世界三大未解数学难题

合集下载

世界7大数学难题

世界7大数学难题

世界7大数学难题第一篇:世界7大数学难题世界七大数学难题这七个“千年大奖问题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想千年大奖问题美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。

其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已由俄罗斯数学家格里戈里·佩雷尔曼破解。

)“千年大奖问题”公布以来,在世界数学界产生了强烈反响。

这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。

认识和研究“千年大奖问题”已成为世界数学界的热点。

不少国家的数学家正在组织联合攻关。

可以预期,“千年大奖问题”将会改变新世纪数学发展的历史进程。

P问题对NP问题在一个周六的晚上,你参加了一个盛大的晚会。

由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。

你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。

这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因式分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。

既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。

7大数学难题

7大数学难题

7大数学难题数学是许多学科的基础,但有些数学问题非常复杂,让最聪明的数学家们都困扰不已。

以下列出了7个被公认为数学难题的问题,这些问题既有理论深度,又具有广泛的应用价值。

一、哥德巴赫猜想哥德巴赫猜想是数论中一个古老且未解决的问题。

它由18世纪德国数学家哥德巴赫提出,猜想任何一个大于2的偶数都可以表示为两个质数之和。

尽管许多数学家为此做出了努力,这个猜想至今仍未被证明或反驳。

二、黎曼假设黎曼假设是数学领域中一个非常重要的问题,由德国数学家黎曼提出。

这个假设涉及到复数分析中的一些概念,主要是关于素数的分布。

如果这个假设被证明或反驳,将对许多数学领域产生深远影响。

三、庞加莱猜想庞加莱猜想是几何学中的一个重要问题,由法国数学家庞加莱提出。

这个猜想描述了三维空间中形状的复杂性,涉及到几何拓扑学中的一些概念。

尽管这个猜想已经有了许多重要的推论和应用,但它的完整证明至今仍未找到。

四、素数定理素数定理描述了素数的分布规律,即大于1的自然数中,素数的个数趋近于无穷。

这个定理对于理解素数和合数的性质非常重要,但它的证明需要非常高深的数学技巧。

五、四色问题四色问题是一个经典的几何问题,涉及到地图的染色方式。

这个问题由英国数学家格拉斯哥大学的学生哈密顿在1852年提出,主要是探究用四种颜色对地图进行染色的可能性。

这个问题在1976年被证明,但它的证明过程非常复杂。

六、纳维-斯托克斯方程纳维-斯托克斯方程是物理学中描述流体运动的一个偏微分方程。

由于这个方程的高度非线性性和复杂性,对于它的求解非常困难。

尽管在某些情况下可以找到近似解或数值解,但它的完整解析解至今仍未找到。

七、丘成桐几何化猜想丘成桐几何化猜想是由著名华裔数学家丘成桐提出的一个关于几何学的重要问题。

这个猜想涉及到几何结构中的一些性质,如果被证明或反驳,将对数学和物理学产生重大影响。

世界十大数学难题和世界十大物理难题

世界十大数学难题和世界十大物理难题

世界近代三大数学难题1、费尔马大定理费尔马大定理起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。

终于在1994年被安德鲁〃怀尔斯攻克。

古希腊的丢番图写过一本著名的“算术”,经历中世纪的愚昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。

1637年,法国业余大数学家费尔马(Pierre de Fremat)在“算术”的关于勾股数问题的页边上,写下猜想:x^n+y^n =z^n 是不可能的(这里n大于2;a,b,c,n都是非零整数)。

此猜想后来就称为费尔马大定理。

费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。

一般公认,他当时不可能有正确的证明。

猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。

1847年,库木尔创立“代数数论”这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。

历史上费尔马大定理高潮迭起,传奇不断。

其惊人的魅力,曾在最后时刻挽救自杀青年于不死。

他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限19 08-2007年。

无数人耗尽心力,空留浩叹。

最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。

1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个a,b,c振动了世界,获得费尔兹奖(数学界最高奖)。

历史的新转机发生在1986年夏,贝克莱〃瑞波特证明了:费尔马大定理包含在“谷山丰—志村五朗猜想” 之中。

童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。

终于在1993年6月23日剑桥大学牛顿研究所的“世纪演讲”最后,宣布证明了费尔马大定理。

立刻震动世界,普天同庆。

不幸的是,数月后逐渐发现此证明有漏洞,一时更成世界焦点。

这个证明体系是千万个深奥数学推理连接成千个最现代的定理、事实和计算所组成的千百回转的逻辑网络,任何一环节的问题都会导致前功尽弃。

古希腊三大“不可解”的数学问题,最后一个既简单又复杂

古希腊三大“不可解”的数学问题,最后一个既简单又复杂

古希腊三大“不可解”的数学问题,最后一个既简单又复杂只用直尺和圆规能解决这三个问题吗今天,超模君想跟大家讲一下有关“古希腊三大几何问题”的故事……“倍立方体”问题Question:如何只用直尺和圆规作出一个立方体,使得该立方体的体积为已知立方体的体积的两倍。

原来这个问题源于古希腊的一次瘟疫。

传说在公元前429年,一场不知名的瘟疫袭击了希腊提洛岛(Delos),岛上四分之一的人都因为瘟疫而丧生。

面对可怕的瘟疫,岛上的居民们推举出一个代表,到神庙里去询问阿波罗的旨意。

太阳神阿波罗结果阿波罗传下旨意:想要遏止瘟疫,就把神殿前的祭坛加大一倍吧!听到阿波罗的旨意,人们便把祭坛的边长都加长了一倍。

但是,当新的祭坛做好时,瘟疫并没有得到控制,反而愈加严重。

此时有人质疑说这样做根本不对,阿波罗说的是把祭坛的体积变成原来的两倍。

于是人们又把祭坛的体积修改为原来的两倍,但是祭坛的形状变成了一个长方体,瘟疫依旧肆虐。

无奈之下,岛民们只好去雅典求助智者柏拉图。

一开始柏拉图和他的学生都认为这个问题很容易,因为他们已经知道如何只用直尺和圆规,来作出一个面积为已知正方形两倍的正方形。

但是他们发现,这个问题远比想象的要复杂,以至于最后柏拉图并没有成功地用尺规作图来解决这个问题。

柏拉图:这回丢脸丢大了……于是这个问题被保留了下来,直到1837年,法国数学家万芝尔成功证明:只用尺规作图,根本无法解决“倍立方体”问题。

万芝尔的大致证明过程是这样的:假设已知的正方体棱长为a,体积为已知正方体的正方体棱长为x,由问题的要求,列式得x^3=2a^3,解出x等于2a^3的三次方根。

由于2的三次方根是无理数,而尺规作图能够作出的线段长度均为有理数,所以“倍立方体”问题无法只用尺规作图解决。

这个证明被数学界普遍认可,可如果抛开尺规作图这个限制,那么要解决“倍立方体”问题其实并不难。

柏拉图当时就有这么一个解法:“倍立方体问题”可以转化为另一个问题:即在a与2a之间,插入x、y两个数,使a、x、y、2a成等比数列。

世界未解数学难题

世界未解数学难题

四千禧七大难题2000年美国克雷数学促进研究所提出。

为了纪念百年前希尔伯特提出的23问题。

每一道题的赏金均为百万美金。

1、黎曼猜想。

见二的3透过此猜想,数学家认为可以解决素数分布之谜。

这个问题是希尔伯特23个问题中还没有解决的问题。

透过研究黎曼猜想数学家们认为除了能解开质数分布之谜外,对於解析数论、函数理论、椭圆函数论、群论、质数检验等都将会有实质的影响。

2、杨-密尔斯理论与质量漏洞猜想(Yang-Mills Theory and Mass GapHypothesis)西元1954 年杨振宁与密尔斯提出杨-密尔斯规范理论,杨振宁由数学开始,提出一个具有规范性的理论架构,后来逐渐发展成为量子物理之重要理论,也使得他成为近代物理奠基的重要人物。

杨振宁与密尔斯提出的理论中会产生传送作用力的粒子,而他们碰到的困难是这个粒子的质量的问题。

他们从数学上所推导的结果是,这个粒子具有电荷但没有质量。

然而,困难的是如果这一有电荷的粒子是没有质量的,那麼为什麼没有任何实验证据呢?而如果假定该粒子有质量,规范对称性就会被破坏。

一般物理学家是相信有质量,因此如何填补这个漏洞就是相当具挑战性的数学问题。

3、P 问题对NP 问题(The P Versus NP Problems)随著计算尺寸的增大,计算时间会以多项式方式增加的型式的问题叫做「P 问题」。

P 问题的P 是Polynomial Time(多项式时间)的头一个字母。

已知尺寸为n,如果能决定计算时间在cnd (c 、d 为正实数) 时间以下就可以或不行时,我们就称之为「多项式时间决定法」。

而能用这个算法解的问题就是P 问题。

反之若有其他因素,例如第六感参与进来的算法就叫做「非决定性算法」,这类的问题就是「NP 问题」,NP 是Non deterministic Polynomial time (非决定性多项式时间)的缩写。

由定义来说,P 问题是NP 问题的一部份。

世界10大数学难题

世界10大数学难题
3
庞加莱猜想
已被证明。是关于几何形状的一个基本问题,假设三维空间中,任何封闭的三维形状都可以被连续地变换为球体。
4
黎曼假设
是关于素数分布的一个著名问题,由德国数学家波恩哈德·黎曼提出,素有“猜想界皇冠”之称。它假设黎曼ζ函数的非平凡零点都位于复平面的临界线上。
5
杨-米尔斯存在性和质量缺口
杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。该问题涉及杨-米尔斯方程的预言是否在所有实验室中的高能实验中得到证实。
9
费尔马大定理
已证明。由17世纪法国数学家皮耶·德·费玛提出,断言当整数n>2时,关于x,y,z的方程x^n+y^n=z^n没有正整数解。
10
哥德巴赫猜想
是数学界中存在最久的未解问题之一。假设任何大于2的偶数都可以写成两个质数之和。
世界10大数学难题
序号
难题名称
简述
1
P对NP问题
是计算机科学领域的最大难题之一,关系到计算机完成一项任务的速度到底有多快。P类问题是指那些存在多项式时间算法的问题,而NP类问题是指那些可以在多项式时间内验证解的问题。该难题假设所有NP问题都是P问题。
2
霍奇猜想
代数几何的一个重大悬而未决的问题,由威廉·瓦伦斯·道格拉斯·霍奇提出。是关于非奇异复代数簇的代数拓扑和它由定义子簇的多项式方程所表述的几何的关联的猜想。
6
纳维-斯托克斯方程的存在性与光滑性
是描述流体运动的基本方程之一。这个方程的解的存在性和光滑性问题是数学和物理学领通-戴尔猜想
称为“千僖难题”之七,指的是对有理数域上的任一椭圆曲线,其L函数在1的化零阶等于此曲线上有理点构成的Abel群的秩。

世界近代三大数学难题

世界近代三大数学难题在前面世界之最网介绍过最复杂的数学证明四色问题,这也是被称为世界近代三大数学难题之一。

那和另外两个世界近代三大数学难题是什么了,今天世界之最网就来介绍一下.世界近代三大数学难题之二:费马最后定理被公认的执世界报纸牛耳地位的《纽约时报》于1993年6月24日在其一版头题刊登了一则有关数学难题得以解决的消息,那则消息的标题是“在陈年数学困局中,终于有人呼叫‘我找到了’ ”。

该报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的男人照片。

这个人就是法国的著名数学家费马(Pierre de Fermat)。

费马是17世纪最卓越的数学家之一,他在许多数学领域中都有极大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以“业余王子”之美称。

在360多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理。

这个定理的内容是有关一个方程式xn+y” =zn的正整数解的问题,当n=2时就是我们所熟知的毕氏定理(中国古代又称勾股定理):X2 +y2=z2,此处Z表示一直角形之斜边,而x、y为其之两股,也就是一个直角三角形之斜边的平方等于它的两股的平方和,这个方程式当然有整数解(其实有很多),例如:x=3、y=4、z=5; x=6、y=8、z=10; x=5、 y=12、z=13;……费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3+y3=z3就无法找到整数解。

当时费马并没有说明原因,他只是留下这个叙述并且说他已经发现这个定理的证明妙法,只是书页的空白处无法写下。

“始作俑者”的费马也因此留下了千古的难题,300多年来无数的数学家尝试要去解决这个难题却都徒劳无功。

费马最后定理也就成了数学界的世纪难题。

19世纪时法国的法兰西斯数学院曾经在1815年和1860年两度悬赏金质奖章和30?法郎给任何解决此难题的人,可惜都没有人能够领到奖赏。

希尔伯特个数学问题大数学难题

希尔伯特个数学问题大数学难题Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】世界数学十大未解难题(其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决的问题”)一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。

由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。

你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。

这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数 13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。

它是斯蒂文·考克(StephenCook)于1971年陈述的。

二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。

基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。

这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是,在这一推广中,程序的几何出发点变得模糊起来。

在某种意义下,必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

世界三大数学猜想

世界三大数学猜想即费马猜想、四色猜想和哥德巴赫猜想。

费马猜想的证明于1994年由英国数学家安德鲁•怀尔斯(Andrew Wiles)完成,遂称费马大定理;四色猜想的证明于1976年由美国数学家阿佩尔(Kenneth Appel)与哈肯(Wolfgang Haken) 借助计算机完成,遂称四色定理;哥德巴赫猜想尚未解决,目前最好的成果(陈氏定理)乃于1966年由中国数学家陈景润取得。

这三个问题的共同点就是题面简单易懂,内涵深邃无比,影响了一代代的数学家。

w费马大定理内容当整数n > 2时,关于x, y, z的不定方程x"n + y\ = z一无正整数解。

简介怀尔斯和费马大定理这个定理,本来乂称费马最后的定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。

虽然费马宣称他已找到一个绝妙证明,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。

在一战之后,马克大幅贬值,该定理的魅力也大大地下降。

但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁•怀尔斯和他的学生理查•泰勒于1994年成功证明。

证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。

而安德鲁•怀尔斯(Andrew Wiles)出于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。

发现费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幕分成两个四次辱之和,或者一般地将一个高于二次的幕分成两个同次事之和,这是不可能的。

关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。

”(拉丁文原文:"Cuius rei demonstrationem mirabilem sane detexio Hane marginis exiguitas non capereto 〃)毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。

世界三大数学难题之一,1 1到底有多难?为何还没有被证明?

世界三大数学难题之一,1 1到底有多难?为何还没有被证明?
1、哥德巴赫猜想
2、费玛大定理——内容:他断言当整数n \ue2时,关于x, y, z的方程x +-y = z 没有正整数解。

3、四色问题——又称四色悖论、四色定理,就是世界近代三小数学难题之-。

地图四色定理最先就是由一
位毕业于伦敦大学叫格里斯的英国大学生提出来的。

1、哥德巴赫猜想
内容:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7; 再任取一个奇数,比如,可以表示成=+7+5,也是三个素数之和,还可以写成++5,仍然是三个素数之和。

例子多了,即发现“任何大于5的奇数都是三个素数之和。

2、费玛小定理
简述:费玛大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶德费玛提出。

费马大定理被提出后,经历多人猜想辩证,历经三百多年的历史,最终在年,英国数学家安德鲁怀尔斯宣布自己证明了费马大定理。

3、四色问题
四色问题又称四色猜想、四色定理,是世界近代三大数学难题之一。

地图四色定理最先是由一
位毕业于伦敦大学叫做格里斯的英国大学生明确提出去的。

内容:任何一-张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。

也就是说在不
引发混为一谈的情况下一-张地图只需四种颜色去标记就行及。

用数学语言则表示:将平面任一地细分为
不相重叠的区域,每一个区域总可以用这四个数字之- 来标记而不会使相邻的两个区域
获得相同的数字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

世界三大未解数学难题
世界三大未解数学难题如下。

1.第一题:三等分任意角。

用一把没刻度的尺子和圆规来三等分任意角。

2.第二题:化圆为方。

把一个圆“兑换”成相同大小的正方形。

3.第三题:尺规作图。

用一把没有刻度的尺子和一把圆规作出漂亮的对称图形。

世界近代三大数学难题之一四色猜想的提出来自英国。

1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。

这个结论能不能从数学上加以严格证明呢。

他和在大学读书的弟弟格里斯决心试一试。

兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有
进展。

1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德摩尔根,摩尔根也没有能找到解决这个问题的途径。

于是写信向自己的好友、著名数学家哈密尔顿爵士请教。

哈密尔顿接到摩尔根的信后,对四色问题进行论证。

但直到1865年哈密尔顿逝世为止,问题也没有能够解决。

相关文档
最新文档