2011秋季电大高等数学基础形成性考核手册答案(含题目)

合集下载

电大经济数学基础形成性考核册答案

电大经济数学基础形成性考核册答案

电大经济数学基础形成性考核册答案Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D )A .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设yx =lg2,则d y =(B ).A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的. A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( C ).A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x(2)218665lim 222=+-+-→x x x x x 原式=4)-2)(x -(x 3)-2)(x -(x lim2x →(3)2111lim-=--→x x x原式=)11()11)(11(lim+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31 (5)535sin 3sin lim0=→x x x原式=xxx x x 55sin 33sin lim530→ =53 (6)4)2sin(4lim22=--→x x x 原式=2)2sin(2lim2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在(2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f(0)f(x)lim 10x ====→有时,b a(2). 1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续. 3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x ,求y '答案:2ln 12ln 22x x y x ++='(2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+='(3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y ax sin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'='∴dxbx b bx a edy ax)cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x23112+-=' ∴dx e xx dy x )123(12-= (7)2ecos x x y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin xxe xx-+-∴dx xe xxdy x )22sin (2-+-=(8)nx x y n sin sin +=,求y '答案:nx n x x n y n cos cos sin 1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='-4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导:所以 dx xy x y dy ---=232(2) 方程两边对x 求导:所以 xyxyxe y x ye y x y ++-+-=')cos()cos(45.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''答案: (1)212x x y +='(2)212321212121)(-----='-='x x x xy作业(二)(一)填空题 1.若c x x x f x++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e12=+⎰x x x .答案:0 5. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( D )是x sin x 2的原函数. A .21cos x 2 B .2cos x 2 C .-2cos x 2 D .-21cos x 2 2. 下列等式成立的是( C ). A .)d(cos d sin x xx = B .)1d(d ln x x x =C .)d(22ln 1d 2x xx =D .x x xd d 1=3. 下列不定积分中,常用分部积分法计算的是( C ). A .⎰+x x c 1)d os(2, B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x xxd 124. 下列定积分计算正确的是( D ).A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x x ππD .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). A .⎰∞+1d 1x x B .⎰∞+12d 1x xC .⎰∞+0d e x xD .⎰∞+1d sin x x (三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx ex )3( =c e c ee x x x +-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x x d 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin 2(7)⎰x xx d 2sin答案:∵(+) x 2sinx(-) 1 (+) 0 2sin4x -∴原式=c xx x ++-2sin 42cos 2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln(=⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln(2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x x xd e 2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=-(3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d xx x=21ln 123=+e x(4)x x x d 2cos 2⎰π答案:∵ (+)x(+)02cos 1- ∴ 原式=20)2cos 412sin 21(πx x x +=214141-=--(5)x x x d ln e1⎰答案:∵ (+) x ln x(-) x122x∴ 原式=⎰-e exdx x x 11221ln 21 =)1(414122122+=-e x e e(6)x x x d )e 1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)x xe- (-)1 -xe - (+)0 xe -∴⎰-----=44)(x x x e xe dx xe=154+--e故:原式=455--e作业三 (一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:32.设B A ,均为3阶矩阵,且3-==B A ,则T AB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I-可逆,则矩阵X BX A =+的解______________=X .答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ). A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C ). `A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB = D .BA AB =4. 下列矩阵可逆的是( A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡22115. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3 三、解答题1.计算 (1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000(3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。

电大数据库基础与应用形成性考核册答案(带原题)

电大数据库基础与应用形成性考核册答案(带原题)

电大数据库基础与应用形成性考核册作业1一、单项选择题1、域是实体中相应属性的(A)。

A、取值范围B、值C、名称D、描述2、把保存关系定义的关系称为对应数据库的(B)。

A、一般关系B、元关系C、特定关系D、正常关系3、在一个关系R中,若存在X→Y和X→Z,则存在X→(Y,Z),称此为函数依赖的(C)规则。

A、传递性B、分解性C、合并性D、增广性4、设一个关系为(R(A、B、C、D、E、F),它的最小函数依赖集为FD={A→B,A→C,D→E,D→F},则该关系的候选码为(D)。

A、(A,B)B、(A,C)C、(A,E)D、(A,D)5、设D1,D2和D3域的基数分别为2,3,4,则D1*D2*D3的元组数为(B)。

A、9B、24C、10D、206、若一个关系为R(学生号,姓名,性别,年龄),则(A)适合作为该关系的主码。

A、学生号B、姓名C、性别D、年龄7、设一个集合A={3,4,5,6,7},集合B={1,3,5,7,9},则A和B的并集中包含有(C)个元素。

A、10B、8C、7D、68、在一个关系R中,若存在X→(Y,Z),则也隐含存在X→Y和X→Z,称此为函数依赖的(B)规则。

A、传递性B、分解性C、合并性D、增广性9、若一个关系的任何非主属性都不部分依赖于任何候选码,则称该关系最高达到了(B)范式。

A、第一B、第二C、第三D、BC二、是非题1、在文件管理阶段,文件之间是相互联系的,在数据库管理阶段,文件之间是相互独立的。

(错)2、分布式数据库系统既支持客户局部应用,又支持客户的全局应用。

(对)3、在对象数据模型中,对象不但能够继承,而且能够嵌套。

(对)4、设一个学生关系为S(学生号,姓名),课程关系为C(课程号,课程名),选课关系为X(学生号,课程号,成绩),求出所有选课的学生信息的运算表达式为II学生号(X)与X的自然连接。

(对)5、在一个关系R中,“职工号”函数决定“姓名”是非平凡函数依赖,但不是完全函数依赖。

电大经济数学基础12形成性考核册试题及参考答案

电大经济数学基础12形成性考核册试题及参考答案

电大经济数学基础12形成性考核册试题及参考答案电大经济数学基础12形成性考核册试题及参考答案作业(一)(一)填空题1..答案:02.设,在处连续,则.答案:13.曲线在的切线方程是.答案:4.设函数,则.答案:5.设,则.答案:(二)单项选择题1.函数的连续区间是()答案:DA.B.C.D.或2.下列极限计算正确的是()答案:BA.B.C.D.3.设,则().答案:BA.B.C.D.4.若函数f(x)在点x0处可导,则()是错误的.答案:BA.函数f(x)在点x0处有定义B.,但C.函数f(x)在点x0处连续D.函数f(x)在点x0处可微5.当时,下列变量是无穷小量的是().答案:CA.B.C.D.(三)解答题1.计算极限(1)==(2)===(3)===(4)(5)=(6)2.设函数,问:(1)当为何值时,在处有极限存在?(2)当为何值时,在处连续.答案:(1)当,任意时,在处有极限存在;(2)当时,在处连续。

3.计算下列函数的导数或微分:(1),求答案:(2),求答案:=(3),求答案:=(4),求答案:(5),求答案:(6),求答案:(7),求答案:(8),求答案:=+=(9),求答案:(10),求答案:4.下列各方程中是的隐函数,试求或(1),求答案:解:方程两边关于X求导:,(2),求答案:解:方程两边关于X求导5.求下列函数的二阶导数:(1),求答案:(2),求及答案:,作业(二)(一)填空题1.若,则.答案:2..答案:3.若,则.答案:4.设函数.答案:05.若,则.答案:(二)单项选择题1.下列函数中,()是xsinx2的原函数.A.cosx2B.2cosx2C.-2cosx2D.-cosx2答案:D2.下列等式成立的是().A.B.C.D.答案:C3.下列不定积分中,常用分部积分法计算的是().A.,B.C.D.答案:C4.下列定积分计算正确的是().A.B.C.D.答案:D5.下列无穷积分中收敛的是().A.B.C.D.答案:B(三)解答题1.计算下列不定积分(1)答案:==(2)答案:===(3)答案:==(4)答案:==(5)答案:==(6)答案:==(7)答案:===(8)答案:===2.计算下列定积分(1)答案:=+== (2)答案:=== (3)答案:==2(=2 (4)答案:===(5)答案:===(6)答案:==3=作业三(一)填空题1.设矩阵,则的元素.答案:32.设均为3阶矩阵,且,则=.答案:3.设均为阶矩阵,则等式成立的充分必要条件是.答案:4.设均为阶矩阵,可逆,则矩阵的解.答案:5.设矩阵,则.答案:(二)单项选择题1.以下结论或等式正确的是().A.若均为零矩阵,则有B.若,且,则C.对角矩阵是对称矩阵D.若,则答案C2.设为矩阵,为矩阵,且乘积矩阵有意义,则为()矩阵.A.B.C.D.答案A3.设均为阶可逆矩阵,则下列等式成立的是().`A.,B.C.D.答案C4.下列矩阵可逆的是().A.B.C.D.答案A5.矩阵的秩是().A.0B.1C.2D.3答案B三、解答题1.计算(1)=(2)(3)=2.计算解=3.设矩阵,求。

国家开放大学《高数基础形考》1-4答案

国家开放大学《高数基础形考》1-4答案

2020年国家开放大学《高等数学》基础形考1-4答案《高等数学基础》作业一第1章 函数第2章 极限与连续(一) 单项选择题⒈下列各函数对中,(C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = ⒊下列函数中为奇函数是(B ).A. )1ln(2x y +=B. x x y cos =C. 2x x a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2x y = D. ⎩⎨⎧≥<-=0,10,1x x y ⒌下列极限存计算不正确的是(D ).A. 12lim22=+∞→x x x B. 0)1ln(lim 0=+→x xC. 0sin lim=∞→x x x D. 01sin lim =∞→xx x ⒍当0→x 时,变量(C )是无穷小量. A.xxsin B. x 1C. xx 1sin D. 2)ln(+x ⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。

A. )()(lim 00x f x f xx =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题 ⒈函数)1ln(39)(2x x x x f ++--=的定义域是 {}|3x x >.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x)211(lim 1122211lim(1)lim(1)22x x x x e x x ⨯→∞→∞+=+= ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e . ⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 0x =.⒍若A x f xx =→)(lim 0,则当0x x →时,A x f -)(称为 x →x 0时的无穷小量.(二) 计算题⒈设函数 ⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -.解:()22f -=-,()00f =,()11f e e == ⒉求函数21lgx y x-=的定义域.解:21lg x y x -=有意义,要求21x x x -⎧>⎪⎪⎨⎪≠⎪⎩解得1020x x x ⎧⎪⎪><⎨⎪≠⎪⎩或则定义域为1|02x x x ⎧⎫<>⎨⎬⎩⎭或⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数.解:C设梯形ABCD 即为题中要求的梯形,设高为h ,即OE=h ,下底CD =2R直角三角形AOE 中,利用勾股定理得AE ==则上底=2AE =故((222hS R R h R =+=+ ⒋求xxx 2sin 3sin lim0→.解:000sin3sin33sin3333lim lim lim sin 2sin 2sin 22222x x x x xxx x x x x x xx x→→→⨯==⨯⨯=133122⨯= ⒌求)1sin(1lim 21+--→x x x .解:21111(1)(1)111lim lim lim 2sin(1)sin(1)sin(1)11xx x x x x x x x x x →-→-→---+---====-++++ ⒍求xxx 3tan lim0→.解:000tan3sin31sin311limlim lim 3133cos33cos31x x x x x x x x x x x →→→==⨯⨯=⨯⨯=⒎求xx x sin11lim 20-+→. 解:20001lim sin x x x x→→→-== ()00lim 0sin 1111)x xx x→===+⨯⒏求xx x x )31(lim +-∞→. 解:1143331111(1)[(1)]1lim()lim()lim lim 33311(1)[(1)]3x x x x x x x x x x x e x x x e x e x x x----→∞→∞→∞→∞--+--=====++++ ⒐求4586lim 224+-+-→x x x x x . 解:()()()()2244442682422lim lim lim 54411413x x x x x x x x x x x x x →→→---+--====-+---- ⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f讨论)(x f 的连续性,并写出其连续区间. 解:分别对分段点1,1x x =-=处讨论连续性 (1)()()()1111lim lim 1lim lim 1110x x x x f x x f x x →-+→-+→--→--==-=+=-+=所以()()11lim lim x x f x f x →-+→--≠,即()f x 在1x =-处不连续 (2)()()()()()221111lim lim 2121lim lim 111x x x x f x x f x x f →+→+→-→-=-=-====所以()()()11lim lim 1x x f x f x f →+→-==即()f x 在1x =处连续 由(1)(2)得()f x 在除点1x =-外均连续 故()f x 的连续区间为()(),11,-∞--+∞《高等数学基础》作业二第3章 导数与微分(一)单项选择题 ⒈设0)0(=f 且极限x x f x )(lim→存在,则=→xx f x )(lim 0( C ). A. )0(f B. )0(f ' C. )(x f ' D. 0 ⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim 000( D ).A. )(20x f '-B. )(0x f 'C. )(20x f 'D. )(0x f '- ⒊设x x f e )(=,则=∆-∆+→∆xf x f x )1()1(lim( A ). A. e B. e 2 C.e 21 D. e 41 ⒋设)99()2)(1()(---=x x x x x f ,则=')0(f ( D ). A. 99 B. 99- C. !99 D. !99- ⒌下列结论中正确的是( C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.D. 若)(x f 在点0x 有极限,则在点0x 连续. (二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x x x x f ,则=')0(f 0 . ⒉设x x x f e 5e )e (2+=,则=x x f d )(ln d xx x 5ln 2+. ⒊曲线1)(+=x x f 在)2,1(处的切线斜率是 21=k ⒋曲线x x f sin )(=在)1,4π(处的切线方程是 )41(2222π-==x y ⒌设x x y 2=,则 ='y )ln 1(22x x x + ⒍设x x y ln =,则 =''y x1(三)计算题⒈求下列函数的导数y ': ⑴x x x y e )3(+=解:x xe x e x y 212323)3(++='⑵x x x y ln cot 2+= 解:x x x x y ln 2csc 2++-='⑶xx y ln 2=解:xxx x y 2ln ln 2+=' ⑷32cos xx y x+= 解:4)2(cos 3)2ln 2sin (x x x x y x x +-+-='⑸xx x y sin ln 2-=解:xxx x x x x y 22sin cos )(ln )21(sin ---='⑹x x x y ln sin 4-= 解:x x xxx y ln cos sin 43--=' ⑺xx x y 3sin 2+=解:xx x x x x x y 2233ln 3)(sin )2(cos 3+-+='⑻x x y x ln tan e +=解:xx e x e y x x1cos tan 2++='⒉求下列函数的导数y ': ⑴21ex y -=解:2112xx ey x -='-⑵3cos ln x y =解:32233tan 33cos sin x x x xx y -=-=' ⑶x x x y =解:87x y = 8187-='x y⑷3x x y +=解:)211()(31213221--++='x x x y⑸x y e cos 2=解:)2sin(xxe e y -=' ⑹2e cos x y=解:22sin 2xx e xe y -='⑺nx x y n cos sin =解:)sin(sin cos cos sin 1nx x n nx x x n y n n -='- ⑻2sin 5x y =解:2sin 25cos 5ln 2x x x y ='⑼xy 2sin e=解:xxey 2sin 2sin ='⑽22ex x x y +=解:222)ln 2(x x xex x x x y ++='⑾xxx y e e e+=解:x e x x e e e x e xe xy x x++=')ln ( ⒊在下列方程中,y y x =()是由方程确定的函数,求:⑴y x y 2e cos =解:y e x y x y y '=-'22sin cosyex xy y 22cos sin -=' ⑵x y y ln cos =解:xy x y y y 1.cos ln .sin +'=')ln sin 1(cos x y x yy +='⑶yx y x 2sin 2=解:222sin 2.cos 2y y x yx y y y x '-=+' y yyxy x y x y sin 22)cos 2(222-=+'2020年国家开放大学《高等数学答案》22cos 2sin 22x y xy yy xy y +-='⑷y x y ln += 解:1+'='yy y 1-='y y y ⑸2e ln y x y =+ 解:y y y e xy '='+21)2(1y e y x y -='⑹y y x sin e 12=+解:x x e y y y e y y .sin .cos 2+'='ye y ye y x x cos 2sin -=' ⑺3e e y x y -= 解:y y e y e x y '-='2323y ee y y x+='⑻y x y 25+=解:2ln 25ln 5y x y y '+='2ln 215ln 5y x y -='⒋求下列函数的微分y d : ⑴x x y csc cot += 解:dx xxx dy )sin cos cos 1(22--= ⑵xxy sin ln =解:dx xx x x x dy 2sin cos ln sin 1-= ⑶xxy +-=11arcsin 解:dx x x x dx x x x xx dy 2222)1(11)1()1()1()11(11++-=+--+-+--=⑷311xxy +-= 解:两边对数得:[])1ln()1ln(31ln x x y +--=)1111(31xx y y +---=' )1111(11313xx x x y ++-+--=' ⑸x y e sin 2=解:dx e e dx e e e dy x x x x x )2sin(sin 23== ⑹3e tan x y =xdx e x dx x e dy x x 2222sec 33sec 33==⒌求下列函数的二阶导数: ⑴x x y ln = 解:x y ln 1=='xy 1='' ⑵x x y sin = 解:x x x y sin cos +='x x x y cos 2sin +-=''⑶x y arctan =解:211x y +=' 22)1(2x xy +-='' ⑷23x y = 解:3ln 322x x y =' 2233ln 23ln 3422x x x y ⋅+=''(四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数. 证:因为f(x)是奇函数 所以)()(x f x f -=- 两边导数得:)()()()1)((x f x f x f x f =-'⇒'-=--' 所以)(x f '是偶函数。

【高等数学基础】形成性考核册答案(附题目)

【高等数学基础】形成性考核册答案(附题目)

【高等数学基础】形成性考核册答案【高等数学基础】形考作业1答案:第1章 函数 第2章 极限与连续C. 2y = D. )1ln(x y +=分析:A 、()()()()22ln(1)ln 1y x x x y x -=+-=+=,为偶函数B 、()()()cos cos y x x x x x y x -=--=-=-,为奇函数 或者x 为奇函数,cosx 为偶函数,奇偶函数乘积仍为奇函数C 、()()2x xa a y x y x -+-==,所以为偶函数D 、()ln(1)y x x -=-,非奇非偶函数故选B⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y分析:六种基本初等函数D 、sin1lim sin lim1x x x x x x→∞→∞=,令10,t x x =→→∞,则原式0sin lim 1t t t →== 故选D⒍当0→x 时,变量(C )是无穷小量. A.x x sin B. x1C. xx 1sinD. 2)ln(+x 分析;()lim 0x af x →=,则称()f x 为x a →时的无穷小量A 、0sin lim1x xx →=,重要极限B 、01lim x x→=∞,无穷大量然后求满足上述条件的集合的交集,即为定义域⒉已知函数x x x f +=+2)1(,则=)(x f x2-x .分析:法一,令1t x =+得1x t =-则()()22()11f t t t t t =-+-=-则()2f x x x =-法二,()()(1)(1)111f x x x x x +=+=+-+所以()()1f t t t =- ⒊=+∞→xx x)211(lim .分析:重要极限1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭,等价式()10lim 1x x x e →+=推广()lim x a f x →=∞则()()1lim(1)f x x a e f x →+=()l i m 0x af x →=则()()1lim(1)f x x af x e →+=1122211lim(1)lim(1)x x e ⨯+=+= 解:21lg x y x -=有意义,要求00x x >⎪⎪⎨⎪≠⎪⎩解得1020x x x ⎧⎪⎪><⎨⎪≠⎪⎩或则定义域为1|02x x x ⎧⎫<>⎨⎬⎩⎭或⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解: DA RO h EB C(222hR R +⒋求xx23.解:⒌求解:⒍求解:1lim cos3x x x =⒎求解: ⒏求x x 3+∞→. 解:1143331111(1)[(1)]1lim()lim()lim lim 33311(1)[(1)]3x x x x x x x x x x x e x x x e x e x x x----→∞→∞→∞→∞--+--=====++++⒐求4586lim 224+-+-→x x x x x .解:()()()()2244442682422lim limlim 54411413x x x x x x x x x x x x x →→→---+--====-+----⒑设函数⎪⎨⎧≤≤->-=11,1,)2()(2x x x x x f)()1,-+∞【高等数学基础】形考作业章 导数与微分 ⒊设xx f e )(=,则=∆-∆+→∆xf x f x )1()1(lim0(A ).A. eB. e 2C. e 21D. e 41⒋设)99()2)(1()(---=x x x x x f ,则=')0(f (D ).A. 99B. 99-C. !99D. !99- ⒌下列结论中正确的是( C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.D. 若)(x f 在点0x 有极限,则在点0x 连续.⑹x x x y ln sin 4-= x x xx y ln cos 43--='⑺x x x y 3sin 2+= xx x x x x x y 2233ln 3)(sin )2(cos 3+-+='⑻x x y xln tan e += xx e x e y x x1c o s t a n 2++='⒉求下列函数的导数y ':⑺nx x y ncos sin =)sin(sin cos cos sin 1nx x n nx x x n y n n -='-⑻2sin 5x y =2sin 25cos 5ln 2x x x y ='⑼xy 2sin e=xxey 2sin 2sin ='⑶yx y x 2sin 2=222sin 2.cos 2y y x yx y y y x '-=+' y yyxy x y x y sin 22)cos 2(222-=+' 22cos 2sin 22xy xy yy xy y +-='⑷y x y ln +=1+'='y y y 1-='y y y⑸2e ln y x y =+dx xx x x x dy 2sin cos ln sin -=⑶xxy +-=11arcsindx x x x dx x x x xx dy 2222)1(11)1()1()1()11(11++-=+--+-+--=21xy +=' 22)1(2x xy +-=''⑷23x y =3ln 322x x y =' 2233ln 23ln 3422x x x y ⋅+=''(四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数. 证:因为f(x)是奇函数 所以)()(x f x f -=-⒈设)(x f 在),(b a 内可导,),(0b a x ∈,且当0x x <时0)(<'x f ,当0x x >时0)(>'x f ,则0x 是)(x f 的 极小值 点.⒉若函数)(x f 在点0x 可导,且0x 是)(x f 的极值点,则=')(0x f 0 . ⒊函数)1ln(2x y +=的单调减少区间是)0,(-∞.⒋函数2e )(x xf =的单调增加区间是),0(+∞⒌若函数)(x f 在],[b a 内恒有0)(<'x f ,则)(x f 在],[b a 上的最大值是)(a f . ⒍函数3352)(x x x f -+=的拐点是 x=0 .(三)计算题⒈求函数2(1)(5)y x x =+-的单调区间和极值. 令)2)(5(2)5(2)1(2--=++='x x x x y⇒⇒⇒2d 令∴h h L h R V )(222-==ππL h hL h L h L h h V :3330]3[])2([2222==⇒=-=-+-='ππ令。

电大工程数学形成性考核册答案

电大工程数学形成性考核册答案

电大工程数学形成性考核册答案工程数学作业(一)答案第2章矩阵一)单项选择题(每小题2分,共20分)1.设 $b_1=2$,则 $2a_1-3b_1a_2+2a_3-3b_3=-6$,选 D。

2.若 $a_2=1$,则 $a=\frac{1}{2}$,选 A。

3.乘积矩阵 $\begin{pmatrix}1&-1\\2&4\\-1&3\end{pmatrix}$ 中元素 $c_{23}=10$,选 C。

4.设 $A,B$ 均为 $n$ 阶可逆矩阵,则 $(AB)^{-1}=B^{-1}A^{-1}$,选 B。

5.设 $A,B$ 均为 $n$ 阶方阵,$k>0$ 且 $k\neq1$,则 $-kA=(-k)^nA$,选 D。

6.若 $A$ 是正交矩阵,则 $A^{-1}$ 也是正交矩阵,选 A。

7.矩阵 $\begin{pmatrix}1&-2\\5&-3\end{pmatrix}$ 的伴随矩阵为 $\begin{pmatrix}5&-3\\2&-1\end{pmatrix}$,选 C。

8.方阵 $A$ 可逆的充分必要条件是 $A\neq0$,选 B。

9.设 $A,B,C$ 均为 $n$ 阶可逆矩阵,则 $(ACB')^{-1}=B^{-1}C^{-1}A^{-1}$,选 D。

10.设 $A,B,C$ 均为 $n$ 阶可逆矩阵,则$(A+B)^2=A^2+2AB+B^2$,选 A。

二)填空题(每小题2分,共20分)1.$\begin{pmatrix}1&-4\\-1&1\end{pmatrix}^{-1}=\begin{pmatrix}1&4\\1&5\end{pmatrix}$。

2.若 $-1$ 是关于 $x$ 的一个一次多项式,则该多项式一次项的系数为 $2$。

3.$\begin{pmatrix}1&-1\\2&4\\-1&3\end{pmatrix}^T=\begin{pmatrix}1&2&-1\\-1&4&3\end{pmatrix}$。

高等数学基础形成性作业及答案1-4


A.
B.
C.
D.
⒌下列极限存计算不正确的是(D).
A.
B.
C.
D.
⒍当时,变量(C)是无穷小量.
A.
B.
C.
D.
⒎若函数在点满足(A),则在点连续。
A.
B. 在点的某个邻域内有定义
C.
D.
(二)填空题
⒈函数的定义域是.
⒉已知函数,则 x2-x .
⒊.
⒋若函数,在处连续,则 e .
⒌函数的间断点是.
⒍若,则当时,称为。
⒋函数满足的点,一定是的(C ).
A. 间断点
B. 极值点
C. 驻点
D. 拐点
⒌设在内有连续的二阶导数,,若满足( C ),则在取到极小值.
A. B.
C. D.
⒍设在内有连续的二阶导数,且,则在此区间内是( A ).
A. 单调减少且是凸的
B. 单调减少且是凹的
C. 单调增加且是凸的
D. 单调增加且是凹的
⒋曲线在处的切线方程是。
⒌设,则
⒍设,则。
(三)计算题
⒈求下列函数的导数:

解:

解:
⑶ 解: ⑷ 解: ⑸
解: ⑹ 解: ⑺ 解: ⑻ 解: ⒉求下列函数的导数: ⑴ 解: ⑵ 解: ⑶ 解: ⑷ 解: ⑸ 解: ⑹ 解:? ⑺ 解: ⑻ 解: ⑼ 解: ⒊在下列方程中,是由方程确定的函数,求: ⑴ 解: ⑵ 解: ⑶ 解:
第5章
第6章
(一)单项选择题
⒈若的一个原函数是,则(D).
A.
B.
C.
D.
不定积分 定积分及其应用
⒉下列等式成立的是(D).
A

2017年电大中央电大2011最新经济数学基础形成性考核册答案全解

2011最新经济数学基础形成性考核册答案全解作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21-(2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→xxx 5sin 3sin lim0535sin 33sin 5lim 0x x x x x →=53 (6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。

中央电大高中等数学基础形成性考核册解析

高等数学基础作业1第1章函数 第2章极限与连续分析:判断函数相等的两个条件(1)对应法则相同(2)定义域相同 A 、f(x)=C 、x)2=x ,定义域、x|x_O 』;g(x)=x ,定义域为 R定义域不同,所以函数不相等;B 、f(x^/x^ = x ,g(x)=x 对应法则不同,所以函数不相等;C 、f (x)二 In x 3 =31 n x ,定义域为 lx | x 0?, g(x) = 3In x ,定义域为| x 0/所以两个函数相等 D 、f (x) = x • 1,定义域为 R ;定义域不同,所以两函数不等。

故选C2•设函数f(x)的定义域为(」:「:),则函数f(x) • f(-x)的图形关于(C )对称.A.坐标原点B. x 轴C. y 轴D. y = x分析:奇函数,f(-x)f (x),关于原点对称偶函数,f(-x)二f(x),关于y 轴对称1y = f x 与它的反函数y = f x 关于y = x 对称,奇函数与偶函数的前提是定义域关于原点对称 设 g x = f x f -x ,则 g -x = f -x f x = g x所以g x = f x f -x 为偶函数,即图形关于y 轴对称2□2Jy -x i ;=ln(1 亠〔x ) =ln 1 x i ;= y x ,为偶函数B 、 y [—x 二-xcos :[-x = -xcosx 二-y x ,为奇函数 或者x 为奇函数,cosx 为偶函数,奇偶函数乘积仍为奇函数-x xa 十aC 、 y -xy x ,所以为偶函数2D 、 y -x =ln(1-x),非奇非偶函数 故选B(一)单项选择题 1.下列各函数对中, C )中的两个函数相等. A. f(x)=(-x)2, g(x) =x 3 C. f (x) = In x , g (x) = 3ln xB. D.g(x)二 x g(x)=-1 X -1x —1g(x^^=x 1定义域为故选C3•下列函数中为奇函数是(B).A.C. y =1 n(1 x2)x 亠a a2B. y 二xcosxD. y = In(1 x)分析:4•下列函数中为基本初等函数是(C )A .y = x +1B.y = —xx < 0 C .y =x 、D.y=」1,x 兰0分析:六种基本初等函数(1) y=c (常值) ------- 常值函数(2) y为常数一一幕函数(3) y = a x (a >0,a 式 1) ------- 指数函数 (4) y=log a xa •0,a = 1-------------- 对数函数(5)y =sin x, y = cosx, y = ta nx,y =cotx ---------- 三角函数 y = arcs in xj -1,1 ],(6)y = arc cosx,丨-1,11, ---- 反三角函数y = arc tan x, y = arc cot xD 选项不对A .x lim 2 x 》::x 212B. lim ln(1 x)= sin.1cC. lim =0D. lim xsini :: xx 匸 x分析:A 、已知1 lim n=0 n 0x *6•当A. C.= lim 1- 21 1 x 2x= lim 2x 厂x 2 ---- ' -------- 2 2 x xliml n(1 x) =l n(1 0) = 0初等函数在期定义域内是连续的..si nx 1 . lim lim sin x = 0 x g. x x g. x1x —时,丄是无穷小量,sinx 是有界函数,x无穷小量X 有界函数仍是无穷小量.1 sin =lim x x 1lim 2 x ?:x 2 2 lim xs in 1 x r •: x故选Dx — 0时,变量( sin x x .1 xsi nx1。

高等数学基础形成性考核册及答案

高等数学基础第一次作业第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中,( C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = ⒊下列函数中为奇函数是( B ).A. )1ln(2x y +=B. x x y cos =C. 2x x a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y ⒌下列极限存计算不正确的是( D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim=∞→x x x D. 01sin lim =∞→x x x ⒍当0→x 时,变量( C )是无穷小量.A. x x sinB. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。

A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是(3, +∞).⒉已知函数x x x f +=+2)1(,则=)(x f x 2 - x .⒊=+∞→x x x)211(lim e 1/ 2 .⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 x=0 .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 无穷小量 .(三)计算题 ⒈设函数⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -. 解:f(-2) = - 2,f(0) = 0, f(1) = e⒉求函数x x y 12lglg -=的定义域. 解:由012>-xx 解得x<0或x>1/2,函数定义域为(-∞,0)∪(1/2,+∞) ⒊在半径为R 的半圆内内接一梯形,试将梯形的面积表示成其高的函数. 解:如图梯形面积A=(R+b)h ,其中22h R b -=∴⒋求⒌求⒍求⒎求.⒏求 ⒐求⒑设函数 hh R R A )(22-+=2322sin 233sin 3lim 2sin 3sin lim 00==→→xx x xx x x x 2)1()1sin(1lim )1sin(1lim 121-=-++=+--→-→x x x x x x x 33cos 33sin 3lim 3tan lim 00==→→x xx x x x x xx x x x x x x sin )11()11)(11(lim sin 11lim 222020++-+++=-+→→0sin 11lim sin )11(1)1(lim 20220=++=++-+=→→xx x xx x x x x xx x x x x x x x x x )341(lim )343(lim )31(lim +-+=+-+=+-∞→∞→∞→43443)341(])341[(lim ---+∞→=+-+-+=e x x x x 32)4)(1()4)(2(lim 4586lim 4224=----=+-+-→→x x x x x x x x x x⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f 讨论)(x f 的连续性,并写出其连续区间.解:∴函数在x=1处连续不存在,∴函数在x=-1处不连续高等数学基础第二次作业第3章 导数与微分(一)单项选择题⒈设0)0(=f 且极限x x f x )(lim0→存在,则=→xx f x )(lim0( B ). A. )0(f B. )0(f ' C. )(x f ' D. 0⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim000(D ). A. )(20x f '- B. )(0x f ' C. )(20x f ' D. )(0x f '-⒊设xx f e )(=,则=∆-∆+→∆xf x f x )1()1(lim0(A ).A. eB. e 2C. e 21D. e 41⒋设)99()2)(1()(---=x x x x x f ,则=')0(f (D ).A. 99B. 99-C. !99D. !99- ⒌下列结论中正确的是( C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.D. 若)(x f 在点0x 有极限,则在点0x 连续. (二)填空题1)(lim 1)21()(lim 121===-=-+→→x f x f x x )1(1)(lim 1f x f x ==→011)(lim 1)(lim 11=+-=≠-=-+-→-→x f x f x x )(lim 1x f x -→⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x xx x f ,则=')0(f 0 . ⒉设x x x f e 5e )e (2+=,则=xx f d )(ln d (2/x)lnx+5/x .⒊曲线1)(+=x x f 在)2,1(处的切线斜率是 1/2 .⒋曲线x x f sin )(=在)1,4π(处的切线方程是 y=1 .⒌设x x y 2=,则='y 2x 2x(lnx+1) .⒍设x x y ln =,则=''y 1/x .(三)计算题⒈求下列函数的导数y ':⑴x x x y e )3(+= y=(x 3/2+3)e x ,y '=3/2x 1/2e x +(x 3/2+3)e x=(3/2x 1/2+x 3/2+3)e x⑵x x x y ln cot 2+= y '=-csc 2x + 2xlnx +x⑶xx y ln 2= y '=(2xlnx-x)/ln 2x⑷32cos x x y x += y '=[(-sinx+2x ln2)x 3-3x 2(cosx+2x )]/x6⑸xxx y sin ln 2-==⑹x x x y ln sin 4-= y '=4x 3-cosxlnx-sinx/x⑺xx x y 3sin 2+= y '=[(cosx+2x)3x -(sinx+x 2)3x ln3]/32x=[cosx+2x-(sinx+x 2)ln3]/3x⑻x x y x ln tan e += y '=e x tanx+e x sec 2x+1/x = e x (tanx+sec 2x)+1/x ⒉求下列函数的导数y ': ⑴21e x y -= ⑵3cos ln x y =⑶x x x y = y=x 7/8 y '=(7/8)x -1/8⑷3x x y += ⑸x y e cos 2= ⑹2e cos x y =⑺nx x y n cos sin = y '=nsin n-1xcosxcosnx - nsin n xsin nx ⑻2sin 5x y = ⑼x y 2sin e =221(2)sin (ln )cos sin x x x x x xx---⑽22e x x x y += ⑾xxx y e e e +=⒊在下列方程中,y y x =()是由方程确定的函数,求'y : ⑴y x y 2e cos = 方程对x 求导:y 'cosx-ysinx=2 y 'e 2yy '=ysinx / (cosx-2e 2y )⑵x y y ln cos = 方程对x 求导:y '= y '(-siny)lnx +(1/x)cosyy '=[(1/x)cosy] / (1+sinylnx)⑶yx y x 2sin 2= 方程对x 求导:2siny + y '2xcosy=(2xy-x 2 y ')/y 2y '=2(xy –y 2siny) /(x 2+2xy 2cosy)⑷y x y ln += 方程对x 求导:y '=1+ y '/y , y '=y /(y-1)⑸2e ln y x y =+ 方程对x 求导:1/x+ y 'e y =2y y ', y '=1/x(2y-e y ) ⑹y y x sin e 12=+ 方程对x 求导:2y y '=e x siny + y ' e x cosyy '= e x siny/(2y- e x cosy)⑺3e e y x y -= 方程对x 求导:y 'e y =e x -3y 2 y ', y '=e x /e y +3y 2 ⑻y x y 25+= 方程对x 求导:y '=5x ln5 + y '2y ln2, y '=5x ln5 /(1-2y ln2) ⒋求下列函数的微分y d : ⑴x x y csc cot +=⑵xxy sin ln =⑶x xy +-=11arcsin⑷311xxy +-=⑸x y e sin 2=⑹3e tan x y =⒌求下列函数的二阶导数: ⑴x x y ln = ⑵x x y sin = ⑶x y arctan = ⑷23x y = (四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数.证明:由 f(x)= - f(-x) 求导f '(x)= - f '(-x)(-x)' f '(x)= f '(-x), ∴f '(x)是偶函数高等数学基础第三次作业第4章 导数的应用(一)单项选择题⒈若函数)(x f 满足条件(D ),则存在),(b a ∈ξ,使得ab a f b f f --=)()()(ξ.A. 在),(b a 内连续B. 在),(b a 内可导C. 在),(b a 内连续且可导D. 在],[b a 内连续,在),(b a 内可导⒉函数14)(2-+=x x x f 的单调增加区间是(D ). A. )2,(-∞ B. )1,1(- C. ),2(∞+ D. ),2(∞+- ⒊函数542-+=x x y 在区间)6,6(-内满足(A ). A. 先单调下降再单调上升 B. 单调下降 C. 先单调上升再单调下降 D. 单调上升⒋函数)(x f 满足0)(='x f 的点,一定是)(x f 的(C ).A. 间断点B. 极值点C. 驻点D. 拐点⒌设)(x f 在),(b a 内有连续的二阶导数,),(0b a x ∈,若)(x f 满足(C ),则)(x f 在0x 取到极小值.A. 0)(,0)(00=''>'x f x fB. 0)(,0)(00=''<'x f x fC. 0)(,0)(00>''='x f x fD. 0)(,0)(00<''='x f x f⒍设)(x f 在),(b a 内有连续的二阶导数,且0)(,0)(<''<'x f x f ,则)(x f 在此区间内是(A ). A. 单调减少且是凸的 B. 单调减少且是凹的 C. 单调增加且是凸的 D. 单调增加且是凹的⒎设函数a ax ax ax x f ---=23)()(在点1=x 处取得极大值2-,则=a ( ).A. 1B.31C. 0D. 31-(二)填空题⒈设)(x f 在),(b a 内可导,),(0b a x ∈,且当0x x <时0)(<'x f ,当0x x >时0)(>'x f ,则0x 是)(x f 的 极小值 点.⒉若函数)(x f 在点0x 可导,且0x 是)(x f 的极值点,则=')(0x f 0 .⒊函数)1ln(2x y +=的单调减少区间是 (-∞,0) .⒋函数2e )(x xf =的单调增加区间是 (0,+∞) .⒌若函数)(x f 在],[b a 内恒有0)(<'x f ,则)(x f 在],[b a 上的最大值是 f(a) . ⒍函数3352)(x x x f -+=的拐点是 x=0 .⒎若点)0,1(是函数2)(23++=bx ax x f 的拐点,则=a ,=b .(三)计算题⒈求函数223)5()1(-+=x x y 的单调区间和极值. 解:y '=(x-5)2+2(x+1)(x-5)=3(x-1)(x-5)由y '=0求得驻点x=1,5.(-∞,1)和 (5,+∞)为单调增区间, (1,5)为单调减区间,极值为Y max =32,Y min =0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 高等数学基础形考作业1答案: 第1章 函数 第2章 极限与连续 (一)单项选择题 ⒈下列各函数对中,(C)中的两个函数相等.

A. 2)()(xxf,xxg)( B. 2)(xxf,xxg)(

C. 3ln)(xxf,xxgln3)( D. 1)(xxf,11)(2xxxg ⒉设函数)(xf的定义域为),(,则函数)()(xfxf的图形关于(C)对称. A. 坐标原点 B. x轴 C. y轴 D. xy

⒊下列函数中为奇函数是(B).

A. )1ln(2xy B. xxycos

C. 2xxaay D. )1ln(xy ⒋下列函数中为基本初等函数是(C). A. 1xy B. xy

C. 2xy D. 0,10,1xxy ⒌下列极限存计算不正确的是(D). A. 12lim22xxx B. 0)1ln(lim0xx

C. 0sinlimxxx D. 01sinlimxxx ⒍当0x时,变量(C)是无穷小量. A. xxsin B. x1

C. xx1sin D. 2)ln(x ⒎若函数)(xf在点0x满足(A),则)(xf在点0x连续。 A. )()(lim00xfxfxx B. )(xf在点0x的某个邻域内有定义 C. )()(lim00xfxfxx D. )(lim)(lim00xfxfxxxx 2

(二)填空题 ⒈函数)1ln(39)(2xxxxf的定义域是,3. ⒉已知函数xxxf2)1(,则)(xf x2-x . ⒊xxx)211(lim21e.

⒋若函数0,0,)1()(1xkxxxxfx,在0x处连续,则k e . ⒌函数0,sin0,1xxxxy的间断点是0x. ⒍若Axfxx)(lim0,则当0xx时,Axf)(称为时的无穷小量0xx。 (三)计算题 ⒈设函数

0,0,e)(xxx

xfx

求:)1(,)0(,)2(fff. 解:22f,00f,11fee ⒉求函数21lgxyx的定义域.

解:21lgxyx有意义,要求2100xxx解得1020xxx或 则定义域为1|02xxx或 ⒊在半径为R的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解: D A R O h E

B C 3

设梯形ABCD即为题中要求的梯形,设高为h,即OE=h,下底CD=2R 直角三角形AOE中,利用勾股定理得

2222AEOAOERh

则上底=2222AERh 故2222222hSRRhhRRh ⒋求xxx2sin3sinlim0.

解:000sin3sin33sin3333limlimlimsin2sin2sin22222xxxxxxxxxxxxxxx=133122 ⒌求)1sin(1lim21xxx. 解:21111(1)(1)111limlimlim2sin(1)sin(1)sin(1)11xxxxxxxxxxx ⒍求xxx3tanlim0. 解:000tan3sin31sin311limlimlim3133cos33cos31xxxxxxxxxxx

⒎求xxxsin11lim20. 解:22222200011(11)(11)limlimlimsin(11)sin(11)sinxxxxxxxxxxxx 020lim0sin111(11)xxxxx





⒏求xxxx)31(lim.

解:1143331111(1)[(1)]1lim()lim()limlim33311(1)[(1)]3xxxxxxxxxxxexxxexexxx

⒐求4586lim224xxxxx. 解:2244442682422limlimlim54411413xxxxxxxxxxxxx 4

⒑设函数 



1,111,1,)2()(2xxxxxxxf

讨论)(xf的连续性。 解:分别对分段点1,1xx处讨论连续性 (1) 

1111limlim1limlim1110xxxxfxxfxx







所以11limlimxxfxfx,即fx在1x处不连续 (2) 

221111limlim2121limlim111xxxxfxxfxxf







所以11limlim1xxfxfxf即fx在1x处连续 由(1)(2)得fx在除点1x外均连续

高等数学基础作业2答案: 第3章 导数与微分 (一)单项选择题

⒈设0)0(f且极限xxfx)(lim0存在,则xxfx)(lim0(C).

A. )0(f B. )0(f C. )(xf D. 0cvx

⒉设)(xf在0x可导,则hxfhxfh2)()2(lim000(D). A. )(20xf B. )(0xf C. )(20xf D. )(0xf ⒊设xxfe)(,则xfxfx)1()1(lim0(A). A. e B. e2 C. e21 D. e41 5

⒋设)99()2)(1()(xxxxxf,则)0(f(D). A. 99 B. 99 C. !99 D. !99 ⒌下列结论中正确的是(C). A. 若)(xf在点0x有极限,则在点0x可导. B. 若)(xf在点0x连续,则在点0x可导.

C. 若)(xf在点0x可导,则在点0x有极限. D. 若)(xf在点0x有极限,则在点0x连续. (二)填空题

⒈设函数0,00,1sin)(2xxxxxf,则)0(f 0 .

⒉设xxxfe5e)e(2,则xxfd)(lndxxx5ln2。 ⒊曲线1)(xxf在)2,1(处的切线斜率是21k。 ⒋曲线xxfsin)(在)1,2π(处的切线方程是1y。 ⒌设xxy2,则y)ln1(22xxx ⒍设xxyln,则xy1。 (三)计算题 ⒈求下列函数的导数y:

⑴xxxye)3( 解:xxexxexxy33 xxexex212323)3( ⑵xxxylncot2 解:xxxxxylnlncot22xxxxln2csc2

⑶xxyln2 6

解:xxxxxy222lnlnlnxxxx2lnln2 ⑷32cosxxyx 解:23332cos2cosxxxxxyxx 4)2(cos3)2ln2sin(xxxxxx ⑸xxxysinln2

解:xxxxxxxy222sinsinlnsinlnxxxxxxx22sincos)(ln)21(sin ⑹xxxylnsin4 解:xxxxxylnsinlnsin4xxxxxlncossin43

⑺xxxy3sin2 解:22233sin3sinxxxxxxxyxxxxxxx2233ln3)(sin)2(cos3 ⑻xxyxlntane 解:xxexeyxxlntantanxxexexx1costan2 ⒉求下列函数的导数y: ⑴xye 解:xxxexxeey212121 ⑵xycosln 解:xxxxytancossinsincos1

⑶xxxy 7

解:87xy8187x ⑷xy2sin 解:xxxxxy2sin2cossin2sinsin2 ⑸2sinxy 解:xxxxycos22cos2 ⑹2ecosxy

解:2222sin2sinxxxxexeeey ⑺nxxyncossin 解:nxxnxxynncossincossin)sin(sincoscossin1nxxnnxxxnnn ⑻xysin5 解:xxxxysinsin5cos5lncos5ln5

⑼xycose 解:xxxexeycoscossinsin ⒊在下列方程中,yyx()是由方程确定的函数,求y:

⑴yxy2ecos 解:yexyxyy22sincos yexxyy22cossin ⑵xyylncos

解:xyxyyy1.cosln.sin )lnsin1(cosxyxyy

⑶yxyx2sin2 解:222sin2.cos2yyxyxyyyx yyyxyxyxysin22)cos2(222 22cos2sin22xyxyyyxyy

相关文档
最新文档