利用HFSS优化法快速确定天线的相位中心详细教程
HFSSV天线仿真基本操作指南

HFSS v13.0高频仿真软件操作指南目录第一章创建工程Project一、前期准备第二章创建模型3DModeler一、绘制常见规则形状二、常用操作三、几种常见天线第三章参数及条件设置(材料参数、边界条件和激励源等) Setting一、设置材料参数二、设置辐射边界条件三、设置端口激励源四、特定边界设置第四章设置求解项并分析Analyze一、设置分析Add Solution Setup二、确认设置并分析Validation Check Analyze All第五章查看结果Results一、3D极化图(3D Polar Plot)二、3D直角图(3D Rectangular Plot)三、辐射方向图(Radiation Pattern)四、驻波比(VSWR)五、矩阵数据(Matrix Date)一、前期准备1、运行HFSS后,左侧工程管理栏会自动创建一个新工程:Project n 。
由主菜单选File > Save as,保存到一个方便安全的文件夹,并命名。
(命名可包括下划线、字母和数字,也可以在Validation Check之前、设置分析和辐射场之后保存并命名)2、插入HFSS设计由主菜单选Project > Insert HFSS Design 或点击图标,(大口径的由主菜单选Project > Insert HFSS-IE Design)则一个新的项目自动加入到工程列表中,同时会出现3D画图窗口,上侧出现很多画图快捷图标。
3、选择求解类型由主菜单选HFSS > Solution Type(求解类型),选择Driven Model或Driven Terminal(常用)。
注:若模型中有类似于耦合传输线求耦合问题的模型一定要用Driven Terminal,Driven Model适于其他模型,不过一般TEM模式(同轴、微带)传输的单终端模型一般用Driven Terminal分析。
HFSS天线设计

Prad A Pin
增益:
天线的增益是表征将输入给它的功率按特定的方向辐射的能力。 定义在相同输入功率、相同距离的条件下,天线在最大辐射方向 上的功率密度与无方向性天线在此方向上的辐射功率密度的比值, 其表达式为:
也可定义交叉极化电平的增加增益的起伏方向图主瓣宽度的变化旁瓣电平的变化或回波损耗的变化等超过某一范围时所对应的频率变化范围为该天线的带带宽的定义方法没有最好的方法只有较为恰当的方法应该在特定的应用场合下对所需的天线特性参数加以同等重要的考虑用同时满足多项指标的频率范围来确定天线带宽
天线设计与优化 — 天线基础
E j E 0
内容提要
电基本振子的辐射场 天线的主要性能参数
方向图 辐射强度 方向性系数 效率 增益 输入阻抗 回波损耗
基本天线结构
方向图:
天线的辐射场在固定距离上 随球坐标系的角坐标(θ,ϕ) 分布的图形称为天线的辐射 方向图或辐射波瓣图,简称 方向图。 完整的天线方向图应该用如 所示的三维立体方向图表示, 但是由于三维空间立体方向 图绘制复杂,工程上常用主 瓣轴的剖面图来表示。
G AD
效率:
天线效率是表征天线将输入高频能量转换为无线电波能量的有效 程度,定义为天线的辐射功率与输入功率之比:
Prad A Pin
增益:
天线的增益是表征将输入给它的功率按特定的方向辐射的能力。 定义在相同输入功率、相同距离的条件下,天线在最大辐射方向 上的功率密度与无方向性天线在此方向上的辐射功率密度的比值, 其表达式为:
导线,导线上的电流处处等幅同相。 根据电流连续性原理,在电基本振子两端将同时积存大小相等、符号
利用HFSS设计平面等角螺旋天线

利用HFSS设计平面等角螺旋天线HFSS(高频结构模拟器)是一种电磁场仿真软件,广泛应用于无线通信、射频电子、天线设计等领域。
在设计平面等角螺旋天线时,可以使用HFSS来进行仿真、优化和分析。
下面将介绍利用HFSS设计平面等角螺旋天线的步骤和注意事项。
1.定义天线的几何结构:在HFSS中,首先需要定义天线的几何形状。
对于平面等角螺旋天线,可以使用直线段和弧段来描述螺旋的几何结构。
可以选择合适的参数,如螺旋半径、线宽和线距等,来定义螺旋天线的几何形状。
2. 设置边界条件和材料属性:在进行仿真之前,需要设置适当的边界条件和材料属性。
对于平面等角螺旋天线,一般使用PEC(Perfect Electric Conductor)作为边界条件,以确保电磁波在螺旋天线表面的反射和吸收很小。
此外,还需要为天线材料设置合适的电磁参数,如相对介电常数和损耗正切等。
3.设定频率范围和场激励:在HFSS中,可以设置所需的频率范围和场激励方式。
一般来说,平面等角螺旋天线用于宽频工作,因此可以选择一个合理的工作频率范围。
对于激励方式,可以选择点源激励,即在螺旋天线的发射端施加一个适当的电流源。
4. 进行电磁波分析:在设置好几何结构、边界条件、材料属性、频率范围和场激励之后,可以进行电磁波分析。
HFSS使用有限元方法来求解Maxwell方程组,得到电磁场分布、辐射特性等结果。
5.优化和调整参数:根据仿真结果,可以对平面等角螺旋天线的几何参数进行优化和调整。
例如,可以改变螺旋半径、线宽和线距,以优化天线的电磁性能,如增益、辐射方向性等。
6.分析和评估性能:经过优化和调整之后,可以再次进行电磁波分析,得到优化后的天线性能。
可以对比不同参数设置下的性能,如频率响应、辐射图案等,进行评估和选择最佳设计。
在设计平面等角螺旋天线时1.准确地定义几何参数:几何参数的准确定义对于仿真结果的准确性至关重要。
要仔细测量几何参数,并正确输入到HFSS中。
(完整版)HFSS天线设计实例

HFSS 天线设计实例这是一种采用同轴线馈电的圆极化微带天线切角实现圆极化设计目标!(具体参数可能不精确,望大家谅解)主要讲解HFSS操作步骤!GPS微带天线:介质板:厚度:2mm,介电常数:2。
2,大小:100mm*100mm工作频率:1.59GHz,圆极化(左旋还是右旋这里不讲了哈),天线辐射在上半平面覆盖!50欧同轴线馈电,1、计算参数首先根据经验公式计算出天线的基本参数,便于下一步建立模型。
贴片单元长度、宽度(正方形贴片长宽相等)、馈电点位置,分离单元长度.下表是经HFSS分析后选择的一组参数:2、建立模型首先画出基板50mm*50mm*2mm 的基板起名为substrate介电常数设置为如图2。
2的,可以调整color颜色和transparent透明度便于观察按Ctrl+D可以快速的使模型全可见!按住Ctrl+Alt键,拖动鼠标可以使3D模型自由旋转同理,我们画贴片:1、在基板上画出边长65mm(假设用公式算出的是这么多)的正方形2、起名为patch,颜色选绿色,透明度设为0。
5画切角是比较麻烦的1、用画线条工具,画三线段,坐标分别是0。
5.0, 5。
0。
0, 0.0。
02、移动三角形,选中polyline1,选菜旦里edit\Arrange\move,先确定坐标原点或任一点为基准点,将三角形移动到左上角和贴片边沿齐平.3、复制三角形,选中polyline1,选菜单里edit\arrange\duplicate\around axis,相对坐标轴复制,角度换成180,然后在右下角就出现了相对称的另一个三角形.4、从patch上切掉对角上的分离单元polyline1和polyline1_1:选中patch、polyline1和polyline1_1,选菜单里3D modeler\Boolean\Subtract把polyline1和polyline1_1从patch上切掉最后剩下先在介质板底面画一个100mm*100mm的正方形作为导电地板。
HFSS场计算器使用指南

HFSS场计算器使用指南HFSS(High Frequency Structure Simulator)是由ANSYS公司开发的一款用于高频电磁场仿真和设计的软件。
它是目前业界领先的电磁仿真工具之一,广泛应用于微波、射频、天线和高速信号完整性等领域的设计和分析。
本文将介绍HFSS场计算器的使用指南,帮助初学者快速上手并进行有效的电磁场仿真。
一.HFSS简介1.HFSS是什么?HFSS是一款基于有限元方法(Finite Element Method,FEM)的电磁场仿真软件。
它可以对电磁场进行三维建模、仿真和分析,帮助设计师评估设计的性能、优化设计参数以及解决电磁兼容性(EMC)和信号完整性(SI)等问题。
2.HFSS的特点HFSS具有以下突出特点:-高精度:采用高精度的数值算法,精确计算微波和射频器件的电磁场分布;-广泛的功能:支持多种不同频段、不同结构和材料的仿真;-用户友好的图形用户界面(GUI):直观的操作界面,易于学习和使用;-高效的求解器:采用高效的求解器,提供快速的仿真结果。
二.HFSS场计算器的使用指南1.创建新项目打开HFSS软件,点击"File"->"New"->"Project",输入项目名称,并选择合适的单位系统(如米制系统)。
2.建立模型在"Project Manager"中右键点击"Models",选择"Insert"->"Design"->"Model",可以选择不同的模型创建方式,如导入CAD文件、手动创建等。
3.创建几何体选择"Modeler",可以通过"Draw"工具栏创建几何体,如直线、矩形、圆形等。
也可以通过导入CAD文件创建几何体。
4.设置材料属性在"Modeler"中选择几何体,点击右键选择"Assign Material",选择适合的材料属性,可以从材料库中选择,也可以自定义材料属性。
基于HFSS的天线设计研究及其应用

基于HFSS的天线设计研究及其应用随着移动通信和互联网的飞速发展,无线通信技术已经成为了人类生活中不可或缺的一部分。
在无线通信技术中,天线作为信号的传输介质,既是重要的硬件设施,也是必不可少的组成部分。
因此,天线设计的质量对于无线通信技术的性能和实用性具有重要的决定性作用。
本文将介绍一种基于HFSS的天线设计方法,并探讨其在实际应用中的优缺点和未来发展方向。
一、HFSS介绍HFSS(High Frequency Structure Simulator)是美国ANSYS公司开发的一款高频电磁仿真软件,主要用来解决射频、微波、毫米波以及光电领域中的电磁场问题。
HFSS不仅有较高的精度与可靠性,而且具有强大的CAD能力和优秀的后处理功能。
在无线通信技术中,天线设计是非常重要的,能够深入了解和熟悉HFSS软件的使用方法,对于天线设计工程师来说是非常必要的。
二、HFSS在天线设计中的应用在天线设计中,HFSS可以帮助设计人员计算各种天线的参数,包括阻抗、谐振频率、增益、方向性等等,并生成天线图形,进而优化和改善天线性能。
1、天线参数计算在进行天线设计之前,需要确定一些基本的天线参数,如天线的工作频率、阻抗、增益、波束宽度等。
这些参数与天线的结构和电学性质密切相关。
HFSS可以通过分析天线的结构和材料等属性,快速计算出几乎所有的天线参数。
设计人员通过对这些参数的控制和优化,可以提高天线的性能。
2、天线模型设计在开始天线的设计过程时,需要首先绘制天线的模型图。
HFSS可以根据天线的结构和尺寸等要素自动生成天线的三维模型。
这有助于设计人员在后续的优化和改进过程中,更精确地分析天线性能和做出相应的调整。
3、天线参数优化一旦天线的模型和基本参数确定后,接下来是对天线性能进行优化。
在实际的天线设计中,往往需要根据具体的应用场景修改或调整天线的工作频率、波束宽度或者增益等参数。
通过HFSS,设计人员可以快速地对天线的各种参数进行调整,并通过仿真和分析来确认优化后的结果。
HFSS 天线设计讲义

0
/100
/10
Problem Scale
Use a Quasi-Static Solver (OVERLAP)
Use a FEM Full-Wave Solver
Simulation Structures
W=44mil t = 1mil
1.增加Sweep變數。
3.按下增加。 出現訊息
4.按下確定。 出現訊息
2.設定要sweep的起始 結束 間隔。 5.按下確定。
使用變數sweep 開始分析
1.開始分析。
使用變數sweep 看分析結果
1. 3.選擇看sweep結果。
2.
使用變數sweep 看分析結果(2)
1.選擇要看的sweep結果。
2.只對port分析打勾。
1.分析。
3.開始分析。
Analysis Wave port at First
2.場形完整且連續 可進行完整分析。
1.看場形。
Boundary Radiation
減少運算時間 縮小體積 需在最大的Box增加 Radiation Boundary
Deembed
藍色箭頭 表示Deembed的位置。
圓心
半徑 (R1) 高度 命名:barrel trace1 barrel trace2
操作流程---(6)連通柱繪圖
連通柱焊墊繪圖:
1設定材質
L=800mil R2=50mil R1 = 20mil
2.結構繪圖
圓心
R3=30mil
半徑 (R3)
高度 命名:Pad1 圓心 半徑 (R3) 高度 命名:Pad2
操作流程---(2)繪圖功能
接收机天线相位中心对准的测量方法与技巧

接收机天线相位中心对准的测量方法与技巧在无线通信领域,准确地测量接收机天线的相位中心对准非常重要。
相位中心对准的准确性直接影响通信系统的性能和覆盖范围。
本文将介绍几种常用的测量方法和技巧,帮助读者更好地理解和应用。
一、相位中心对准的基本概念首先,我们来了解一下相位中心对准的基本概念。
接收机天线的相位中心是指天线辐射功率均匀分布的中心点。
如果接收机的位置偏离相位中心,则会导致接收信号的失真和损耗。
因此,确保天线相位中心的准确对准是提高接收信号质量的关键。
二、信号强度扫描法信号强度扫描法是一种常用的测量方法。
它通过改变接收器和发送器之间的距离,记录接收到的信号强度的变化情况来确定相位中心的位置。
此方法适用于直线传播路径,通过多次测量和计算,可以得到较精确的结果。
然而,信号强度扫描法存在一些限制。
首先,该方法要求测量环境尽可能空旷,避免有大量干扰信号的情况。
其次,扫描的过程比较耗时,需要逐渐调整距离并记录数据,然后进行曲线拟合分析。
因此,需要一定的计算和数据处理能力。
三、相位差测量法相位差测量法是另一种常用的测量方法。
这种方法通常使用测量仪器,如示波器或频谱仪。
通过测量接收到的信号的相位差,可以准确地确定天线的相位中心位置。
相位差测量法相对于信号强度扫描法具有更高的精度和快速性。
它可以通过实时监测信号相位的变化,直接获得相位中心的位置。
然而,相位差测量法的设备和技术要求相对较高,需要专业的测量仪器和实验条件。
四、天线辐射图测量法天线辐射图测量法是一种更为精确的测量方法。
它基于天线的辐射特性来确定相位中心的位置。
通过测量和分析天线在不同方向上的辐射图,可以得到天线的辐射形状和辐射功率的分布情况,从而确定相位中心。
天线辐射图测量法是一种较为复杂的方法,需要使用专业的天线辐射测量系统和高精度的测量仪器。
该方法适用于对天线性能要求较高的场合,如卫星通信和雷达系统。
五、测量技巧与注意事项在进行接收机天线相位中心的测量过程中,需要注意以下技巧和事项,以确保测量结果的准确性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用HFSS优化法快速确定天线的相位中心详细教程
1.什么是天线相位中心天线所辐射出的电磁波在离开天线一定的距离后,其等相位面会近似为一个球面,该球面的球心即为该天线的等效相位中心,如下图(虚线表示该天线的等相位面,在离开天线一定距离后,虚线近似为圆形(最外面一圈),其圆心即为天线的等效相位中心):
2.HFSS优化法快速确定天线的相位中心(1)用后处理变量定义相对坐标系
A.HFSS》Design ProperTIes,打开DesignProperTIes 对话框;
B.点击AddVariable,显示定义设计变量的属性对话框,例如定义为PhaseCenterZ,变量类型设定为PostProcessing variable,单位类型Length,本例初值设为1in;
C.用Modeler》CoordinateSystem》Create》RelaTIve CS》Offset 命令定义一个相对坐标系,用前面设定的变量作为Z坐标。
后面的优化过程中可以通过变量改变坐标系定义,而无需重新求解模型。
(2)将相对坐标系用于远场设置计算
点击HFSS》RadiaTIon》InsertFar Field Setup》Infinite Sphere ,定义合适的角度范围与间隔,在坐标系选项卡中,选择定义好的采用了后处理变量的相对坐标系;
当相对坐标系位置改变时(通过改变变量PhaseCenterZ的值),远场量会重新计算,而无需重新仿真模型。
(3)设置优化求解
A.添加一个优化(Optimization)设置
B.点击SetupCalculations按钮,打开计算表达式定义的对话框,定义优化目标用于寻找相位中心,这里将优化的是场量rEPhi的峰峰连续角度。
Geometry选择前面定义的InfiniteSphere。
计算表达式为cang_deg(rEPhi),本例中的天线在Phi=0平面是Phi极化(电场沿着y轴)。