最全经典不等式证明的基本方法

合集下载

证明基本不等式的方法

证明基本不等式的方法

证明基本不等式的方法基本不等式是解决数学不等式问题中常用的方法,其核心思想是将一个不等式转化为另一个更简单的不等式,从而得到所需的解集。

在证明基本不等式的方法上,可以分为以下几种常见的方式:1.数学归纳法:数学归纳法是证明基本不等式的一种常用方法。

首先,我们需要证明当不等式成立时,对于一些特定的值$n$,不等式也成立。

接着,我们假设当$n=k$时不等式成立,可以通过这个假设证明当$n=k+1$时不等式成立。

最后,根据归纳法的原理,我们可以得出不等式对于所有自然数$n$成立。

2.递推法:递推法是证明基本不等式的另一种常用方法。

我们首先找到一个较小的数$k$,证明不等式对于这个特定的数成立。

然后,我们假设当$n=k$时不等式成立,接着通过这个假设证明当$n=k+1$时不等式也成立。

最后,根据递推法的原理,我们可以得出不等式对于所有自然数$n$成立。

3.反证法:反证法是证明基本不等式的另一种有效方法。

我们首先假设不等式不成立,即假设存在一些数使得不等式不成立。

接着,我们通过一系列的推导和推理,得出矛盾的结论。

这表明我们的假设是错误的,即不等式是成立的。

4.变量替换法:变量替换法是证明基本不等式的一种常用方法。

我们首先对不等式进行变量替换,将其转化为一个使用其他变量的等价不等式。

然后,通过对这个等价不等式进行一系列的变换和推导,我们可以得出所需的结论。

5.辅助不等式法:辅助不等式法是证明基本不等式的一种有效方法。

我们首先找到一个与原不等式相关的不等式,这个不等式往往更容易证明。

然后,我们通过对这个辅助不等式的推导和推理,结合原不等式的特点,得出所需的结论。

无论采用哪种方法,证明基本不等式的关键在于用恰当的方法将其转化为另一个更简单或更容易证明的不等式。

此外,在证明过程中需要注意推导的合理性和严密性,关注每一步的符号变化和不等式的严格性,避免出现错误的结论。

在证明过程中,也可以适当地运用数学知识和技巧,如代数运算、函数性质和数列性质等,使证明更加简洁和高效。

不等式的证明方法

不等式的证明方法

不等式的证明方法不等式是数学中一类重要的数学不等关系,它在各个领域中都有广泛的应用。

证明不等式的方法有很多,下面介绍几种常见的方法。

1.数学归纳法数学归纳法是一种常用的证明不等式的方法。

当不等式对于一些特定的n成立时,我们可以证明当n+1时,不等式也成立。

具体步骤如下:(1)首先验证当n=1时不等式成立;(2)假设当n=k时不等式成立,即不等式表达式为Pk(k),其中Pk(k)表示当n=k时不等式的表达式;(3)利用假设的条件,证明当n=k+1时不等式也成立,即证明Pk(k+1);(4)由(1)(2)步骤可知,不等式对于n=1成立,又由(3)步骤可知,当n=k+1时不等式也成立,综上可得,不等式对于所有的n成立。

2.数学推理数学推理是一种常用的证明不等式的方法,它主要是通过运用已知的数学定理、性质和等式进行逻辑推理,从而得出结论。

例如,可以利用已知的三角函数性质、代数运算等进行推理,通过一系列推导和等价变形得出需要证明的不等式。

3.代入法代入法是一种常用的证明不等式的方法,它主要是利用数值替换变量,通过对不等式成立条件的特殊取值进行代入,从而证明不等式成立。

例如,对于一个两个变量的不等式,可以分别取其中一个变量为0或1,然后对不等式进行推导和比较,得出结论。

4.反证法反证法是一种常用的证明不等式的方法,它通过假设所要证明的不等式不成立,然后从假设出发推导出与已知矛盾的结论,从而证明原不等式成立。

具体步骤如下:(1)假设不等式不成立,即存在一些条件使得不等式不成立,这个条件可以是一个数、一个式子等;(2)利用假设条件进行推导,推导出与已知矛盾的结论;(3)由于假设条件导致与已知矛盾,所以假设不成立,即原不等式成立。

5.AM-GM不等式(算术平均数-几何平均数不等式)AM-GM不等式是一种常用的证明不等式的方法。

它断言,若a1,a2,...,an是n个非负实数,则有(a1+a2+...+an)/n ≥√(a1*a2*...*an),等号成立的条件是a1=a2=...=an。

不等式证明方法举例

不等式证明方法举例

不等式证明方法举例不等式是数学中的重要观点,它描述了数值之间的大小干系。

在数学解题过程中,屡屡需要证明各种各样的不等式。

本文将介绍一些常见的不等式证明方法,并通过实例演示其应用。

一、直接证明法直接证明法是最基本的证明方法之一,它的思路是依据不等式中的条件以及已知数学性质,通过逻辑推理得出结论。

例1:证明对于任意实数x,都有x^2≥0。

解:依据平方的定义,可知x^2≥0,所以不等式x^2≥0成立。

例2:证明对于任意实数x和y,都有xy≥0。

解:我们可以分两种状况进行谈论。

若x≥0,那么y≥0时,明显有xy≥0;若x<0,那么y<0时,也有xy≥0。

综上所述,不等式xy≥0成立。

二、数学归纳法数学归纳法是一种常用的证明方法,它常用于证明递推干系式或者命题在整数集上的成立状况。

例3:证明对于任意正整数n,下列不等式成立:1+2+3+...+n≤(n^2)/2。

解:当n=1时,左边等于1,右边等于1/2,不等式成立。

假设当n=k时不等式成立,即1+2+3+...+k≤(k^2)/2成立。

当n=k+1时,左边等于(1+2+3+...+k)+(k+1),依据我们的假设,左边不超过(k^2)/2+(k+1)。

我们需要证明(k^2)/2+(k+1)≤((k+1)^2)/2,即不等式(k^2)+2k+2≤(k^2)+2k+1。

经过化简,可知2≤1,明显不成立。

因此,原不等式对于任意正整数n成立。

三、反证法反证法是一种常用的证明方法,它的思路是假设命题不成立,然后通过推理得出与已知条件冲突的结论,从而得出结论的正确性。

例4:证明当x为正实数时,不等式x+1/x≥2成立。

解:假设不等式不成立,即存在一个正实数x,使得x+1/x<2成立。

那么我们可以得到如下不等式:x^2+1<x^2+2x。

经过化简,得到1<2x,也就是1/2<x。

这与假设x为正实数冲突。

因此,原不等式成立。

四、数学推导法数学推导法是一种常用的证明方法,通过运用数学性质和已知条件,将不等式转化为等价的形式,从而得出结论。

不等式的常见证明方法

不等式的常见证明方法

不等式常见的三种证明方法渠县中学 刘业毅一用基本不等式证明设c b a ,,都是正数。

求证:.c b a cab b ac a bc ++≥++ 证明:.22c bac a bc b ac a bc =•≥+ .22b cab a bc c ab a bc =•≥+ .22a cab b ac c ab b ac =•≥+ ).(2)(2c b a cab b ac a bc ++≥++ .c b a cab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。

思维训练:设c b a ,,都是正数。

求证:.222c b a c b a a c b ++≥++ 二 放缩法证明不等式已知,对于任意的n 为正整数,求证: 1+221+321+ +n 21<47 分析:通过变形将数列{n 21}放缩为可求数列。

解: n 21=n n •1<)1(1-n n =11-n —n1(n ≥2) ∴1+221+321+ +n 21<1+221+231⨯+341⨯+ +)1(1-n n =1+41+(21—31+31—41+ +11-n —n1) =45+21—n1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。

思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>cc +1三 构造函数法证明 证明不等式3ln 3121112ln <+++++<nn n (n 为正整数) 分析:显然要构造一个含n 的不等式,然后用叠加法证明。

我们构造一个函数,1)(',ln 1)(2xx x f x x x x f -=+-=可得这个函数在x=1时取得最小值0.及对x>0有不等式x x 11ln -≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则kk k ->+11ln ,即kk k k 1ln )1ln(11<-+<+,然后叠加不等式即可。

不等式证明常用技巧总结

不等式证明常用技巧总结

不等式的证明一、常用方法:作差、作商法;分析、综合法;换元法;构造函数法;反证法;放缩法;归纳法; (分析综合法).,2,0,022ab c c a ab c c b a c b a -+<<--+>>>求证:已知二、不等式证明中常用技巧:1.加减常数 求函数)1(11≠-+=x x x y 的值域。

2.巧变常数 已知210<<x ,求函数y =x (1-2x )的最大值。

3.分离常数 已知25≥x ,求4233)(2-+-=x x x x f 的最值。

4.巧用常数 若+∈R y x ,且满足1164=+y x ,求x +y 的最小值。

5.统一形式 已知+∈R c b a ,,,求)11)((c b a c b a ++++的最小值。

6.轮换对称 .,,222ac bc ab c b a c b a ++>++证:是互不相等的实数,求若. 7.重要不等式 16)(16,02≥-+>>b a b a b a 求证: 8.逆向运用公式型.22121,1,,≤+++=+∈+b a b a R b a 求证:且已知 (提示:将2121++b a ,转换成211211+⋅+⋅b a ,然后运用公式2b a ab +≤) 如何巧用常数: 1..22311,12,0,0+≥+=+>>ba b a b a 则且若 2..9111,1,,,≥++=++∈+cb ac b a R c b a 求证:且已知 3..91111,1,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证:且已知 4..311,,222≥++=++z y x z y x z y x ,则均为正数,且已知5..23,,≥+++++b a c a c b c b a z y x 均为正数,求证:已知 ().29111)()((21111)(111≥⎪⎭⎫ ⎝⎛++++++++++=⎪⎭⎫ ⎝⎛+++++++=⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++=⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++b a a c c b a c c b b a b a a c c b c b a b a b a c a c a c b c b c b a b a c a c b c b a )不等式证明中的放缩法 1..121111212*<++++<≥∈nn n n N n ,求证:,且已知 2..333221222*<++++∈n n N n ,求证:已知.2)111(2)1()1(2)1()1(21)1(2212)(≥--=---=-+-=-+-<+==k k k k k k k k k k k k k k k k k k k k k k k3. 设n ∈N ,求证:(2)引进辅助式,设比较两式的对应因式可知。

不等式证明方法

不等式证明方法

不等式证明方法不等式在数学中占有重要的地位,它是描述数之间大小关系的一种数学工具。

不等式证明方法是数学中的重要内容之一,本文将介绍不等式证明的几种常见方法,希望能够帮助读者更好地理解和掌握不等式的证明技巧。

一、数学归纳法。

数学归纳法是一种重要的数学证明方法,它通常用于证明某个命题对于一切自然数成立。

在不等式证明中,我们可以利用数学归纳法证明不等式的成立。

具体来说,我们首先证明不等式对于n=1时成立,然后假设不等式对于n=k时成立,再证明不等式对于n=k+1时也成立。

通过数学归纳法,我们可以比较简单地证明一些不等式的成立。

二、换元法。

换元法是不等式证明中常用的一种方法。

当我们遇到复杂的不等式时,可以通过适当的换元将不等式化简为更简单的形式,从而更容易进行证明。

换元法的关键在于选择合适的变量替换原不等式中的变量,使得不等式的结构更加清晰,证明过程更加简单明了。

三、分析法。

分析法是一种直接从不等式的定义出发,通过分析不等式的性质和特点来进行证明的方法。

在不等式证明中,我们可以通过分析不等式两边的大小关系,利用数学运算性质和数学规律,推导出不等式成立的条件,从而完成不等式的证明。

四、综合利用不等式性质。

不等式有许多性质,如传递性、对称性、反对称性等,我们可以通过综合利用这些性质来进行不等式的证明。

具体来说,我们可以利用不等式的传递性将复杂的不等式化简为简单的形式,再利用对称性和反对称性来推导不等式的成立条件,从而完成不等式的证明。

五、几何法。

在不等式证明中,几何法也是一种常用的证明方法。

通过几何图形的分析,我们可以直观地理解不等式的性质和特点,从而更容易进行证明。

在利用几何法进行不等式证明时,我们可以通过构造合适的几何图形,利用几何关系和几何性质来推导不等式的成立条件,完成不等式的证明。

六、数学推理法。

数学推理法是不等式证明中常用的一种方法,通过逻辑推理和数学推理来证明不等式的成立。

在利用数学推理法进行不等式证明时,我们可以通过分析不等式的性质和特点,运用数学推理规律和数学推理方法,推导出不等式成立的条件,完成不等式的证明。

不等式的证明方法经典例题

不等式的证明方法经典例题

不等式的证明方法不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。

注意ab b a 222≥+的变式应用。

常用2222b a b a +≥+ (其中+∈R b a ,)来解决有关根式不等式的问题。

一、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。

1、已知a,b,c 均为正数,求证:ac c b b a c b a +++++≥++111212121 二、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。

2、a 、b 、),0(∞+∈c ,1=++c b a ,求证:31222≥++c b a3、设a 、b 、c 是互不相等的正数,求证:)(444c b a abc c b a ++>++ 4、 知a,b,c R ∈,求证:)(2222222c b a a cc bb a++≥+++++5、),0(∞+∈y x 、且1=+y x ,证:9)11)(11(≥++y x 。

6、已知.9111111,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证: 三、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。

7、已知a 、b 、c 为正数,求证:)3(3)2(23abc c b a ab b a -++≤-+8、),0(∞+∈c b a 、、且1=++c b a ,求证3≤++c b a 。

四、换元法换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。

9、1<b ,求证:1)1)(1(22≤--+b a ab 。

10、122=+y x ,求证:22≤+≤-y x11、已知a>b>c,求证:.411ca cb b a -≥-+- 12、已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3.13、已知x 2-2xy +y 2≤2,求证:| x +y |≤10. 14、解不等式15+--x x >21 15、-1≤21x --x ≤2.五、增量代换法在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.16、已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 六、利用“1”的代换型17、.9111 ,1 ,,,≥++=++∈+c b a c b a R c b a 求证:且已知七、反证法反证法的思路是“假设→矛盾→肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。

浅谈不等式的几种常用证明方法

浅谈不等式的几种常用证明方法

浅谈不等式的几种常用证明方法
不等式的证明方法有很多种,下面介绍几种常用的证明方法:
1、分类讨论法:将问题分成几类,每类分别分析,最后综合得出结论。

2、数学归纳法:从一般情况出发,逐步推理,最后得出结论。

3、证明反证法:从结论出发,推理出充分条件,如果充分条件不能满足,则得出结论为假,否则得出结论为真。

4、极限法:通过极限的思想,求出不等式的解集。

5、图形法:通过绘制不等式的图形,判断不等式的解集。

6、数学归纳法:从一般情况出发,逐步推理,最后得出结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________

②、 ,a+c>b+c ③、a>b, , 那么ac>bc; a>b, ,那么ac<bc ④、a>b>0, 那么,ac>bd ⑤、a>b>0,那么an>bn.(条件 ) ⑥、 a>b>0 那么 (条件 )

2、基本不等式 定理1 如果a, b∈R, 那么 a2+b2≥2ab.

当且仅当a=b时等号成立。 定理2(基本不等式) 如果a,b>0,那么

当且仅当a=b时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y都是正数。(1)如果积xy是定值p,那么当x=y时,和x+y有最小值2 ;

(2)如果和x+y是定值s,那么当x=y时,积xy有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。

3、三个正数的算术-几何平均不等式

二、绝对值不等式 1、绝对值三角不等式 实数a的绝对值|a|的几何意义是表示数轴上坐标为a的点A到原点的距离:

abbacacbba,

Rcba,0c0c

0dc2,nNn2,nNn

2abab

214s

p

33 ,,3abcabcRabc

abc

定理如果,那么,当且仅

当时,等号成立。即:三个正数的算术平均不小于它们的几何平均。

212122,,,,,nnn

n

n

aaaaaaaanaa11把基本不等式推广到一般情形:对于n个正数a它们的算术平均不小于它们的几何平均,即:

当且仅当a时,等号成立。2

任意两个实数a,b在数轴上的对应点分别为A、B,那么|a-b|的几何意义是A、B两点间 的距离。

定理1 如果a, b是实数,则 |a+b|≤|a|+|b| , 当且仅当ab≥0时,等号成立。(绝对值三角不等式)

如果a, b是实数,那么 |a|-|b|≤|a±b|≤|a|+|b| 定理2 如果a, b, c是实数,那么 |a-c|≤|a-b|+|b-c| , 当且仅当(a-b)(b-c)≥0时,等号成立。

2、绝对值不等式的解法 (1)|ax+b|≤c和|ax+b|≥c(c>0)型不等式的解法: ①换元法:令t=ax+b, 转化为|t|≤c和|t|≥c型不等式,然后再求x,得原不等式的解 集。 ②分段讨论法:

① 用绝对值不等式的几何意义 

② 零点分区间法 ③ 构造函数法

00||(0)()axbaxbaxbccaxbcaxbc

或

00||(0)()axbaxbaxbccaxbcaxbc

或

型不等式的解法和)(cbxaxcbxax23

典型例题 例1 解不等式

例2 解不等式||x+3|-|x-3||>3。 例3 解不等式|x2-3|x|-3|<1。 例4 求使不等式|x-4|+|x-3|

例5 4

不等式证明的基本方法 知识点一:比较法 比较法是证明不等式的最基本最常用的方法,可分为作差比较法和作商比较法。 1、作差比较法 常用于多项式大小的比较,通过作差变形(分解因式、配方、拆、拼项等)判断

符号(判断差与0的大小关系)得结论(确定被减式与减式的大小. 理论依据:

①;②;③。

一般步骤: 第一步:作差; 第二步:变形;常采用配方、因式分解等恒等变形手段; 第三步:判断差的符号;就是确定差是大于零,还是等于零,小于零. 如果差的符号无法确定, 应根据题目的要求分类讨论. 第四步:得出结论。 注意:其中判断差的符号是目的,变形是关键。

2、作商比较法 常用于单项式大小的比较,当两式同为正时,通过作商变形(约分、化简)判断

商与1的大小得结论(确定被除式与除式的大小). 理论依据:

若、,则有①;②;③.

基本步骤: 第一步:判定要比较两式子的符号 第二步:作商 第三步:变形;常采用约分、化简等变形手段; 第四步:判定商式大于1或等于1或小于1。如果商与1的大小关系无法确定,应根据题目的要求分类讨论. 第五步:得出结论。 注意:作商比较法一般适合含“幂”、“指数”的式子比较大小。

知识点二:分析法 分析法是从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立,或由已知证明成立,从而确定所证的命题成立的一种方法. 思维过程:“执果索因”. 证明格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证。 适用题型:当所证的不等式的结论与所给条件间联系不明确,常常采用分析法证明不等式。 5

知识点三:综合法 综合法是从命题的已知条件出发,利用公理、已知的定义及定理,逐步推导,从而最后导出要证明的命题。 思维过程:“执因索果” 适用题型:当所证的不等式的条件形式或不等式两端的形式与不等式的性质、定理有直接联系时,常常采用综合法证明不等式.

知识点四:反证法 反证法首先假设要证明的命题是不正确的,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等矛盾的结论,以此说明假设的结论不成立,从而原来的结论正确。 适用题型:适合证明“存在性问题、唯一性问题”,带有“至少有一个”或“至多有一个”等字样的数学问题. 理论依据:命题“p”与命题“非p”一真、一假。 注意:反证法解题的实质是否定结论导出矛盾,从而说明原结论正确。在否定结论时,其反面要找对、找全.

知识点五:放缩法 放缩法是指在证明不等式时,有时需要将所需证明的不等式的值适当的放大(或缩小),以此来简化不等式,达到证明的目的。 理论依据:不等式的传递性:a>b,b>ca>c,找到不等号的两边的中间量,从而使不等式成立。 注意:应用放缩法时,放大(缩小)一定要适当。

规律方法指导 1、不等式证明的常用方法: 比较法,综合法,分析法,反证法,放缩法,换元法等。

2、反证法的证明步骤: ①否定结论:假设命题的结论不成立,即结论的反面成立; ②推出矛盾:由结论反面成立出发,通过一系列正确的推理,导出矛盾; ③否定假设:由正确的推导导出了矛盾,说明假设不成立; ④肯定结论:原命题正确。

3、放缩法的常用技巧: ①在恒等式中舍掉或者加进一些项; ②在分式中放大或缩小分子或分母;

例如: ③应用函数的单调性、有界性等性质进行放缩; 例如:f(x)为增函数,则f(x-1)④应用基本不等式进行放缩。

例如:若,则有; 6

若,则有。 这两个结论是实现“累差法”、“累商法”、“降幂”等转化的重要手段 经典例题透析 类型一:比较法证明不等式

1、用作差比较法证明下列不等式: (1);

(2) (a,b均为正数,且a≠b)

思路点拨:(1)中不等号两边是关于a,b,c的多项式,作差后因式分解的前途不大光明,但注意到如a2, b2, ab这样的结构,考虑配方来说明符号;(2)中作差后重新分组进行因式

分解。 证明:

(1)

当且仅当a=b=c时等号成立, (当且仅当a=b=c取等号).

(2)

∵a>0, b>0, a≠b, ∴a+b>0, (a-b)2>0,

∴, ∴. 总结升华:作差,变形(分解因式、配方等),判断差的符号,这是作差比较法证明不等式的常用方法。

举一反三: 【变式1】证明下列不等式: (1)a2+b2+2≥2(a+b) 7

(2)a2+b2+c2+3≥2(a+b+c) (3)a2+b2≥ab+a+b-1

【变式2】已知a,b∈,x,y∈,且a+b=1,求证:ax2+by2≥(ax+by)

2

2、用作商比较法证明下列不等式: (1) (a,b均为正实数,且a≠b)

(2)(a,b,c∈,且a,b,c互不相等) 证明: (1)∵a3+b3>0, a2b+ab2>0.

∴, ∵a, b为不等正数,∴,∴

(2)证明: 不妨设a>b>c,则

∴ 所以, 总结升华:当不等号两边均是正数乘积或指数式时,常用这种方法,目的是约分化简. 作商比较法的基本步骤:判定式子的符号并作商变形 判定商式大于1或等于1或小于1 结论。

相关文档
最新文档