复杂形状的加工,从而拓宽了机械工程领域的应用范围。
此外,超精密加工技术的应用还有助于节约资源和降低能耗。
在传统的机械加工过程中,由于切削阻力大、能量损耗高,导致了很大的能源浪费。
而超精密加工技术采用微细而无冲击的加工过程,不仅可以降低功耗和热变形的风险,还可以节约能源,并减少工件的材料消耗,从而达到节约资源的目的。
总之,超精密加工技术在机械工程中的应用研究具有重要意义。
通过提高加工精度和加工效率,保证产品质量,促进创新发展以及节约资源等方面的作用,超精密加工技术为机械工程领域带来了许多益处。
先进制造技术论文

先进制造技术先进制造技术AMT(Advanced Manufacturing Tecnology)是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。
随着经济技术的高速发展以及顾客需求和市场环境的不断变化,越来越多的制造企业开始将大量的人力、财力和物力投入到先进的制造技术和先进的制造模式的研究和实施策略之中。
改革开放以来,我国制造科学技术有日新月异的变化和发展,确立了社会主义市场经济体制,但与先进的国家相比仍有一定差距,为了迎接新的挑战,对先进制造技术及制造模式的研究和实施是摆在我们面前刻不容缓的重要任务,必须认清制造技术的发展趋势,缩短与先进国家的差距,使我国的产品上质量、上效率、上品种和上水平,以增强市场竞争力,实现我国机械制造业跨入世界先进行列之梦想。
一、先进制造技术的体系结构及分类先进制造技术是系统的工程技术,可以划分为三个层次和四个大类。
三个层次:一是优质、高效、低耗、清洁的基础制造技术。
二是新型的制造单元技术。
三是先进制造的集成技术。
四个大类:一是现代设计技术二是先进制造工艺技术三是制造自动化技术四是系统管理技术。
1、现代设计技术现代设计技术是先进制造技术的一个组成部分,是制造技术的第一个环节。
根据德国工程师协会文件VDI2225 的调查分析,产品设计成本约占产品成本的5% 7%,但却决定了产品制造成本的75%- 80%。
为此,世界各国都非常重视产品的设计问题。
而现代设计技术在机械设计技术中的地位同样重要。
机械设计是根据使用要求对机械的工作原理、结构、运动方式、力和能量的传递方式、各个零件的材料和形状尺寸、润滑方法等进行构思、分析和计算,并将其转化为具体的描述以人为制造依据的工作过程。
超精密加工技术的发展与展望

精密与特种加工技术结课论文题目:超精密加工技术的发展与展望指导教师:沈浩学院:机电工程学院专业:机械工程姓名:司皇腾学号: 152085201020超精密加工技术的发展与展望摘要:超精密加工是多种技术综合的一种加工技术,是获得高形状精度、表面精度和表面完整性的必要手段。
根据当前国内外超精密加工技术的发展状况,对超精密切削、磨削、研磨以及超精密特种加工及复合加工技术进行综述,简单地对超精密加工的发展趋势进行预测。
精密加工技术发展方向是:向高精度、高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展。
本世纪的精密加工发展到超精密加工历程比较复杂且难度大,目前超精密加工日趋成熟,已形成系列,它包括超精密切削、超精密磨削、超精密研磨、超精密特种加工等。
在不久的将来,精密加工也必将实现精密化、智能化、自动化、高效信息化、柔性化、集成化。
创新思想及先进制造模式的提出也必将为精密与超精密技术发展提供策略。
环保也是机械制造业发展的必然趋势。
关键词:加工精度;超精密加工技术;超精密特种加工;纳米技术;复合加工【引言】精密加工和超精密加工代表了加工精度发展的不同阶段,往往我们一提到超精密这个词,就会觉得它很神秘,但同任何复杂的高新技术一样,经过一段时间的熟悉和掌握,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是这样。
实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。
超精密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。
通常按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工。
在不同的历史阶段,不同的科学技术水平下,对超精密加工有不同的定义,由于生产技术的不断发展,划分的界限不断变化。
过去的超精密加工对今天来说可能已经是普通加工了,所以对其划分的界限是相对的,而且在具体数值上至今没有确切的界限。
超精密加工技术的研究和应用

超精密加工技术的研究和应用随着社会技术的不断发展,超精密加工技术已成为现代工业生产不可或缺的重要组成部分。
经过几十年的长期研究和实践,现在已经形成了一套完整的研究理论和应用体系。
本文将介绍超精密加工技术的定义、特点、分类、研究现状及其应用情况。
一、超精密加工技术的定义和特点超精密加工技术是高度精密、高度集成、高性能、高效率的加工技术。
它是利用先进的加工设备和先进的材料科学理论,对工件进行尺寸、形状和表面特性的高精度加工。
它既能满足产品的精度要求,也能满足产品的寿命、可靠性等要求。
超精密加工技术可以实现工件的高速、高效、环保生产,对于现代工业的快速发展有着重要的作用。
超精密加工技术具有以下几个显著特点:1. 高精度:超精密加工技术的精度通常在纳米和亚纳米级别,比普通机器加工的精度高出数十倍。
2. 高复杂度:超精密加工技术能够加工出复杂度极高的零部件,包括包括微机电系统(MEMS)器件、整合电路(IC)、光学元件、多曲面模具等。
3. 高集成度:超精密加工技术可以把高度精密的加工工艺与测量、控制、自动化设备紧密融合,成为一体化的生产线。
4. 高效率:超精密加工技术可以实现高速、高效、节能、环保的生产,大大提高了生产效率和质量。
二、超精密加工技术的分类和研究现状根据超精密加工技术的特点,可以把它分为以下几类:1. 光学加工技术:超精密光学加工技术是一种利用光学加工设备进行微米或纳米级别的精密加工的技术。
主要应用于光学元件、光学仪器等。
2. 电火花加工技术:电火花加工技术是通过使用电的放电现象进行微米甚至亚微米级别的加工技术。
3. 车削加工技术:车削加工技术是一种通过使用机床进行加工的技术,主要应用于零部件的加工及采用不同的数控加工机床,可以实现多轴高速复杂加工。
4. 喷射加工技术:喷射加工技术是利用高能粒子或高温气流等对工件进行加工的技术。
目前,超精密加工技术的研究重心主要集中在以下几个方面:1. 加工实验方面的研究,例如高速车削加工技术、激光加工技术等。
超精密加工技术与设备研究

超精密加工技术与设备研究随着科学技术的发展,各种新兴产业的不断涌现,超精密加工技术的应用越来越广泛。
超精密加工技术是指以nm甚至A级为计量单位的高精度加工技术,这种技术可以加工出极为精细的器件、零部件和微型器械等。
近年来,随着光通信、半导体和微机电系统等高新技术的不断发展,超精密加工技术成为了对这些高科技的支撑和发展起到至关重要的作用。
一、超精密加工技术的研究超精密加工技术不仅是现代制造业的一个重要方向,也是当前世界各国争夺高端装备制造市场的关键技术之一。
超精密加工技术具有下列特点:1. 高精度超精密加工技术的加工精度一般在0.1μm以下,甚至可以达到0.01nm。
这种高精度的加工不仅可以满足现代工业的精密加工要求,而且对于微传感器、微机电系统等新兴工业领域的发展也必不可少。
2. 高成本超精密加工需要使用高端的加工设备和高精度的测量仪器,这些设备通常需要耗费巨大的资金才能购买。
此外,加工过程的高要求和长周期也会带来高成本。
3. 高技术门槛超精密加工技术对操作人员的技术要求非常高,需要具备高度的专业知识和操作经验。
因此,这种技术对人员的培训和技术水平的提高也是非常重要的。
二、超精密加工设备的分类超精密加工设备通常可以分为以下几类:1. 雕刻机雕刻机是一种采用非接触方式加工的机床,可以在非接触情况下对工件表面进行加工。
它的加工精度可以达到大约0.1μm,适用于制造光学玻璃、金属模具等精密零件。
2. 电解加工机电解加工机是一种采用电化学反应进行加工的机床,其加工精度可以达到0.1μm以下。
它适用于制造形状复杂的工件和微加工零部件。
3. 雷射加工机雷射加工机是一种采用激光束进行加工的机床,其加工精度可以达到0.1μm以下。
它适用于制造微电子元件、微机械零件和光学器件等。
雷射加工机还可以利用激光束切割薄片材料,以满足高端装备制造的需要。
三、超精密加工技术的应用超精密加工技术的应用非常广泛,主要包括以下几个方面:1. 半导体加工在半导体加工领域,超精密加工是一个非常重要的领域,它可以制造出一些超细的、数量巨大的半导体芯片。
精密制造业论文

论文题目关于中国精密及超精密制造业的发展现状及趋势院(系)别机电及自动化学院专业机械工程及自动化级别2012学号1211112021姓名刘玉霖指导老师胡中伟2015年9月摘要在全球技术竞争日益激烈的今天,精密、超精密加工作为机械制造业中极具竞争力的技术之一,目前已受到许多国家的关注。
精密加工技术是尖端技术产品发展不可缺少的关键手段,它不仅适于国防应用,而且可以大量应用于高端民用产品中,例如惯导仪表的关键部件、核聚变用的透镜与反射镜、大型天文望远镜透镜、大规模集成电路的基片、计算机磁盘基底及复印机磁鼓、现代光学仪器设备的非球面器件、高清晰液晶及背投显示产品等。
超精密加工技术促进了机械、计算机、电子、光学等技术的发展,从某种意义上来说,超精密加工技术担负着支持最新科学技术进步的重要使命,也是衡量一个国家制造技术水平的重要标志。
目前,我国制造业已有较好基础,并已成为世界制造大国,工业增加值居世界第四位,约为美国的1/4、日本的1/2,与德国接近。
产量居世界第一的有80多种产品。
然而,我国制造的多是高消耗、低附加值产品,大量产品处于技术链和价值链的低端。
在代表制造业发展方向和技术水平的装备制造业,我国的落后状况尤其明显,大多数装备生产企业没有核心技术和自主知识产权。
同时,我国制造业劳动生产率水平偏低,许多部门的劳动生产率仅及美国、日本和德国的1/10,甚至低于马来西亚和印度尼西亚。
这一差距,尤其明显地表现在资本密集型和知识密集型产业上。
在此条件下,我国制造业不能继续在技术链低端延伸,不能依靠高消耗获得更多低附加值产品,必须用科学发展观指导制造业运行,转变制造业增长方式。
在社会主义市场经济条件下,我国正处于知识经济时代和人世的困际环境中,如何认识、发展制造业足大家所关注的焦点问题。
关键词:精密制造业,超精密制造业,发展,转型一、精密及超精密制造的概念及意义无论是精密制造还是超精密制造,都是相对的概念,精密制造是相对普通制造而言,超精密制造是相对精密制造而言。
超精密加工技术的发展现状
超精密加工技术的发展现状超精密加工技术的发展现状,哎呀,真是个让人觉得又神奇又复杂的话题啊!咱们得先了解一下超精密加工是什么。
它其实就是用极高的精度来加工材料,想想看,能把东西做到这么精准,真是令人叹为观止。
现在的制造业可离不开它,尤其是在航空、医疗、电子这些领域,越是高端的东西,越离不开超精密加工。
想象一下,微米级别的加工,那得多细腻啊!说真的,这技术的发展,真的是让人感觉到科技的力量。
在这过程中,咱们得提到几项关键技术,比如说光刻、超声波加工,还有激光加工。
光刻技术可谓是个“大明星”,在芯片制造中大显身手,像是在细致的画布上作画,光线勾勒出无数精致的图案。
超声波加工呢,哎,别小看它,利用声波的振动来加工,能把很多材料轻松处理掉,真是个“小帮手”。
激光加工嘛,嘿,那可是一把双刃剑,精准又快速,火花四溅的场景让人忍不住想为它点赞。
不过,话说回来,技术再先进,也得面对一些挑战。
比如说,成本问题。
超精密加工的设备可不是白菜价,维护保养更是个大开销。
这让很多小企业在这条路上犹豫不决,真是让人心疼。
材料的选择也非常重要,有些材料在超精密加工中表现得特别好,而有些则像个“死胖子”,怎么都弄不动。
为了追求更好的效果,研究人员们可是费尽心思,真是“煞费苦心”啊。
还有就是人才的培养。
这方面可不能马虎,超精密加工需要的人才既要有理论知识,又要有丰富的实践经验。
现在的大学里,很多学校已经开始设置相关课程,目的就是希望能培养出更多的技术人才,未来可得靠他们“撑门面”呢。
真心希望越来越多的人能加入这个行业,给我们带来更多的惊喜。
说到应用,超精密加工的舞台可大了!像航天器、手术刀、手机的内部零件等等,几乎无处不在。
你看看,航天器上那些复杂的零部件,没有超精密加工,恐怕就飞不起来了!还有手术刀,医生可不能用个普通的刀子,精细的切口直接关系到手术的成功与否,这可是关乎生命的大事啊!而手机的微小零件,哪个能离开超精密加工的加持?所以说,这技术的重要性,不用多说,大家都懂。
超精密加工制造技术
超精密加工制造技术
超精密加工制造技术
超精密加工制造技术是指采用精密加工制造技术,利用激光、电子束、水刀、高速钻以及特种机床,对零部件或组件进行加工,以达到更高精度,更优质品质的制造目的。
目前,超精密加工制造技术主要用于航空、航天、船舶、汽车、医疗设备等高端产品的制造。
它能够满足产品的精密度需求,提高制造材料的品质,并减少制造成本。
超精密加工制造技术有多种,如激光切割技术、EDM(电子束机)技术、高速钻加工技术、高压水刀技术、精密机床加工技术等。
这些技术的应用将极大地提高产品的加工精度,减少加工损耗,从而满足客户对产品加工精度的要求。
超精密加工制造技术有其特定的要求,需要选用正确的机床、加工参数、工艺条件和制造材料,以保证制造出精确的零件或组件。
因此,超精密加工制造技术对制造者具有重大意义,它为制造者提供了一种制造更精确的零件和组件的方法,从而满足客户的高要求。
而且,利用超精密加工制造技术也可以大大节省加工成本,从而提高制造的竞争力。
- 1 -。
先进制造技术3精密与超精密加工技术
精密与超精密加工技术
1)主轴:要求极高的回转精度和刚度。
空气静压轴承主轴能够得到高于轴承零件本身的回转精度。
先进制造技术之四
2) 导轨及进给驱动装置:动作灵活,无爬行等不连 续动作, 直线精度好。通常采用空气静压导轨 。
空气静压导轨
先进制造技术之四
精密与超精密加工技术
摩擦驱动原理图
先进制造技术之四
先进制造技术之四
精密与超精密加工技术
1) 金刚石的颜色和硬度选用
黄色金刚石:韧性较好,硬度较高,一般用于 金属材料和硬度较低的材料的加工 茶色金刚石:韧性差,硬度最高,一般用于难 切削材料的镜面加工中。
2)热传导率
金刚石的热传导率是矿物中最大的,切削加工 中发热量非常小。
先进制造技术之四
精密与超精密加工技术
先进制造技术之四
精密与超精密加工技术
世界发达国家均予以高度重视。最近启动的研究 计划包括 :
美国的NNI(National
nanotechnologyinitiative)纳米计划 英国的多学科纳米研究合作计划IRC(Interdisciplinary research collaboration in nanote-chnology), 日本的纳米技术支撑计划
纳米加工:精度值低于0.001μm,Ra小于0.005μm
先进制造技术之四
精密与超精密加工技术
2、超精密技术的发展历程
(1)20世纪50年代至80年代为技术开创期; (2)20世纪80年代至90年代为民间工业应用初期;
(3)20世纪90年代至今为民间工业应用成熟期;
先进制造技术之四
原子弹“小男孩”原件模型
天然金刚石的加工多采用研磨加工方法,通 常采用空气轴承研磨机,由于振动小,可达到很 低的粗糙度和极小的刃口半径。
精密和超精密加工技术及其发展展望(精密加工)
1.2 超精密加工技术的现状
4 加工工具
加工工具主要是指刀具、磨具及刃磨技术。用 金刚石刀具超精密切削,值得研究的问题有:金刚 石刀具的超精密刃磨,其刃口钝圆半径应达到2~ 4nm,同时应解决其检测方法,刃口钝圆半径与切 削厚度关系密切,若切削的厚度欲达到10nm,则刃 口钝圆半径应为2nm。
表面粗糙度可用电感式、压电晶体式表面形貌仪等
进行接触测量,或用光纤法、电容法、超声微波法和 隧道显微镜法进行非接触测量;
表面应力、表面变质层深度、表面微裂纹等缺陷,
可用X光衍射法、激光干涉法等来测量。检测可采取 离线的、在位的和在线的三种方式。
2013-9-22
1.2 超精密加工技术的现状
5 检测与误差补偿
在非传统加工中,出现了电子束、离子束、激
光束等高能加工、微波加工、超声加工、刻蚀、电 火花和电化学加工等多种方法,特别是复合加工, 如磁性研磨、磁流体抛光、电解研磨、超声珩磨等 ,在加工机理上均有所创新。
2013-9-22
1.2 超精密加工技术的现状
2 被加工材料
用精密和超精密加工的零件,其材料的化学成 分、物理力学性能、加工工艺性能均有严格要求。 例如,要求被加工材料质地均匀,性能稳定,无外 部及内部微观缺陷;其化学成分的误差应在10-2 ~ 10-3数量级,不能含有杂质;其物理力学性能,如拉 伸强度、硬度、延伸率、弹性模量、热导率和膨胀 系数等应达到10-5~10-6数量级;材料在冶炼、铸造 、辗轧、热处理等工艺过程中,应严格控制熔渣过 滤、辗轧方向、温度等,使材质纯净、晶粒大小匀 称、无方向性,能满足物理、化学、力学等性能要 求。
国家(中小零件加工) 。
我国的超精密加工技术在70年代末期有了长足
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金陵科技学院论文先进制造技术——课程结业(论文)设计(论文)题目:超精密加工技术学生姓名:班级:学号:目录摘要 (1)关键词........................................... 错误!未定义书签。
1 绪论 (1)2 超精密加工技术综述 (2)2.1 超精密加工技术的内涵及其重要性 (2)2.2 超精密加工技术的国内外发展现状 (2)3 超精密加工的主要方法 (4)3.1 超精密切削加工 (4)3.2 超精密磨料加工 (4)4 超精密机床 (6)4.1超精密主轴 (6)4.2机床的布局和导轨 (6)4.3超精密驱动系统 (6)4.4在线监测与误差补偿问题 (6)4.5金刚石刀具在超精密切削技术中的应用 (7)5 结论 (8)参考文献 (9)超精密加工技术的发展摘要精密超精密加工技术的发展,直接影响到一个国家尖端技术和国防工业的发展,因此世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。
精密超精密加工技术,是现代机械制造业最主要的发展方向之一。
在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术。
关键词:超精密;微米;纳米;尖端产品;数字控制1 绪论超精密加工技术综合应用了机械技术发展的新成果及现代电子技术、测量技术和计算机技术等,是尖端技术产品发展中不可缺少的关键环节…。
同时,超精密加工技术的发展也促进了机械、液压、电子、半导体、光学、传感器和测量技术以及材料科学的发展。
从某种意义上说,超精密加工对先进制造技术特别是纳米技术对整个社会生产力水平的提高起到举足轻重的地位,也成为衡量一个国家科技发展的标准之一。
目前超精密加工还没有确切的定义,一般是指达到绝对加工精度为0.1µm或表面粗糙度为Ra 0.0lµm以及达到加工允差和加工尺寸之比为106的加工技术。
超精密加工对环境的要求十分严格,纳米加工对环境的要求就更加苛刻。
只有对它的支撑环境加以严格控制,才能保证加工精度。
加工所需的支撑环境主要包括空气环境、热环境、振动环境、声环境和磁环境等几个方面。
本文着重介绍温度环境以及振动环境两个方面的环境因素以及一般的解决措施。
2 超精密加工技术综述2.1 超精密加工技术的内涵及其重要性当前,精密加工是指加工精度为1~0.1μm、表面粗糙度为Ra0.1~0.025μm的加工技术;超精密加工是指加工精度高于0.1μm、表面粗糙度Ra小于0.025μm的加工技术,因此,超精密加工又称之为亚微米级加工。
但是,目前超精密加工已进入纳米级精度阶段,故出现了纳米加工及其相应的技术。
从精密加工和超精密加工的范畴来看,它应该包括微细加工、超微细加工、光整加工、精整加工等加工技术。
微细加工技术是指制造微小尺寸零件的加工技术;超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对值来表示,而不是用所加工尺寸与尺寸误差的比值来表示。
光整加工一般是指降低表面粗糙度和提高表面层力学机械性质的加工方法,不着重于提高加工精度,其典型加工方法有珩磨、研磨、超精加工及无屑加工等。
实际上,这些加工方法不仅能提高表面质量,而且可以提高加工精度。
精整加工是近年来提出的一个新的名词术语,它与光整加工是对应的,是指既要降低表面粗糙度和提高表面层力学机械性质,又要提高加工精度(包括尺寸、形状位置精度)的加工方法。
航天、航空工业中,人造卫星、航天飞机、民用客机等,在制造中都有大量的精密和超精密加工的需求,如人造卫星用的姿态轴承和遥测部件对观测性能影响很大。
该轴承为真空无润滑轴承,其孔和轴的表面粗糙度要求为Ry0.01μm,即1nm,其圆度和圆柱度均要求纳米级精度。
被送入太空的哈勃望远镜(HST),可摄取亿万千米远的星球的图像,为了加工该望远镜中直径为2.4m、重达900kg的大型反光镜,专门研制了一台形状精度为0.01μm的加工光学玻璃的六轴CNC研磨抛光机。
据英国Rolls-Royce公司报道,若将飞机发动机转子叶片的加工度,由60μm提高到12μm、表面粗糙度由Ra0.5μm减少到0.2μm,发动机的加速效率将从89%提高到94%;齿轮的齿形和齿距误差若能从目前的3~6μm,降低到1μm,则其单位重量所能传递的扭距可提高近1倍。
当前,微型卫星、微型飞机、超大规模集成电路的发展十分迅猛,涉及微细加工技术、纳米加工技术和微型机电系统(MEMS)等已形成微型机械制造。
这些技术都在精密和超精密加工范畴内,与计算机工业、国防工业的发展直接相关。
2.2 超精密加工技术的国内外发展现状在过去相当长一段时期,由于受到西方国家的禁运限制,我国进口国外超精密机床严重受限。
但当1998年我国自己的数控超精密机床研制成功后,西方国家马上对我国开禁,我国现在已经进口了多台超精密机床。
我国北京机床研究所、航空精密机械研究所、哈尔滨工业大学等单位现在已能生产若干种超精密数控金刚石机床,如北京机床研究所研制的加工直径800mm的超精密车床和哈尔滨工业大学研制的超精密车床,这两台机床均有两坐标精密数控系统和两坐标激光在线测量系统,可以加工非球回转曲面;还有哈尔滨工业大学研制了加工KDP晶体大平面的超精密铣床。
KDP晶体可用于光学倍频,是大功率激光系统中的重要元件。
必须承认,在超精密机床技术方面,我们与国外先进水平相比还有相当大的差距,国产超精密机床的质量水平尚待进一步提高。
在大型超精密机床方面,目前美、英、俄等国都拥有自行开发的大型超精密机床,而我国由于没有大型超精密机床,因此无法加工大直径曲面反射镜等大型超精密零件,国外对这些大型超精密零件的出口有严格限制,从而严重影响了我国国防尖端技术的发展。
现在我国正在加紧研制加工直径1m以上的立式超精密机床。
3 超精密加工的主要方法3.1 超精密切削加工3.1.1 超精密切削加工的历史60年代初,由于宇航用的陀螺,计算机用的磁鼓、磁盘,光学扫描用的多面棱镜,大功率激光核聚变装置用的大直径非圆曲面镜,以及各种复杂形状的红外光用的立体镜等等,各种反射镜和多面棱镜精度要求极高,使用磨削、研磨、抛光等方法进行加工,不但加工成本很高,而且很难满足精度和表面粗糙度的要求。
为此,研究、开发了使用高精度、高刚度的机床和金刚石刀具进行切削加工的方法加工。
3.1.2 超精密切削对刀具的要求为实现超精密切削,刀具应满足以下要求。
1.极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和很高的尺寸耐用度。
2.有研磨得特别锋利的刀口。
刀口半径ρ值极小,能实现超薄的切削厚度。
刀尖无缺陷。
因切削时刀形将印在加工表面上,而不能得到超光滑的镜面和工件材料的抗黏结性号、化血亲和性小、摩擦系数小的要求。
3.2 超精密磨料加工国内外都采用超精密磨削、精密修整、微细磨料磨具进行亚微米级以下切深磨削的研究,以获得亚微米级的尺寸精度。
微细磨料磨削,用于超精密镜面磨削的树脂结合剂砂轮的金刚石磨粒平均直径可小至 4 μm。
日本用激光在研磨过的人造单晶金刚石上切出大量等高性一致的微小切刃,对硬脆材料进行精密磨削加工,效果很好。
超硬材料微粉砂轮超精密磨削主要用于磨削难加工材料,精度可达0.025 μm。
日本开发了电解在线修整(ELID)超精密镜面磨削技术,使得用超细微(或超微粉)超硬磨料制造砂轮成为可能,可实现硬脆材料的高精度、高效率的超精密磨削。
作平面研磨运动的双端面精密磨削技术,其加工精度、切除率都比研磨高得多,且可获得很高的平面度, 在工具和模具制造中,磨削是保证产品的精度和质量的最后一道工序。
技术关键除磨床本身外、磨削工艺也起决定性的作用。
在磨削脆性材料时,由于材料本身的物理特性,切屑形成多为脆性断裂,磨剂后的表面比较粗糙。
在某些应用场合如光学元件,这样的粗糙表面必须进行抛光,它虽能改善工件的表面粗糙度,但由于很难控制形状精度,抛光后经常会降低。
为了解决这一矛盾,在80年代末日本和欧美的众多公司和研究机构相继推回了两种新的磨削工艺:塑性磨削(Ductile Grinding)和镜面磨削(Mirror Grinding)。
塑性磨削它主要是针对脆性材料而言,其命名来源出自该种工艺的切屑形成机理,即磨削脆性材料时,切屑形成与塑性材料相似,切屑通过剪切的形式被磨粒从基体上切除下来。
所以这种磨削方式有时也被称为剪切磨削(Shere Mode Grindins)。
由此磨削后的表面没有微裂级形成,也没有脆必剥落时的元规则的凹凸不平,表面呈有规则的纹理。
(2)镜面磨削顾名思义,它关心的不是切屑形成的机理而是磨削后的工件表面的特性。
当磨削后的工件表面反射光的能力达到一定程度时,该磨削过程被称为镜面磨削。
镜面磨削的工件材料不局限于脆性材料,它也包括金属材料如钢、铝和钼等。
为了能实现镜面磨削,日本东京大学理化研究所的Nakagawa和Ohmori教授发明了电解在线修整磨削法ELID(Electrolytic In-Process Dressing)。
镜面磨削的基本出发点是:要达到境面,必须使用尽可能小的磨粒粒度,比如说粒度2μm乃至0.2μm。
在ELID发明之前,微粒度砂轮在工业上应用很少,原因是微粒度砂轮极易堵塞,砂轮必须经常进行修整,修整砂轮的辅助时间往往超过了磨削的工作时间。
ELID首次解决了仅用微粒度砂轮时,修整与磨削在时间上的矛盾,从而为微粒度砂轮的工业应用创造条件。
4 超精密机床4.1关键技术在超精密机床中的应用超精密机床的质量,取决于关键部件的质量。
世界各国都给予了足够的重视,投入大量人力物力,对超精密机床的关键部件和关键技术进行开发研究。
4.1.1超精密主轴精密主轴部件的回转精度决定了精密机床的加工精度,其关键在于精密轴承。
早期的精密主轴采用超精密级的滚动轴承,制造超精密级的滚动轴承变得尤为困难。
于是推出了液体静压轴承,这种轴承具有刚度高、动态特性好等特点,但发热是其致命的弱点。
20世纪60年代开始发展空气轴承主轴,与液体静压轴承相比,它有很高的回转精度、温升甚小,空气轴承的应用促进了超精密机床的发展。
空气轴承的主要问题是刚度低,只能承受较小的载荷。
超精密切削时,切削力甚小,因此空气轴承能满足要求,故得到广泛的应用。
4.2机床的布局和导轨超精密机床的总体布局对其性能好坏起决定性影响。
对于超精密车床来说,一般有z 和x两个方向的导轨,某些机床,如Moore车床,还增加一个垂直的转轴。
目前超精密机床的总体布局有十字形滑板工作台布局、T形布局、R-θ布局、偏转圆转角布局、立式结构布局。
超精密机床床身结构因材料不同而异。