高光谱遥感图像目标检测概要
基于CEM的高光谱图像小目标检测算法

w t lw po a it si ni g cn. i t ,h y e p c a i g a r et noasbp c, hc a i o rbbli na h ie ma ese e Fr l teh pr et l ma ew spo ce o t u sae w i w s sy s r j d h
b x a t d u i g i r t e e r r a ay i meh d h n s g e ta td s e ta a e d s e i n t r ,CE s e e t ce sn t ai ro n l s t o .T e ,u i x r c e p c s t e i d sg au e r e v s n r h r M wa i l me t d mp e n e .Ex e me t lr s l h w h t t e ag r h a fe t ey a d r l b y d t c h m alt r e x m p r n a e u t s o t a h l o t i s i m c n e ci l n ei l e e tt e s l a g t f v a o h p rp cr l i g . e p ro a c f t e p o o e l o t s co e t h ef r a c f CEM ,b tt e n w y e s e t ma e Th e f r n e o r p s d a g r h i l s o t e p ro a m h im m n eo u h e ag r h o ea p ia l n o sn t e dt ep o f r ain o ed s e i a o r e loi t i m r p l b ea dd e o e r r n o m s c n h i i m t f e i dsg l u c . o h t r n s
高光谱遥感

概念: 具有比较高的光谱分辨 率,通常能达到10-2λ数量级,
高光谱遥感具有波段多的特 点,光谱通道数多达数十甚 至数百个以上,而且各通道 间往往是连续的,因此高光 谱遥感通常也被称为成像光 谱遥感(Imaging Spectrometry)。
基本概念
遥感成像技术的发展一直伴随着两方面的进步:一是通
④定量化的连续光谱曲线数据为地物光谱机理模型引入图像分类提
供了条件。 劣势:
①对数据冗余处理不当,反而会影响分类精度;
②对定量化要求高,数据前处理复杂; ③波段多,波段间的相关性大,对训练样本数量要求高;
④使用统计学分类模型对光谱特征选择要求很高。
四、高光谱图像分类与目标识别
面向高光谱图像特点的分类算法:
高光谱图像目标识别:
①从数字信号到辐射值的转换,这个过程要求在辐射和光谱上有
高精度的定标;
②剔除大气效应:从辐射值到地面视反射率; ③纠正光照几何因素和地形影响:视反射率到地面反射率; ④光谱特征选择、特征提取、数据空间转换等; ⑤从光谱数据库中提取所要识别的目标标准光谱;或者从图像中 提取光谱端元、识别和确认所找出的端元光谱; ⑥光谱匹配和识别,采用全波形匹配或者特征参量光谱匹配;也 可以采用混合光谱分解的方法,分解每一像元光谱,得出每像元 中各端元组分的相对含量。
谱特征空间,但它包括了该对象的主要特征光谱,并在一个 含有多种目标对象的组合中,该子集能够最大限度地区别于 其它地物。
光谱特征选择:光谱特征位置搜索 光谱相关性分析 光谱距离统计
三、高光谱图像光谱分析技术 (光谱特征位置搜索)
包络线去除(Continuum Removal ):光谱曲线的包络线从 直观上看,相当于光谱曲线的“外壳”。
高光谱遥感技术

高光谱数据的特点
2
波段连续,光谱分辨率高、空间分辨率低
由于波段众多, 波段窄且连续 , 使得高光谱数据量巨大(一次获取数据可达 千兆 GB 级)、相关性大 ,尤其在相邻的通道间,具有很大的数据冗余
高光谱遥感图像面临的问题
由于各个波段之间的高 度相关性,导致光谱间 存在冗余信息和数据处 理难度加大,图像在产 生及传输过程易受噪声 的影响,无疑降低了混 合像元分解的精度
02
高光谱数据的特点及处理
高光谱数据的特点
1多波Biblioteka 、波段宽度窄※ 波段宽度 <10 nm, 波段数较多光谱遥感(由几个离散的波段组成)大大增 多, 在可见光和近红外波段可达几十到几百个。 ※ 在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系, 可以使高 光谱图像中的每一个像元在各通道的灰度值都能产生一条完整、连续的光 谱曲线
由于高光谱遥感图像空 间分辨率限制和地物分 布的复杂多样性,混合 像元广泛存在于图像中, 影响遥感图像的分类精 度以及目标探测效果
高光谱数据处理——混合像元分解技术
01 凸几何分析方法 03 统计分析方法
02 稀疏回归分析方法。
04 光谱—空间联合分析方法
03
高光谱遥感的应用
高光谱遥感的应用——地质中的应用
感谢观看!
21316116 刘濛濛
01
高光谱遥感在地质上的应用,主要是利用矿物的 光谱吸收特征参数包括吸收波段波长位置、深度、 宽度、斜率、对称度、面积和光谱绝对发射值等, 从中获取矿物的各种定性、定量信息,进行岩石 矿物的分类、填图和矿产勘察
高光谱遥感的应用——植被研究中的应用
02
高光谱遥感在植被研究中的应用使得植被遥感的 范围被扩大到生态意义上。高光谱植被遥感主要 用于植被的识别、分类,利用高空间分辨率遥感 数据在大比例尺度内进行森林生态系统分类,通 过植被物理、化学参数实现对植物生化成分( 如 N、P、K、淀粉、水分、纤维素、木质素等 含量) 及其物理特征物理量的估测
遥感影像变化检测简述

遥感影像变化检测简述摘要:遥感影像变化检测一直是国际遥感领域研究的热点和难点,随着遥感对地观测技术的快速发展和应用,变化检测技术体系也在不断地发展和演化,已广泛应用于国土资源管理、地物变化、农林业的监测等领域。
现有的遥感变化检测技术方法很多,分类方式也很多,目前的研究表明,没有任何一种变化检测方法具有绝对的优势。
在实际的应用中,要根据具体的应用目的选取合适的变化检测方法。
本文将对遥感影像变化检测的基本概念、主要检测流程以及不同分类体系下的检测方法及各方法的优缺点进行简要阐述。
关键词:遥感影像;变化检测;检测方法中图分类号:文献标志码:文章编号:遥感影像变化检测是利用不同时期覆盖在同一地表区域的多源遥感影像和相关地理空间数据,结合相应地物特性和遥感成像机理,采用图像、图形处理理论及数理模型方法,确定和分析该地域地物的变化[1],包括地物位置、范围的变化和地物性质、状态的变化。
它的最终目标就是提取出变化信息并确定变化的类型。
近年来,随着航天技术和信息科学技术的飞速发展,遥感影像获取技术呈现出多平台、多角度多传感器和高时间分辨率、高空间分辨率、高光谱分辨率、高辐射分辨率的特点[2],海量的遥感数据为遥感应用提供了坚实的数据基础。
怎样从海量的遥感影像数据中提取和检测出变化信息已成为当前遥感数据处理技术的主要发展方向[3]。
国内外学者从不同角度针对不同应用研究了大量的变化检测方法和理论模型,但目前还没有发现一种适合所有场景的方法[4],还需根据具体情况,选择合适的变化检测方法。
论文简述了遥感变化检测的主要流程,简单介绍了几种目前主要使用的变化检测方法及其优缺点。
1 遥感变化检测的主要流程目前,各学者对遥感影像的变化检测过程提出了不同的划分步骤。
本文将遥感影像的变化检测过程总结为数据源选取、数据预处理、变化信息提取、变化信息后处理、检测精度评价五个部分。
数据源选取。
现在变化检测可以利用的数据源有很多,单波段、多波段、单时相、多时相等影像都有。
高光谱图像特征提取方法的研究与应用

高光谱图像特征提取方法的研究与应用一、引言高光谱图像是一种具有连续光谱信息的遥感图像,其特点是波段数量多且连续。
高光谱图像的分析和处理旨在提取图像中的有效特征,以实现对地物分类、目标检测和环境监测等应用。
本文旨在综述当前高光谱图像特征提取方法的研究进展,并探讨其在实际应用中的潜力。
二、高光谱图像特征提取方法1. 光谱特征提取方法光谱特征提取是高光谱图像分析的基础,通过利用图像中不同波段的光谱信息来揭示地物的特征。
常见的光谱特征提取方法包括像元光谱特征、平均光谱特征和主成分分析等。
像元光谱特征是指通过对图像中单个像素的光谱进行分析,来获取地物光谱特征的方法。
平均光谱特征则是对图像中某一区域内的像素光谱进行求平均,以得到该区域的光谱特征。
2. 空间特征提取方法除了光谱信息外,高光谱图像还包含丰富的空间信息。
因此,空间特征提取方法在高光谱图像处理中也起着重要的作用。
常见的空间特征提取方法包括纹理特征提取和形状特征提取。
纹理特征提取通过分析地物的纹理分布来揭示其特征。
常用的纹理特征提取方法包括灰度共生矩阵(GLCM)和小波变换等。
形状特征提取则通过对地物的外形进行分析,以提取地物的形状特征。
3. 混合特征提取方法为了更准确地描述地物的特征,研究者们也提出了混合特征提取方法,将光谱特征和空间特征相结合。
例如,光谱–空间特征提取方法可以通过光谱相似性和空间相似性来同时描述地物的特征。
此外,也有研究者提出了基于深度学习的特征提取方法,通过深度神经网络模型自动学习并提取高光谱图像中的特征。
三、高光谱图像特征提取方法的应用高光谱图像特征提取方法在许多领域中都有广泛的应用,下面分别介绍其中的几个应用场景。
1. 地物分类地物分类是高光谱图像处理中的重要应用之一。
通过提取地物的光谱特征、纹理特征和形状特征,可以将高光谱图像中的地物按照类别进行分类。
这在土地利用监测、环境保护和农业管理等领域中都有重要的作用。
2. 目标检测高光谱图像中的目标检测是指通过提取图像中目标的特征,以实现对目标的自动识别和检测。
高光谱遥感

高光谱遥感的基本概念
高光谱遥感的基础是波谱学,早在20世纪初波 谱学就被用于识别分子和原子的结构。由于物 质是由分子、原子构成的,组成物质的分子、 原子的种类及其排列方式决定了该物质区别于 其它物质的本质特征。当电磁波入射到物质表 面时,物质内部的电子跃迁,原子、分子的振 动、转动等作用使物质在特定的波长形成特有 的吸收和反射特征,能够通过物质的反射(或 吸收)光谱上反映出物质的组成成分与结构的 差异,然而这些吸收和反射特征在传统的多光 谱遥感数据上很难清楚地体现(童庆禧, 1990)。
10-1λ
>10-2λ
高光谱遥感的基本概念 2 Radiant
2 Spatial (2D)
高光谱图像立方体
2 Spectral
高光谱遥感的基本概念
z光谱分辨率高(λ×10-2)
特 点
z波段多⎯数十到数百 z谱⎯像合一的特点 z信息量大,一次数据获取达千兆(GB)级
z数据速率高,数十⎯数百兆比特/秒
10
ΕΟ−1/ΗΨ
220
ΠΕΡΙ ON
EO-1/ LAC
256
Landsat7
7/W TM+
Obv iew-4
MO DIS
MERIS
AR IES
400-2 500
2 5.4 12 0.0 1 6.5 <5.0 12.5 2 5.0 2 0.0-71.0 6 0.0 57 0.0 1 6.0 10 0.0 1 5.0 200 0.0 60 0.0 2 0.0 5 0.0 8.0 400/ 500
航天高光谱仪 Hyperion
遥感器 PLI-PMI C ASI S FSI AIS-1
AIS-2 AVI RIS (20 km) A SAS 改进 ASAS
高光谱影像特征选择与提取

高光谱影像特征选择与提取高光谱遥感影像是指通过遥感技术获取的光谱波段范围较宽的遥感影像,相比于普通遥感影像,具有更多的光谱信息。
高光谱影像的特征选择与提取是指从大量的光谱波段中选择出最能表达影像特征的波段,并对这些波段进行特征提取,以达到降维、去冗余和突出关键信息的目的。
本文将介绍高光谱影像特征选择与提取的方法和应用。
高光谱影像特征选择主要有两个目标:一是减少维度,将原始光谱数据降维为较低维度的特征向量,以方便后续处理;二是挖掘出与分类或回归任务相关的关键特征波段,以提高分类或回归的准确性。
常用的特征选择方法包括相关系数法、信息增益法、主成分分析法等。
相关系数法通过计算每个波段与所研究对象的相关程度,选择与目标变量相关性较强的波段作为特征波段。
信息增益法则根据每个波段对目标变量的贡献度选择特征波段,贡献度高的波段被认为是最有价值的特征波段。
主成分分析法则通过对原始光谱数据进行线性变换,将原始变量转换成一组互不相关的主成分,从而实现降维的目的。
在特征选择的基础上,还需要进行特征提取,以提取出更具有鉴别能力的特征。
常用的特征提取方法包括谱角法、植被指数法、特征空间法等。
谱角法是基于波段直接组合获取鉴别能力强的特征,通过计算不同波段之间的角度,来提取出能够鉴别不同地物的特征。
植被指数法是基于植被光谱反射率特点的一种特征提取方法,通过计算植被指数,如归一化植被指数(NDVI)、差值植被指数(DVI)等,来提取出与植被相关的特征。
特征空间法是基于光谱波段组合的一种特征提取方法,通过对多个波段进行线性或非线性组合,生成新的特征空间,从而提取出不同地物的特征。
除了上述方法,还可以通过机器学习算法,如支持向量机、决策树等,来进行特征选择与提取。
这些算法能够在训练模型的过程中自动选择最具有鉴别能力的特征,并对其进行提取。
高光谱影像特征选择与提取在农业、环境监测、地质勘探等领域有着广泛的应用。
例如,在农业领域,可以通过对农作物的高光谱影像进行特征选择与提取,来实现病虫害的自动检测与预警;在环境监测领域,可以通过高光谱影像进行景观类型分类与变化监测;在地质勘探领域,可以通过高光谱影像提取地质矿产信息,实现资源勘探与开发。
高光谱图像处理技术的使用教程研究

高光谱图像处理技术的使用教程研究高光谱图像处理技术是一种在应用领域广泛的图像处理技术,可以通过获取物体在不同波段的反射光谱信息,提供更加详细和全面的图像数据。
本文将针对高光谱图像处理技术的使用进行研究,并提供相应的教程。
一、高光谱图像处理技术简介高光谱图像处理技术是一种通过获取物体在可见光和红外波段的多个窄波段反射光谱信息,将其转化为多波段图像的技术。
与传统的彩色图像相比,高光谱图像能够提供更加详细和准确的物体信息,有利于物体分类、目标探测和环境监测等领域的研究。
二、高光谱图像处理的主要方法1. 高光谱图像获取:高光谱图像主要通过高光谱成像设备获取,该设备能够同时获取多个波段的光谱信息。
获取的图像需要进行前期的预处理,包括校准、去噪等,以减少后续处理的误差。
2. 高光谱图像的特征提取:获取到高光谱图像后,下一步是提取图像的特征。
常见的特征提取方法包括:主成分分析(Principal Component Analysis, PCA)、线性判别分析(Linear Discriminant Analysis, LDA)、离散小波变换等。
这些方法能够从高光谱图像中提取到代表图像信息的特征。
3. 高光谱图像分类:通过对提取的特征进行分类,可以实现对高光谱图像中的目标物体进行识别。
常见的分类方法包括:支持向量机(Support Vector Machines, SVM)、人工神经网络(Artificial Neural Networks, ANN)、决策树等。
4. 高光谱图像的目标检测:目标检测是高光谱图像处理的一个重要应用,可以通过识别图像中的目标物体来实现。
常见的目标检测方法包括:基于像素的方法、基于形状的方法和基于光谱的方法等。
三、高光谱图像处理技术的应用案例高光谱图像处理技术在许多领域有着广泛的应用。
以下是几个示例:1. 农业领域:高光谱图像处理技术可以用于农作物的生长监测和病虫害的检测。
通过获取植物在不同波段的光谱信息,可以分析植物的健康状况和生长情况。