2019学年高中一轮复习理数:四十九 圆锥曲线中的定点、定值、存在性问题含解析

合集下载

高考数学复习:圆锥曲线的定点、定值、定直线

高考数学复习:圆锥曲线的定点、定值、定直线

高考数学复习:圆锥曲线的定点、定值、定直线【热点聚焦】纵观近几年的高考试题,圆锥曲线的定点、定值、定直线问题是热点之一.从命题的类型看,主要是大题.一般说来,考查直线与椭圆、双曲线、抛物线的位置关系问题,综合性较强,涉及方程组联立,根的判别式、根与系数的关系、弦长、面积、参数、几何量为定值,或定点在某直线上、定直线过某点等.难度往往大些.【重点知识回眸】(一)定值问题1.定义:定值问题是指虽然圆锥曲线中的某些要素(通常可通过变量进行体现)有所变化,但在变化过程中,某个量的值保持不变即为定值.2.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.3.常见定值问题的处理方法:(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.4.定值问题的处理技巧:(1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向.(2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢(3)巧妙利用变量间关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算(二)定点问题1.求解圆锥曲线中的定点问题的两种思路:(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立直线系方程,一般将题目中给出的曲线方程(包含直线方程)中的常量当成变量,将变量x,y当成常量,将原方程转化为kf(x,y)+g(x,y)=0的形式(k是原方程中的常量);②根据直线过定点时与参数没有关系(即直线系方程对任意参数都成立),得到方程组()0g()0f x y x y =⎧⎨=⎩,,;③以②中方程组的解为坐标的点就是直线所过的定点,若定点具备一定的限制条件,则可以特殊解决.2.求解圆锥曲线中的定点问题的方法(1)确定题目中的核心变量(此处设为k )(2)利用条件找到k 与过定点的曲线(),0F x y =的联系,得到有关k 与,x y 的等式(3)所谓定点,是指存在一个特殊的点()00,x y ,使得无论k 的值如何变化,等式恒成立.此时要将关于k 与,x y 的等式进行变形,直至易于找到00,x y .常见的变形方向如下:①若等式的形式为整式,则考虑将含k 的项归在一组,变形为“()k ⋅”的形式,从而00,x y 只需要先让括号内的部分为零即可②若等式为含k 的分式,00,x y 的取值一方面可以考虑使其分子为0,从而分式与分母的取值无关;或者考虑让分子分母消去k 的式子变成常数(这两方面本质上可以通过分离常数进行相互转化,但通常选择容易观察到的形式)3.一些技巧与注意事项:(1)面对复杂问题时,可从特殊情况入手,以确定可能的定点(或定直线).然后再验证该点(或该直线)对一般情况是否符合.属于“先猜再证”.(2)有些题目所求与定值无关,但是在条件中会隐藏定点,且该定点通常是解题的关键条件.所以当遇到含参数的方程时,要清楚该方程为一类曲线(或直线),从而观察这一类曲线是否过定点.尤其在含参数的直线方程中,要能够找到定点,抓住关键条件.例如:直线:1l y kx k =+-,就应该能够意识到()11y k x =+-,进而直线绕定点()1,1--旋转.(三)定直线问题探求圆锥曲线中的定直线问题的两种方法:方法一是参数法,即先利用题设条件探求出动点T 的坐标(包含参数),再消去参数,即得动点T 在定直线上;方法二是相关点法,即先设出动点T 的坐标为(x,y),根据题设条件得到已知曲线上的动点R 的坐标,再将动点R 的坐标代入已知的曲线方程,即得动点T 在定直线上.【典型考题解析】热点一定值问题【典例1】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ= ,QN QO μ= ,求证:11λμ+为定值.【典例2】如图,已知抛物线2:4C x y =,过点(0,2)M 任作一直线与C 相交于,A B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y =相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||MN MN -为定值,并求此定值.【典例3】已知抛物线C :22(0)y px p =>的焦点为F ,过F 且斜率为43的直线l 与抛物线C 交于A ,B 两点,B 在x 轴的上方,且点B 的横坐标为4.(1)求抛物线C 的标准方程;(2)设点P 为抛物线C 上异于A ,B 的点,直线PA 与PB 分别交抛物线C 的准线于E ,G 两点,x 轴与准线的交点为H ,求证:HG HE ⋅为定值,并求出定值.【典例4】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH = .证明:直线HN 过定点.【典例5】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【典例6】已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【总结提升】动直线l 过定点问题的常见思路设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k(x +m),故动直线过定点(-m,0).【典例7】设椭圆的焦点在x 轴上(Ⅰ)若椭圆的焦距为1,求椭圆的方程;(Ⅱ)设分别是椭圆的左、右焦点,为椭圆上第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.【典例8】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是()11,0F -,()21,0F ,点()0,A b ,若12AF F △的内切圆的半径与外接圆的半径的比是1:2.(1)求椭圆C 的方程;(2)过C 的左焦点1F 作弦DE ,MN ,这两条弦的中点分别为P ,Q ,若0DE MN ⋅= ,证明:直线PQ 过定点.【典例9】设12,F F 是双曲线()2222:10,0x y C a b a b-=>>的左、右两个焦点,O 为坐标原点,若点P 在双曲线C 的右支上,且1122,OP OF PF F == 的面积为3.(1)求双曲线C 的渐近线方程;(2)若双曲线C 的两顶点分别为()()12,0,,0A a A a -,过点2F 的直线l 与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;若不在,请说明理由.1.已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2.在平面直角坐标系中,动点(),M x y 与定点()5,0F 的距离和M 到定直线16:5l x =的距离的比是常数54,设动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)设()2,0P ,垂直于x 轴的直线与曲线C 相交于,A B 两点,直线AP 和曲线C 交于另一点D ,求证:直线BD 过定点.3.已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为32,右焦点F.(1)求双曲线C 的方程;(2)若12,A A 分别是C 的左、右顶点,过F 的直线与C 交于,M N 两点(不同于12,A A ).记直线12,A M A N 的斜率分别为12,k k ,请问12k k 是否为定值?若是定值,求出该定值;若不是,请说明理由.4.已知椭圆C :()222210x y a b a b+=>>的左焦点为()11,0F -,上、下顶点分别为A ,B ,190AF B ∠=︒.(1)求椭圆C 的方程;(2)若椭圆上有三点P ,Q ,M 满足OM OP OQ =+uuu r uu u r uuu r ,证明:四边形OPMQ 的面积为定值.5.已知动圆M 过定点()2,0A ,且在y 轴上截得的弦长为4,圆心M 的轨迹为曲线L .(1)求L 的方程;(2)已知点()3,2B --,()2,1C ,P 是L 上的一个动点,设直线PB ,PC 与L 的另一交点分别为E ,F ,求证:当P 点在L 上运动时,直线EF 恒过一个定点,并求出这个定点的坐标.6.已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.7.在直角坐标系xOy 中,已知定点(0,1)F ,定直线:3l y =-,动点M 到直线l 的距离比动点M 到点F 的距离大2.记动点M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线?(2)设0(2,)P y 在C 上,不过点P 的动直线1l 与C 交于A ,B 两点,若90APB ∠=︒,证明:直线1l 恒过定点.8.椭圆()2222:10x y C a b a b+=>>的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,M 为直线3x =-上任意一点,过F 作MF 的垂线交椭圆C 于点P ,Q .证明:OM 经过线段PQ 的中点N .(其中O 为坐标原点)9.已知椭圆E :()222210x y a b a b +=>>的离心率为2,短轴长为2.(1)求E 的方程;(2)过点()4,0M -且斜率不为0的直线l 与E 自左向右依次交于点B ,C ,点N 在线段BC 上,且MB NBMC NC =,P 为线段BC 的中点,记直线OP ,ON 的斜率分别为1k ,2k ,求证:12k k 为定值.10.已知椭圆C :22221x y a b+=()0a b >>的右焦点为F ,过点F 作一条直线交C 于R ,S 两点,线段RS,C的离心率为2.(1)求C 的标准方程;(2)斜率不为0的直线l 与C 相交于A ,B 两点,(2,0)P ,且总存在实数R λ∈,使得PA PB PF PA PB λ⎛⎫ ⎪=+ ⎪⎝⎭ ,问:l 是否过一定点?若过定点,求出该定点的坐标11.已知椭圆C :()222210x y a b a b+=>>的右焦点为F ,圆O :222x y a +=,过F 且垂直于x 轴的直线被椭圆C 和圆O.(1)求C 的方程;(2)过圆O 上一点P (不在坐标轴上)作C 的两条切线1l ,2l ,记1l ,2l 的斜率分别为1k ,2k ,直线OP 的斜率为3k ,证明:()123k k k +为定值.12.已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()2,1A .(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.。

2019届高三数学备考冲刺140分问题36圆锥曲线中的定值定点问题含解析20190426245

2019届高三数学备考冲刺140分问题36圆锥曲线中的定值定点问题含解析20190426245

问题36 圆锥曲线中的定值、定点问题一、考情分析圆锥曲线是解析几何的重要内容之一,也是高考重点考查的内容和热点,知识综合性较强,对学生逻辑思维能力计算能力等要求很高,这些问题重点考查学生方程思想、函数思想、转化与化归思想的应用.定值问题与定点问题是这类题目的典型代表,为了提高同学们解题效率,特别是高考备考效率,本文列举了一些典型的定点和定值问题,以起到抛砖引乇的作用. 二、经验分享1.圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 2.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值; (2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得. 三、知识拓展1.设点(),P m n 是椭圆C :()222210x y a b a b +=>>上一定点,点A,B 是椭圆C 上不同于P 的两点,若PA PBk k λ+=,则0λ=时直线AB 斜率为定值()220bm n an ≠,若0λ≠,则直线AB 过定点2222,n b m m n a λλ⎛⎫--- ⎪⎝⎭,F 是该椭圆焦点,则,b OP a a c PF a c ≤≤-≤≤+;2. 设点(),P m n 是双曲线C :()222210,0x y a b a b -=>>一定点,点A,B 是双曲线C 上不同于P 的两点,若PA PBk k λ+=,则0λ=时直线AB 斜率为定值()220bm n an-≠,若0λ≠,则直线AB 过定点2222,n b m m n a λλ⎛⎫--+ ⎪⎝⎭;3. 设点(),P m n 是抛物线C :()220y px p =>一定点,点A,B 是抛物线C 上不同于P 的两点,若PA PB k k λ+=,则0λ=时直线AB 斜率为定值()0pn n-≠,若0λ≠,则直线AB 过定点22,n p m n λλ⎛⎫--+ ⎪⎝⎭;四、题型分析 (一) 定点问题求解直线和曲线过定点问题的基本思路是:把直线或曲线方程中的变量x ,y 当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x ,y 的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点,或者可以通过特例探求,再用一般化方法证明.【例1】已知直线l 的方程为2y x =+,点P 是抛物线24y x =上到直线l 距离最小的点,点A 是抛物线上异于点P 的点,直线AP 与直线l 交于点Q ,过点Q 与x 轴平行的直线与抛物线24y x =交于点B.(Ⅰ)求点P 的坐标;(Ⅱ)证明直线AB 恒过定点,并求这个定点的坐标.【分析】(Ⅰ)到直线l 距离最小的点,可根据点到直线距离公式,取最小值时的点;也可根据几何意义得为与直线l 平行且与抛物线相切的切点:如根据点P 到直线l 的距离d ===≥02y =时取最小值,(Ⅱ)解析几何中定点问题的解决方法,为以算代证,即先求出直线AB 方程,根据恒等关系求定点.先设点A 211 4y y ⎛⎫⎪⎝⎭,,求出直线AP 方程()114220x y y y -++=,与直线l 方程联立,解出点Q 纵坐标为11282Q y y y -=-.即得B 点的坐标为()()211211428 22y y y y ⎛⎫-- ⎪ ⎪--⎝⎭,,再根据两点式求出直线AB 方程()()()21124280y y x y x y ---+-=,最后根据方程对应1y 恒成立得定点()2 2,【解析】(Ⅰ)设点P 的坐标为()00 x y ,,则2004y x =, 所以,点P 到直线l 的距离d ===≥当且仅当02y =时等号成立,此时P 点坐标为()1 2,. (Ⅱ)设点A 的坐标为211 4y y ⎛⎫⎪⎝⎭,,显然12y ≠. 当12y =-时,A 点坐标为()1 2-,,直线AP 的方程为1x =; 当12y ≠-时,直线AP 的方程为()12122114y y x y --=--, 化简得()114220x y y y -++=;综上,直线AP 的方程为()114220x y y y -++=. 与直线l 的方程2y x =+联立,可得点Q 的纵坐标为11282Q y y y -=-. 因为,BQ x ∥轴,所以B 点的纵坐标为11282B y y y -=-. 因此,B 点的坐标为()()211211428 22y y y y ⎛⎫--⎪ ⎪--⎝⎭,. 当111282y y y -≠--,即218y ≠时,直线AB 的斜率()()111122211121282488442y y y y k y y y y ----==----. 所以直线AB 的方程为2111214884y y y y x y ⎛⎫--=- ⎪-⎝⎭,整理得()()()21124280y y x y x y ---+-=.当2x =,2y =时,上式对任意1y 恒成立,此时,直线AB 恒过定点()2 2,, 当218y =时,直线AB 的方程为2x =,仍过定点()2 2,, 故符合题意的直线AB 恒过定点()2 2,. 考点:抛物线的标准方程与几何性质、直线方程、直线与抛物线的位置关系 【点评】 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【小试牛刀】【新疆乌鲁木齐市2019届高三一模】椭圆的中心在坐标原点,焦点在坐标轴上,过的长轴,短轴端点的一条直线方程是.(1)求椭圆的方程; (2)过点作直线交椭圆于,两点,若点关于轴的对称点为,证明直线过定点. 【解析】(1)对于,当时,,即,当,,即,椭圆的方程为,(2)证明:设直线,(),设,两点的坐标分别为,,则,联立直线与椭圆得,得,,解得,,,直线 ,令,得,直线过定点(二) 定值问题解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.【例2】如图,点()2,0A -,()2,0B 分别为椭圆()2222:10x y C a b a b+=>>的左右顶点,,,P M N 为椭圆C上非顶点的三点,直线,AP BP 的斜率分别为12,k k ,且1214k k =-,//AP OM ,//BP ON.(Ⅰ)求椭圆C 的方程;(Ⅱ)判断OMN ∆的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由.【分析】(Ⅰ)设(,)P m n ,则2122224n n n k k m m m =⋅=+--,而2222224144m n m n b b -+=⇒=⋅,所以 22121144b k k b =-=-⇒=(Ⅱ)根据弦长公式求底边MN 的长,根据点到直线距离公式求底边上的高,因此设直线MN 的方程为y kx t =+,由直线方程与椭圆方程联立方程组,利用韦达定理得MN =根据斜率条件1214k k =-及韦达定理得22241t k -= ,高为d =,代入面积公式化简得1S ===【解析】(Ⅰ)221,11442,AP BPb k k b a a ⎫=⎪=-⇒⇒=⎬⎪=⎭椭圆22:14x C y +=.(Ⅱ)设直线MN 的方程为y kx t =+,()11,M x y ,()22,N x y ,()22222,4184401,4y kx t k x ktx t x y =+⎧⎪⇒+++-=⎨+=⎪⎩, 122841kt x x k +=-+,21224441t x x k -=+,()()1212121212121211404044y y k k y y x x kx t kx t x x x x =-⇒=-⇒+=⇒+++=,()()22121241440kx x kt x x t ++++=,()2222222448414402414141t ktk kt t t k k k ⎛⎫-+-+=⇒-= ⎪++⎝⎭,MN ====, d =1S ===. OMN ∆∴的面积为定值1.【点评】圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值; (2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得. 【小试牛刀】【湖南省怀化市2019届高三3月第一次模拟】已知椭圆的中心在原点,焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.(1)求椭圆的方程;(2)过椭圆的右焦点作直线交椭圆于、两点,交轴于点,若,,求证:为定值.【解析】(1)设椭圆的方程为,则由题意知∴.即∴∴椭圆的方程为(2)设、、点的坐标分别为,,.又易知点的坐标为显然直线存在的斜率,设直线的斜率为,则直线的方程是将直线的方程代入到椭圆的方程中,消去并整理得,∴,∵,∴将各点坐标代入得,∴圆锥曲线中的定值、定点问题要善于从运动中寻找不变的要素,可以先通过特例、极限位置等探求定值、定点,然后利用推理证明的方法证明之.四、迁移运用1.【湖南省怀化市2019届高三3月第一次模拟】直线与抛物线:交于两点,为坐标原点,若直线,的斜率,满足,则直线过定点()A.B.C.D.【答案】C【解析】设,,则,又,,解得.将直线:代入,得,∴,∴.即直线:,所以过定点2.【湖南省浏阳一中、醴陵一中联考】双曲线的左、右焦点分别为,P为双曲线右支上一点,I是的内心,且,则()A.B.C.D.【答案】D【解析】如图,设内切圆的半径为.由得,整理得.因为P为双曲线右支上一点,所以,,所以.故选D.3.【江西省南昌市2019月考】已知椭圆:的右焦点为,且离心率为,三角形的三个顶点都在椭圆上,设它的三条边、、的中点分别为、、,且三条边所在直线的斜率分别为、、,且、、均不为0.为坐标原点,若直线、、的斜率之和为1.则()A. B.-3 C. D.【答案】A【解析】因为椭圆:的右焦点为,且离心率为,且所以可求得椭圆的标准方程为设A(x1,y1),B(x2,y2),C(x3,y3),D(s1,t1),E(s2,t2),M(s3,t3),因为A、B在椭圆上,所以,两式相减得,即同理可得所以因为直线、、的斜率之和为1所以所以选A4.【福建省2019届适应性练习(四)】设为坐标原点,动圆过定点, 且被轴截得的弦长是8. (Ⅰ)求圆心的轨迹的方程;(Ⅱ)设是轨迹上的动点,直线的倾斜角之和为,求证:直线过定点.【解析】 (Ⅰ)设动圆半径为由动圆被轴截得的弦长是8得消去得故圆心的轨迹的方程(Ⅱ) 设直线,,联立方程得,消去得,.则,.设直线的倾斜角分别是∵,同理,∴.,故直线过定点.5.【山东省济宁市2019届高三第一次模拟】已知椭圆的离心率为,且椭圆C过点.(I)求椭圆C的方程;(II)设椭圆C的右焦点为F,直线与椭圆C相切于点A,与直线相交于点B,求证:的大小为定值.【解析】(Ⅰ)∵椭圆C过点,∴①∵离心率为∴②又∵③由①②③得,,.∴椭圆C的方程为C:.(Ⅱ)显然直线l的斜率存在,设l:y=kx+m.由消y得由得.∴∴∴切点A 的坐标为又点B 的坐标为,右焦点F 的坐标为,∴,,∴∴∠AFB=90°,即∠AFB 的大小为定值.6.【江西省赣州市十四县(市)2018届高三下学期期中】已知椭圆系方程n C : 2222x y n a b += (0a b >>,*n N ∈), 12,F F 是椭圆6C 的焦点, A是椭圆6C 上一点,且2120AF F F ⋅=.(1)求6C 的方程;(2)P 为椭圆3C 上任意一点,过P 且与椭圆3C 相切的直线l 与椭圆6C 交于M , N 两点,点P 关于原点的对称点为Q ,求证: QMN ∆的面积为定值,并求出这个定值.【解析】(1)由题意得椭圆6C 的方程为6C : 22226x y a b+= ,即 2222166x y a b +=.∵ 2120AF F F ⋅=. ∴212AF F F ⊥,又A为椭圆6C 上一点,∴c =222666a b c ∴-==,即221a b -=,又2222166ab+=,22a ∴=,21b =,∴椭圆6C 的方程为 2262x y +=. (2)解:①当直线l 斜率存在时,设l 方程为y kx m =+,由223{2x y y kx m+==+消去y 整理得()222214260k x kmx m +++-=,∵直线l 与椭圆3C 相切,∴()()()2224421260km k m ∆=-+-=,整理得()22321m k =+.设()00,P x y ,则()00,Q x y --,且00y kx m =+, ∴点Q 到直线l的距离d ==,同理由226{2x y y kx m+==+消去y 整理得()2222142120k x kmx m +++-=,设()()1122,,,M x y N x y ,则122421kmx x k +=-+, 212221221m x x k -=+MN ∴====,12QMNS MN d ∆∴=12==()2232121k k +=+=②当直线l 斜率不存在时,易知QMN S ∆=综上可得QMN ∆的面积为定值7.【四川省蓉城名校高中2018届高三4月份联考】已知椭圆C : 22221(0)x y a b a b +=>>的长轴长为4,A ,B 是其长轴顶点, M 是椭圆上异于A , B 的动点,且34MA MB k k ⋅=-.(1)求椭圆C 的标准方程;(2)如图,若动点R 在直线6x =上,直线AR , BR 分别交椭圆C 于P , Q 两点.请问:直线PQ 是否过定点?若是,求出定点坐标;若不是,请说明理由. 【解析】(1)由题意知24a =则2a =,设()00,M x y , (),0A a -, (),0B a ,则0000MA MBy y k k x a x a ⋅=⋅-+ 202200y x a =-, 由2200221x y a b +=,则2220021x y b a ⎛⎫=- ⎪⎝⎭,则2234MA MB b k k a ⋅=-=-,则23b =,由此可得椭圆C 的标准方程为22143x y +=. (2)设()6,R m ,则直线AP 的方程为()24m y x =-;则直线BQ 的方程为()28my x =+联立得()2228{ 143my x x y=++=消去y 得: ()()22224844480m x m x m +++-=,则()22448248Q m x m --⋅=+,即()2224848Q m x m -=+代入直线BQ 的方程得22448Qm ym =+,故()22224824,4848m m Q m m ⎛⎫- ⎪ ⎪++⎝⎭.联立得()2224{ 143my x x y=-+=消去y 得: ()()22221244120m x m x m +-+-=,则()22412212P m x m -⋅=+,即()2221212P m x m -=+代入直线AP 的方程得21212Pmym -=+,故()22221212,1212m m P m m ⎛⎫-- ⎪ ⎪++⎝⎭. 当()()22222482124812m mm m --=++,即224m=,则PQ 与x 轴交点为2,03T ⎛⎫⎪⎝⎭,当()()22222482124812m mm m --≠++,即224m≠时,下证直线PQ 过点2,03T ⎛⎫⎪⎝⎭,由()222120122122123PT QTm m k k m m -=+-=--+ ()222240482482483mm m m -+=--+ 229902424m mm m -=-=--, 故直线PQ 过定点2,03T ⎛⎫⎪⎝⎭. 8.【江西省新余市2018届高三二模】已知抛物线()2:20C x py p =>过点()2,1,直线l 过点()0,1P -与抛物线C 交于A , B 两点.点A 关于y 轴的对称点为A ',连接A B '.(1)求抛物线线C 的标准方程;(2)问直线A B '是否过定点?若是,求出定点坐标;若不是,请说明理由. 【解析】(1)将点()2,1代入抛物线2:2C x py =的方程得,2p =.所以,抛物线C 的标准方程为24x y =.(2)设直线l 的方程为1y kx =-,又设()11,A x y , ()22,B x y ,则()11,A x y '-.由21,{ 41,y x y kx ==-得2440x kx -+=.则216160k ∆=->, 124x x ⋅=, 124x x k +=.所以()222121212112444A Bx x y y x x k x x x x '---===--+. 于是直线A B '的方程为()2221244x x xy x x --=-. 所以()22122121444x x x x xy x x x --=-+=+.当0x =时, 1y =, 所以直线A B '过定点()0,1.9.【湖北省荆州中学2018届高三4月月考】已知动圆过定点()2,0A ,且在y 轴上截得弦MN 的长为4. (1)求动圆圆心的轨迹C 的方程;(2)设()1,0B ,过点A 斜率为()0k k >的直线l 交轨迹C 于,P Q 两点, ,PB QB 的延长线交轨迹C 于,S T 两点.①若PQB ∆的面积为3,求k 的值. ②记直线ST 的斜率为ST k ,证明: STk k为定值,并求出这个定值. 【解析】(1)设圆心()(),0C x y x ≠,过点C 作CE y ⊥轴,垂足为E ,则12ME MN =. ∴2222CA CMME CE ==+∴()222222x y x -+=+,化简为:24y x =. 当0x =时,也满足上式.∴动圆圆心的轨迹C 的方程为24y x =.(2)设直线l 的方程为()2y k x =-, 221212,,,44y y P y Q y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭, 由()24{2y xy k x ==-,得2480ky y k --=, 216320k ∆=+>, 12124,8y y y y k+==-. ①12132PQB S AB y y ∆=-===,解得2k =. ②设233,4y S y ⎛⎫⎪⎝⎭,则2111,4y BP y ⎛⎫=- ⎪⎝⎭, 2331,4y BS y ⎛⎫=- ⎪⎝⎭. ∵,,P B S 共线∴22313111044y y y y ⎛⎫⎛⎫---= ⎪⎪⎝⎭⎝⎭,即23131440y y y y ⎛⎫+--= ⎪⎝⎭,解得: 31y y =(舍)或314y y =-. ∴21144,S y y ⎛⎫- ⎪⎝⎭,同理22244,T y y ⎛⎫- ⎪⎝⎭,∴121212221244244STy y y y k k y y y y -+==-=+-∴2STk k=(定值)10.如图,已知双曲线C :x 2a2-y 2=1(a >0)的右焦点为F .点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值.【解析】(1)设F (c,0),因为b =1,所以c =a 2+1, 直线OB 方程为y =-1ax ,直线BF 的方程为y =1a (x -c ),解得B (c 2,-c2a ).又直线OA 的方程为y =1ax ,则A (c ,c a ),k AB =c a --c 2a c -c 2=3a.又因为AB ⊥OB ,所以3a ·(-1a)=-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0. 因为直线AF 的方程为x =2,所以直线l 与AF 的交点为M (2,2x 0-33y 0);直线l 与直线x =32的交点为N (32,32x 0-33y 0).则|MF |2|NF |2=x 0-23y 0214+32x 0-23y 02=x 0-29y 204+94x 0-2=43·x 0-23y 20+x 0-2.因为P (x 0,y 0)是C 上一点,则x 203-y 20=1,代入上式得|MF |2|NF |2=43·x 0-2x 20-3+x 0-2=43·x 0-24x 20-12x 0+9=43, 即所求定值为|MF ||NF |=23=233.11.如图,设点,A B 的坐标分别为()),,直线,AP BP 相交于点P ,且它们的斜率之积为23-.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M N 、是轨迹为C 上不同于,A B 的两点,且满足//,//AP OM BP ON ,求证:MON ∆的面积为定值.【答案】(1)(22132x y x +=≠(2【解析】(1)由已知设点P 的坐标为(),x y ,由题意知(2333AP BP k k x x x ==-≠+-,化简得P 的轨迹方程为(22132x y x +=≠.(2)证明:由题意M N 、是椭圆C 上非顶点的两点,且//,//ON AP OM BP , 则直线,AP BP 斜率必存在且不为0,又由已知23AP BP k k =-. 因为//,//AP OM BP ON ,所以23OM ON k k =-.设直线MN 的方程为x my t =+,代入椭圆方程2232x y+,得()222324260m ymty t +++-=....①,.设,M N 的坐标分别为()()1122,,,x y x y ,则2121222426,3232mt t y y y y m m-+=-=++. 又()2121222221212122636OM ONy y y y t k k x x m y y mt y y t t m -===+++-, 所以222262363t t m -=--,得22223t m =+.又1212MONSt y y ∆=-=所以2MONS∆==,即MON ∆的面积为定值2.12.如图,过椭圆2222:1(0)x y a b a bΓ+=>>内一点(0,1)A 的动直线l 与椭圆相交于M,N 两点,当l 平行于x轴和垂直于x 轴时,l 被椭圆Γ所截得的线段长均为(1)求椭圆Γ的方程;(2)在平面直角坐标系中,是否存在与点A 不同的定点B,使得对任意过点(0,1)A 的动直线l 都满足||||||||BM AN AM BN ⋅=⋅?若存在,求出定点B 的坐标,若不存在,请说明理由.【答案】(1)22142x y +=;(2)存在点B 的坐标(02),.【解析】(Ⅰ)由已知得b ,点1)在椭圆上, 所以22211a b+=,解得2a =, 所以椭圆Γ的方程为22142x y +=.(Ⅱ)当直线l 平行于x 轴时,则存在y 轴上的点B,使||||||||BM AN AM BN =,设0(0)B y ,; 当直线l 垂直于x 轴时,(0(0M N ,,,若使||||||||BM AN AM BN =,则||||||||BM AM BN AN=,=解得01y =或02y =.所以,若存在与点A 不同的定点B 满足条件,则点B 的坐标只可能是(02),. 下面证明:对任意直线l,都有||||||||BM AN AM BN ⋅=⋅,即||||||||BM AM BN AN =. 当直线l 的斜率不存在时,由上可知,结论成立; 当直线l 的斜率存在时,可设直线l 的方程为1y kx =+. 设M,N 的坐标分别为1122()()x y x y ,,,, 由221421x y y kx ⎧+=⎪⎨⎪=+⎩,得22(21)420k x kx ++-=, 其判别式22(4)8(21)0k k ∆=++>, 所以,121222422121k x x x x k k +=-=-++,, 因此,121212112x xk x x x x ++==.易知点N 关于y 轴对称的点N '的坐标为22()x y -,, 又11111211BM y kx k k x x x --===-, 2222212111BN y kx k k k x x x x '--===-+=---, 所以BM BN k k '=,即B M N ',,三点共线, 所以12||||||||||||||||x BM BM AM x BN BN AN ==='.故存在与点A不同的定点(02)B,,使得.。

2019届二轮复习(理) 专题五第三讲 第二课时 圆锥曲线的定点、定值、存在性问题 课件

2019届二轮复习(理)    专题五第三讲 第二课时 圆锥曲线的定点、定值、存在性问题   课件
专题五 解析几何
第三讲 圆锥曲线的综合应用 第二课时 圆锥曲线的定点、定值、存在性问题
考点一
பைடு நூலகம்
C
目 录
ONTENTS
4
考点二
考点三
课后训练 提升能力
考点一
圆锥曲线中的定点问题
[悟通——方法结论] 定点的探索与证明问题 (1)探索直线过定点时,可设出直线方程为 y=kx+b,然后利用 条件建立 b,k 等量关系进行消元,借助于直线系方程找出定 点; (2)从特殊情况入手,先探求定点,再证明一般情况.
考点二
条件信息 信息❶中 P3,P4 的坐标
想到方法 P3,P4 关于 y 轴对 称
注意什么 分析判断 P2 在椭圆上
信息❷中 l 与椭圆 设出 l 的方程联立 注意判断 l 的斜率是否 交于 A,B 两点 求出 A、B 点坐标 存在要分类讨论
信息❸中 P2A, P2B 设出 P2A、P2B 的 利用 k1+k2=-1 建立 的斜率和为-1 斜率为 k1,k2 k、m 的关系,求定点
t,
2 4-t2 4 - t , t ,- . 2 2
4-t2-2 4-t2+2 则由 k1+k2= - =-1,得 t=2,不符合题 2t 2t 设. 从而可设 l:y=kx+m(m≠1). (8 分)
考点一
圆锥曲线中的定点问题
x2 2 将 y=kx+m 代入 +y =1 得(4k2+1)x2+8kmx+4m2-4=0. 4 由题设可知 Δ=16(4k2-m2+1)>0. 设 A(x1,y1),B(x2,y2),
考点一
圆锥曲线中的定点问题
p 解析:(1)抛物线 E 的焦点为 F( ,0),由抛物线的定义可得 d2 2 =|PF|,则 d1+d2=d1+|PF|, 其最小值为点 F 到直线 x-y+4=0 的距离, p | +4| 2 ∴ =3 2,解得 p=4 或 p=-20(舍去), 2 ∴抛物线 E 的方程为 y2=8x.

高中数学复习专题讲解与练习-----定值定点与存在性问题

高中数学复习专题讲解与练习-----定值定点与存在性问题

当 m1 = −2k 时, l 的方程为 y = k (x − 2),直线过定点(2,0) ,与已知矛盾;
当 时, m2
=

2k 7
l
的方程为
y
=
k
x

2 7
,直线过定点
2 7
,0

所以,直线
l
过定点,定点坐标为
2 7
,0
三.课堂练习 强化技巧
1. 如图所示,已知点 M (a,3)是抛物线 y2 = 4x上一定点,直线 AM、BM的斜率互为相反数,且与抛物 线另交于 A,B 两个不同的点.
(Ⅰ)求m2 + k2 的最小值; (Ⅱ)若| OG |2= OD OE , 求证:(i)直线l 过定点; (ii)试问点B G能否关于 轴对称?若能,求出此时∆ABG 的外接圆方程;若不能,请说明理由.

【分析】:(Ⅰ)设 y = kx + (n, k>0),联立直线和椭圆方程,消去 y ,得到关于x的一元二次方程,利用 韦达定理,求出点 E 的坐标和OE 所在直线方程,求点 D 的坐标,利用基本不等式即可求得m2 + k2 的最 小值;
12
[来源:学。科。网]
∴ ( ) ( ) ,∴ . 3 m2 − 4k2 4 m2 − 3 16mk 3 + 4k 2 + 3 + 4k 2 + 3 + 4k 2 + 4 = 0
7m2 +16mk + 4k 2 = 0
解得: , ,且均满足 , m1 = −2k
m2
=

2k 7
3 + 4k2 − m2 > 0
当 k = ±1时,直线 PQ 的方程为 x = 3 ,也过点(3,0) .

2019届高考数学总复习模块五解析几何限时集训十七圆锥曲线中的定点定值存在性问题文

2019届高考数学总复习模块五解析几何限时集训十七圆锥曲线中的定点定值存在性问题文

限时集训(十七)圆锥曲线中的定点、定值、存在性问题基础过关1.已知椭圆E :x 2a 2+y2b2=1(a>b>0)的离心率为12,以椭圆的短轴为直径的圆与直线x-y+ =0相切.(1)求椭圆E 的方程;(2)设椭圆中过右焦点F 的弦为AB 、过原点的弦为CD ,若CD ∥AB ,求证:|C D|2|A B|为定值.2.已知椭圆C :x 2a 2+y2b2=1(a>b>0)的离心率为 22,经过椭圆C 的右焦点的弦中最短弦的长为2.(1)求椭圆C 的方程.(2)已知椭圆C 的左顶点为A ,O 为坐标原点,以AO 为直径的圆上是否存在一条切线l 交椭圆C 于不同的两点M ,N ,且直线OM 与ON 的斜率的乘积为716?若存在,求出切线l 的方程;若不存在,请说明理由.3.已知抛物线C 的顶点在原点,焦点在y 轴上,且抛物线上有一点P (m ,5)到焦点的距离为6. (1)求该抛物线C 的方程.(2)已知抛物线上一点M (4,t ),过点M 作抛物线的两条弦MD 和ME ,且MD ⊥ME ,判断直线DE 是否过定点?并说明理由.4.已知抛物线C :x 2=8y 与直线l :y=kx+1交于A ,B 两个不同的点,分别过点A ,B 作抛物线C 的切线,所得的两条切线相交于点P. (1)求证:O A ²O B 为定值(O 为坐标原点);(2)求△ABP 的面积的最小值及此时直线l 的方程.能力提升5.设抛物线C :y 2=2px (p>0)的焦点为F ,准线为l.已知点A 在抛物线C 上,点B 在l 上,△ABF 是边长为4的等边三角形. (1)求p 的值.(2)在x 轴上是否存在一点N ,当过点N 的直线l'与抛物线C 交于Q ,R 两点时,1|N Q |+1|N R|为定值?若存在,求出点N 的坐标;若不存在,请说明理由.6.已知椭圆C :x 2a 2+y2b2=1(a>b>0)经过点A 1,32,且两个焦点F 1,F 2的坐标依次为(-1,0),(1,0).(1)求椭圆C 的标准方程.(2)设E ,F 是椭圆C 上的两个动点,O 为坐标原点,直线OE 的斜率为k 1,直线OF 的斜率为k 2,求当k 1²k 2为何值时,直线EF 与以原点为圆心的定圆相切?并写出此定圆的标准方程.限时集训(十七)基础过关1.解:(1)依题意,原点到直线x-y+ 6=0的距离为b ,则有b= 612+(−1)= 3.由a 2-b 2a=12,得a 2=43b 2=4.∴椭圆E 的方程为x 24+y23=1.(2)证明:①当直线AB 的斜率不存在时,易求得|AB|=3,|CD|=2 则|C D|2|A B|=4. ②当直线AB 的斜率存在时,设直线AB 的斜率为k ,依题意k ≠0,则直线AB 的方程为y=k (x-1),直线CD 的方程为y=kx. 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4). 由 x24+y23=1,y =k (x -1)得(3+4k 2)x 2-8k 2x+4k 2-12=0, 则x 1+x 2=8k23+4k2,x 1x 2=4k 2-123+4k2,|AB|= 1+k 2|x 1-x 2|= 1+k 2²8k23+4k2 2-4 4k 2-123+4k2=12(1+k 2)3+4k2.由 x24+y23=1,y =k x 得x 2=123+4k 2,则|x 3-x 4|=,|CD|= 1+k 2|x 3-x 4|=4 3(1+k 2)3+4k 2. ∴|C D |2|A B|=48(1+k 2)3+4k2²3+4k212(1+k 2)=4.综合①②得,|C D|2|A B|=4,为定值.2.解:(1)由题意有 c a = 22,2b2a=2,又a 2-b 2=c 2,得a 2=4,b 2=2,所以椭圆C 的方程为x 24+y22=1.(2)由题意可设切线l 的方程为y=kx+b ,以AO 为直径的圆的圆心为(-1,0),半径为1,则有d==1,得k=12b-1b .由 y =k x +b ,x24+y22=1,得(2k 2+1)x 2+4kbx+2b 2-4=0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4k b1+2k 2,x 1x 2=2b 2-41+2k 2, 又k OM ²k ON =y1x 1²y 2x 2=k 2x 1x 2+k b (x 1+x 2)+b 2x 1x 2=716,得b 2-32k 2+14=0,将k=12b-1b 代入上式,有b 2-32³14³b 2-2+1b 2+14=0,即(b 2-4)(7b 2-2)=0, 所以b=±2或b=±147. 所以b=2时,k=34;b=-2时,k=-34;b=147时,k=-5 1428;b=- 147时,k=5 1428.所以切线l 的方程为y=34x+2或y=-34x-2或y=-5 1428x+147或y=5 1428x- 147. 3.解:(1)由题意设抛物线方程为x 2=2py (p>0),其准线方程为y=-p2. 由于P (m ,5)到焦点的距离等于P 到准线的距离, 所以5+p2=6,所以p=2.所以抛物线方程为x 2=4y. (2)由(1)可得点M (4,4),设直线MD 的方程为y=k (x-4)+4,且k ≠0, 由y =k (x -4)+4,x 2=4y ,得x 2-4kx+16k-16=0.设D (x 1,y 1),E (x 2,y 2),则x M ²x 1=16k-16,∴x 1=16k -164=4k-4,y 1=(4k -4)24=4(k-1)2.同理可得x 2=-4k -4,y 2=41k+12, 所以直线DE 的方程为y-4(k-1)2=4(k -1)2-4(1k+1)24k -4++4(x-4k+4),即y-4(k-1)2=(k +1k)(k -1k-2)k +(x-4k+4)=k-1k -2(x-4k+4),化简得y=k-1k -2x+4k-4k =k-1k -2(x+4)+8,∴直线DE 过定点(-4,8).4.解:设A (x 1,y 1),B (x 2,y 2), 由x 2=8y ,y =k x +1,消去y 得x 2-8kx-8=0,方程的两个根为x 1,x 2,则Δ=64k 2+32>0恒成立,x 1+x 2=8k ,x 1²x 2=-8.∵A ,B 在抛物线C 上,∴y 1=x 128,y 2=x 228,∴y 1²y 2=x 128²x 228=(x 1x 2)264=1.(1)证明:∵O A =(x 1,y 1),O B =(x 2,y 2),∴O A ²O B =x 1x 2+y 1y 2=-8+1=-7,为定值. (2)由x 2=8y ,得y=18x 2,则y'=14x ,k AP =14x 1,k BP =14x 2,∴切线AP :y-x 128=14x 1(x-x 1),即y=14x 1x-18x 12.同理得切线BP :y=14x 2x-18x 22.由y =14x 1x -18x 12,y =14x 2x -18x 22,得2x (x 1-x 2)=(x 1-x 2)(x 1+x 2),而x 1≠x 2,故有x=x 1+x 22=4k ,y=x 1x28=-1,即点P (4k ,-1).|AB|= (1+k 2)(x 1-x 2)2= (1+k2)(64k 2+32)=4 2² (1+k 2)(2k 2+1), 点P (4k ,-1)到直线l :y=kx+1的距离d=2 ,∴S △ABP =12|AB|²d=12³4 ² (1+k 2)(2k 2+1)²2 =4 k 2+1)32.∵k 2≥0,∴当k 2=0,即k=0时,S △ABP 有最小值4 2,此时直线l 的方程为y=1.能力提升5.解:(1)由题知,|AF|=|AB|,则AB ⊥l.设准线l 与x 轴交于点D ,则AB ∥DF. 又△ABF 是边长为4的等边三角形,∠ABF=60°, 所以∠BFD=60°,|DF|=|BF|²cos ∠BFD=4³12=2,即p=2.(2)设点N (t ,0),由题意知,直线l'的斜率不为零. 设直线l'的方程为x=my+t ,点Q (x 1,y 1),R (x 2,y 2).由 x =m y +t ,y 2=4x得y 2-4my-4t=0,则Δ=16m 2+16t>0,y 1+y 2=4m ,y 1²y 2=-4t. 又|NQ|2=(x 1-t )2+y 12=(my 1+t-t )2+y 12=(1+m 2)y 12.同理可得|NR|2=(1+m 2)y 22.则有1|N Q |+1|N R |=1(1+m 2)y 1+1(1+m 2)y 2=y 12+y 22(1+m 2)y 1y 2=(y 1+y 2)2-2y 1y 2(1+m 2)y 1y 2=16m 2+8t 16(1+m 2)t 2=2m 2+t(2m 2+2)t 2.若1|N Q |2+1|N R|2为定值,则t=2,此时点N (2,0)为定点.又当t=2,m ∈R 时,Δ>0,满足题意,所以,存在点N (2,0),当过点N 的直线l'与抛物线C 交于Q ,R 两点时,1|N Q |2+1|N R|2为定值14. 6.解:(1)由椭圆的定义得2a= (1+1)2+(32-0) 2+ (1-1)2+(32-0) 2=4,即a=2,又c=1,所以b 2=3,得椭圆C 的标准方程为x 24+y23=1.(2)当直线EF 的斜率存在时,设直线EF 的方程为y=kx+n ,E (x 1,y 1),F (x 2,y 2). 将直线EF 的方程与椭圆方程联立,消去y 得(3+4k 2)x 2+8knx+4n 2-12=0, 则判别式Δ=48(3+4k 2-n 2)>0,x 1+x 2=-8k n3+4k 2,x 1x 2=4n 2-123+4k2. 设k 1²k 2=m ,由点E ,F 在直线y=kx+n 上,得(kx 1+n )(kx 2+n )=mx 1x 2, 整理得(k 2-m )x 1x 2+nk (x 1+x 2)+n 2=0, 即(k 2-m )4n 2-123+4k 2+nk -8k n3+4k2+n 2=0,化简得n 2=12k 2-12m 3−4m.原点O 到直线EF 的距离d=,则d 2=n 21+k2=12k 2-12m(3-4m )k 2+3−4m,由已知得,d 是定值,所以有13−4m =-m3−4m,解得m=-1,即当k 1²k 2=-1时,直线EF 与以原点为圆心的定圆相切. 验证知当直线EF 的斜率不存在时也成立, 此时d= 127.故定圆的标准方程为x 2+y 2=127.。

2019年高考数学课标版(文科)题型专项练课件:7.3.3圆锥曲线中的定点、定值与存在性问题

2019年高考数学课标版(文科)题型专项练课件:7.3.3圆锥曲线中的定点、定值与存在性问题

������2 2 的方程为 4 +y =1.
, ������,-
4-������2 2
.
-4-
考向三
考向四
考向五
解题策略一
解题策略二
则 k1+k2= 将 y=kx+m
4-������2 -2 2������

4-������2 +2 2������
=-1,得 t=2,不符合题设.
从而可设 l:y=kx+m(m≠1). 由题设可知 Δ=16(4k2-m2+1)>0. 设 A(x1,y1),B(x2,y2),则 x1+x2=而
即(my1+t-2)(my2+t-2)+y1y2=0, 化为(m2+1)y1y2+(mt-2m)(y1+y2)+(t-2)2=0,
3������2 -12 -6������������ 2 把(*)代入可得(m +1)· +(mt-2m)· 2 3������2 +4
7.3.3
圆锥曲线中的定点、定值 与存在性问题
考向三
考向四
考向五
考向三
考向四
考向五
解题策略一
解题策略二
圆锥曲线中的定点问题(多维探究) 解题策略一 直接法
������2 ������2 例 1 已知椭圆 C: 2 + 2 =1(a>b>0),四点 P1(1,1),P2(0,1), ������ ������ 3 3 P3 -1, 2 ,P4 1, 2 中恰有三点在椭圆 C 上.
-3-
考向三
考向四
考向五
解题策略一
解题策略二

2019届高三数学(理)二轮复习课件:第一部分 专题五 第三讲 第二课时 圆锥曲线的定点、定值、存在性问题


考点一 圆锥曲线中的定点问题
演练冲关
1.(2017·高考全国卷Ⅱ)设O为坐标原点,动点M在椭圆C: x22+y2=1上,过M作x轴的垂线,垂足为N,点P满足N→P=
2 N→M. (1)求点P的轨迹方程; (2)设点Q在直线x=-3上,且 O→P ·P→Q =1.证明:过点P且垂直 于OQ的直线l过C的左焦点F.
所以yAyB=4kb=-32,即b=-8k, 所以y=kx-8k,即y=k(x-8). 综上所述,直线AB过定点(8,0).
考点二 圆锥曲线中的定值问题
方法结论
解答圆锥曲线的定值,从三个方面把握 (1)从特殊开始,求出定值,再证明该值与变量无关;(2)直接 推理、计算,在整个过程中消去变量,得定值;(3)在含有参 数的曲线方程里面,把参数从含有参数的项里面分离出来, 并令其系数为零,可以求出定值.
考点二 圆锥曲线中的定值问题
∴k1,k2是方程(x20-4)k2-2x0y0k+y20-4=0的两个不相等的实 数根, ∴x20-4≠0,Δ>0,k1k2=xy2020--44. ∵点R(x0,y0)在椭圆C上,∴1x220 +y620=1,即y20=6-12x20, ∴k1k2=2x-20-12x420=-12.
考点二 圆锥曲线中的定值问题
演练冲关
令x=0,得yM=-x02-y02,从而|BM|=|1-yM|=|1+x02-y02|. 直线PB的方程为y=y0x-0 1x+1. 令y=0,得xN=-y0x-0 1,从而|AN|=|2-xN|=|2+y0x-0 1|. 所以|AN|·|BM|=|2+y0x-0 1|·|1+x02-y02| =|x20+4yx200+y04-x0xy00--24yx00+-28y0+4|=|4xx00yy00--4x0x-0-28y0y+0+28|=4. 当x0=0时,y0=-1,|BM|=2,|AN|=2, 所以|AN|·|BM|=4.综上|AN|·|BM|为定值.

圆锥曲线中的定点、定值与存在性问题


解答
(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于 点A),证明:直线AP与AQ的斜率之和为定值.
证明
3.已知椭圆
E:ax22+by22=1(a>b>0)的离心率是
23,点
P1,
23在椭圆
E
上.
(1)求椭圆E的方程;
ac= 23, 解 由题意得a12+43b2=1,
解答
(2)过F(1,0)作互相垂直的两条直线分别交轨迹C于点G,H和M,N,且 E1,E2分别是GH,MN的中点.求证:直线E1E2恒过定点.
证明
5.已知焦距为 2 2的椭圆 C:ax22+by22=1(a>b>0)的右顶点为 A,直线 y=43与 椭圆 C 交于 P,Q 两点(P 在 Q 的左边),Q 在 x 轴上的射影为 B,且四边形 ABPQ 是平行四边形. (1)求椭圆C的方程;
解答
模板答题规范练
模板体验
典例 (12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行 于坐标轴,l与C有两个交点A,B,线段AB的中点为M. (1)证明:直线OM的斜率与l的斜率的乘积为定值; (2)若 l 过点m3 ,m,延长线段 OM 与 C 交于点 P,四边形 OAPB 能否为平 行四边形?若能,求此时 l 的斜率;若不能,说明理由.
方法技巧 (1)动直线l过定点问题.设动直线方程(斜率存在)为y=kx+t, 由题设条件将t用k表示为t=mk,得y=k(x+m),故动直线过定点(-m,0). (2)动曲线C过定点问题.引入参变量建立曲线C的方程,再根据其对参变量 恒成立,令其系数等于零,得出定点.
4.已知两点 A(-
2,0),B(

圆锥曲线中的定点、定值与存在性问题

圆锥曲线中的定点、定值与存在性问题考点一 巧妙消元证定值[典例] (优质试题·北京高考)已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,Q M ―→=λQ O ―→,Q N ―→=μQ O ―→,求证:1λ+1μ为定值. [解] (1)因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0),由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1,得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又P A ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 的斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明:设A (x 1,y 1),B (x 2,y 2).由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k 2. 直线P A 的方程为y -2=y 1-2x 1-1(x -1). 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2.由Q M ―→=λQ O ―→,Q N ―→=μQ O ―→,得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N =x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k2+2k -4k 21k 2=2.所以1λ+1μ为定值.[对点训练]在平面直角坐标系xOy 中,已知双曲线C 1:x 22-y 24=1,椭圆C 2:x 2+y 24=1,若M ,N 分别是C 1,C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.证明:当直线ON 垂直于x 轴时,|ON |=2,|OM |=2,则O 到直线MN 的距离为233.当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝⎛⎭⎪⎫显然|k |>22,则直线OM 的方程为y =-1k x .由⎩⎨⎧y =kx ,x 2+y24=1,得⎩⎨⎧x 2=44+k 2,y 2=4k24+k2,所以|ON |2=4(1+k 2)4+k 2.同理|OM |2=4(1+k 2)2k 2-1. 设O 到直线MN 的距离为d ,因为在Rt △MON 中,(|OM |2+|ON |2)d 2=|OM |2·|ON |2, 所以1d 2=1|OM |2+1|ON |2=3(1+k 2)4(1+k 2)=34,即d =233. 综上,O 到直线MN 的距离是定值.考点二 确定直线寻定点[典例] (优质试题·成都一诊)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的标准方程;(2)设不经过点B (0,1)的直线l 与椭圆C 相交于不同的两点M ,N ,若点B 在以线段MN 为直径的圆上,证明直线l 过定点,并求出该定点的坐标.[解] (1)由题意得,c =3,ab =2,a 2=b 2+c 2,∴a =2,b =1,∴椭圆C 的标准方程为x 24+y 2=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠1),M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,消去y ,可得(4k 2+1)x 2+8kmx +4m 2-4=0.∴Δ=16(4k 2+1-m 2)>0,x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.∵点B 在以线段MN 为直径的圆上, ∴BM ―→·BN ―→=0.∵BM ―→·BN ―→=(x 1,kx 1+m -1)·(x 2,kx 2+m -1)=(k 2+1)x 1x 2+k (m -1)(x 1+x 2)+(m -1)2=0,∴(k 2+1)4m 2-44k 2+1+k (m -1)-8km 4k 2+1+(m -1)2=0,整理,得5m 2-2m -3=0, 解得m =-35或m =1(舍去). ∴直线l 的方程为y =kx -35.易知当直线l 的斜率不存在时,不符合题意. 故直线l 过定点,且该定点的坐标为⎝ ⎛⎭⎪⎫0,-35.[对点训练](优质试题·株洲两校联考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点P (2,1),且离心率为32.(1)求椭圆的标准方程;(2)设O 为坐标原点,在椭圆的短轴上有两点M ,N 满足OM ―→=NO ―→,直线PM ,PN 分别交椭圆于A ,B 两点,试证明直线AB 过定点.解:(1)由椭圆的离心率e =ca =1-b 2a 2=32,得a 2=4b 2,将P (2,1)代入椭圆方程x 24b 2+y 2b 2=1,得1b 2+1b 2=1,解得b 2=2,则a 2=8,所以椭圆的标准方程为x 28+y 22=1.(2)证明:当M ,N 分别是短轴的端点时,显然直线AB 为y 轴,所以若直线AB 过定点,则这个定点一定在y 轴上,当M ,N 不是短轴的端点时,设直线AB 的方程为y =kx +t ,设A (x 1,y 1),B (x 2,y 2),易知x 1≠2,x 2≠2,联立⎩⎨⎧x 28+y 22=1,y =kx +t 消去y ,得(1+4k 2)x 2+8ktx +4t 2-8=0,则Δ=16(8k 2-t 2+2)>0,x 1+x 2=-8kt4k 2+1,x 1x 2=4t 2-84k 2+1.又直线P A 的方程为y -1=y 1-1x 1-2(x -2),即y -1=kx 1+t -1x 1-2(x -2),所以点M 的坐标为⎝ ⎛⎭⎪⎪⎫0,(1-2k )x 1-2t x 1-2, 同理可知N ⎝ ⎛⎭⎪⎪⎫0,(1-2k )x 2-2t x 2-2, 由OM ―→=NO ―→,得(1-2k )x 1-2t x 1-2+(1-2k )x 2-2t x 2-2=0,化简整理得,(2-4k )x 1x 2-(2-4k +2t )(x 1+x 2)+8t =0,则(2-4k )×4t 2-84k 2+1-(2-4k +2t )⎝ ⎛⎭⎪⎫-8kt 4k 2+1+8t =0, 整理得(2t +4)k +(t 2+t -2)=0,当且仅当t =-2时,上式对任意的k 都成立, 所以直线AB 过定点(0,-2).考点三 假设存在定结论(探索性问题)[典例] 如图,在直角坐标系xOy 中有一直角梯形ABCD ,AB 的中点为O ,AD ⊥AB ,AD ∥BC ,|AB |=2,|BC |=32,|AD |=12,以A ,B 为焦点的椭圆经过点C .(1)求椭圆的标准方程;(2)若点E ⎝ ⎛⎭⎪⎫0,12,问是否存在直线l 与椭圆交于M ,N 两点且|ME |=|NE |?若存在,求出直线l 斜率的取值范围;若不存在,请说明理由.[解] (1)连接AC (图略),依题意设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0), 在Rt △ABC 中,|AB |=2,|BC |=32,所以|AC |=52. 所以|CA |+|CB |=52+32=2a ,a =2. 又2c =2,所以c =1,从而b =3, 所以椭圆的标准方程为x 24+y 23=1.(2)由题意知,当l 与x 轴垂直时,不满足|ME |=|NE |,当l 与x 轴平行时,|ME |=|NE |,显然成立,此时k =0.当k ≠0时,设直线l 的方程为y =kx +m ,由⎩⎨⎧y =kx +m ,x 24+y 23=1消去y ,整理得(3+4k 2)x 2+8kmx +4(m 2-3)=0. 由直线与椭圆交于两点得Δ=(8km )2-4(3+4k 2)×4(m 2-3)>0,所以m 2<4k 2+3. ① 设M (x 1,y 1),N (x 2,y 2),MN 的中点为P (x 0,y 0), 则x 0=x 1+x 22=-4km 3+4k 2,y 0=kx 0+m =3m3+4k 2. 因为|ME |=|NE |,所以EP ⊥MN ,所以k EP ·k =-1, 即3m3+4k 2-12-4km 3+4k 2·k =-1,化简得m =-12(3+4k 2),结合①得14(3+4k 2)2<4k 2+3,即16k 4+8k 2-3<0,解得-12<k <12(k ≠0).综上所述,存在满足条件的直线l ,且其斜率的取值范围为⎝ ⎛⎭⎪⎫-12,12.[解题技法] 探索性问题的解题策略探索性问题,先假设存在,推证满足条件的结论,若结论正确,则存在,若结论不正确,则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.[对点训练](优质试题·贵阳检测)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点与上顶点分别为A ,B ,右焦点为F ,点P 在椭圆C 上,且PF ⊥x 轴,若AB ∥OP ,且|AB |=2 3.(1)求椭圆C 的方程;(2)若Q 是椭圆C 上不同于长轴端点的任意一点,在x 轴上是否存在一点D ,使得直线Q A 与Q D 的斜率乘积恒为定值?若存在,求出点D 的坐标;若不存在,说明理由.解:(1)由题意得A (-a,0),B (0,b ),可设P (c ,t )(t >0),∴c 2a 2+t 2b 2=1,解得t =b 2a ,即P ⎝ ⎛⎭⎪⎫c ,b 2a ,由AB ∥OP ,得b a =b 2ac ,即b =c ,∴a 2=b 2+c 2=2b 2, ① 又AB =23,∴a 2+b 2=12, ② 由①②得a 2=8,b 2=4,∴椭圆C 的方程为x 28+y 24=1.(2)假设存在D (m,0)使得直线Q A 与Q D 的斜率乘积恒为定值, 设Q (x 0,y 0)(y 0≠0),则x 208+y 204=1, ③ 设k Q A ·k Q D =k (常数),∵A (-22,0),∴y 0x 0+22·y 0x 0-m=k ,④由③得y 20=4⎝ ⎛⎭⎪⎫1-x 208,⑤将⑤代入④,得k =8-x 202[x 20+(22-m )x 0-22m ],∴⎩⎪⎨⎪⎧22-m =0,22m =8,∴m =22,k =-12, ∴存在点D (22,0),使得k Q A ·k Q D =-12(定值).[课时跟踪检测]1.(优质试题·贵阳适应性考试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点M 为短轴的上端点,MF 1―→·MF 2―→=0,过F 2垂直于x 轴的直线交椭圆C 于A ,B 两点,且|AB |= 2.(1)求椭圆C 的方程;(2)设经过点(2,-1)且不经过点M 的直线l 与C 相交于G ,H 两点.若k 1,k 2分别为直线MH ,MG 的斜率,求k 1+k 2的值.解:(1)由MF 1―→·MF 2―→=0,得b =c . ①因为过F 2垂直于x 轴的直线交椭圆C 于A ,B 两点,且|AB |=2, 所以b 2a =22, ② 又a 2=b 2+c 2, ③ 联立①②③,解得a 2=2,b 2=1, 故椭圆C 的方程为x 22+y 2=1.(2)易知直线l 的斜率存在,可设直线l 的方程为y +1=k (x -2),即y =kx -2k -1,将y =kx -2k -1代入x 22+y 2=1得(1+2k 2)x 2-4k (2k +1)x +8k 2+8k =0,由题设可知Δ=-16k (k +2)>0, 设G (x 1,y 1),H (x 2,y 2),则x 1+x 2=4k (2k +1)1+2k 2,x 1x 2=8k 2+8k1+2k2, k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1-2k -2x 1+kx 2-2k -2x 2=2k -(2k +2)×4k (2k +1)1+2k 28k 2+8k 1+2k 2=2k -(2k +1)=-1,所以k 1+k 2=-1.2.(优质试题·贵阳摸底考试)过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C 于A ,B 两点,且|AB |=8.(1)求直线l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标. 解:(1)易知点F 的坐标为(1,0),则直线l 的方程为y =k (x -1),代入抛物线方程y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0,由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0, 设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2k 2+4k 2,x 1x 2=1, 由抛物线的定义知|AB |=x 1+x 2+2=8, ∴2k 2+4k 2=6,∴k 2=1,即k =±1,∴直线l 的方程为x +y -1=0或x -y -1=0.(2)证明:∵D 点的坐标为(x 1,-y 1),直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=。

专题五圆锥曲线中的定点、定值、存在性问题(大题)

第 4 讲 圆锥曲线中的定点、定值、存在性问题(大题) __________________________ 热点分类突破 __________________________-典例研撕 各吓击區-热点一 定点问题解决圆锥曲线中的定点问题应注意(1) 分清问题中哪些是定的,哪些是变动的;(2) 注意“设而不求”思想的应用,引入参变量,最后看能否把变量消去;(3) “先猜后证”,也就是先利用特殊情况确定定点,然后验证,这样在整理式子时就有了明 确的方向.例1已知P (0,2)是椭圆C : a 2+b 2 =l (a >b >0)的一个顶点,C 的离心率e=g.(1)求椭圆的方程;⑵过点P 的两条直线l 1,l 2分别与C 相交于不同于点P 的A , B 两点,若*与12的斜率之和 为一4,则直线AB 是否经过定点?若是,求出定点坐标;若不过定点,请说明理由.厂b = 2 ,解(1)由题意可得c =¥,a 3—2 - b 2 + c 2 ,解得a -眉,b-2 , c -辭,・•・椭圆的方程为手+芍-1. ⑵当直线AB 的斜率存在时,设直线 AB 的方程为 y - kx + t , A (x 1, y 1), B (x 2, y 2),y-kx + t ,联立,x 2 y 2消去y 并整理, X 2 + y 2 — 1€ 6 4' 可得(3k + 2)x 2 + 6ktx + 3t 2 - 12-0 ,- 36(kt )2 - 4 x (3k 2 + 2)⑶2 - 12)>0 ,即24(6k2-t2+4)>0,则x i+x2_^^^- ,x i x2_3^-121 23k2+2 1 23k2+ 2由l1与l2的斜率之和为-4 , 可得y!-+ y2-_-4,x1 x2又y i = kx1 + t, y2二kx2+1 ,y1- 2 _ y2- 2 _ kx1+1 - 2 _ kx2+1 - 2 . + _ +x1 x2 x1 x2- 6kt(t - 2)・----(t - 2)(x1+ x2) 3k2 + 2_2k+1——忆 _2k+ _- 4 ,3t2 - 12x1x23k2+2化简可得t二-k - 2 ,.*.y _ kx - k - 2 _ k(x - 1) - 2 ,•°•直线AB经过定点(1 , - 2).当直线AB的斜率不存在时,设直线AB的方程为x _ m , A(m , yj , B(m , y2),y i-2,y2-2_y i+y2-4,m m m又点A, B 均在椭圆上,. A , B 关于x 轴对称,. y i+ y2_ 0,. m_ i,故直线AB的方程为x_1 ,也过点(1 ,-2),综上直线AB经过定点,定点为(1 , - 2).跟踪演练1 (2019・攀枝花模拟)已知抛物线C:y2=2px(p>0)上一点P(4,t)(t>0)到焦点F的距离等于5.(1)求抛物线C的方程和实数t的值;(2)若过F的直线交抛物线C于不同的两点A, B(均与P不重合),直线PA, PB分别交抛物线的准线l于点M,N.试判断以MN为直径的圆是否过点F,并说明理由.解 ⑴由抛物线定义可知I PF I 二4 f 2)二5,解得P 二2 ,故抛物线C 的方程为y 2二4x ,将P (4 , t )(t >0)代入抛物线方程解得t 二4.⑵以MN 为直径的圆一定过点F ,理由如下:设 A (x 1, y 1), B (x 2, y 2),设直线AB 的方程为x 二my + l (m 丘R ),代入抛物线C :y 2 = 4x , 化简整理得y 2 - 4my -4 = 0,环2 二-4,由⑴知P (4,4),所以直线PA 的方程为y -4二乩三(x -4)二丄三(x -4), x l - 4 my l - 3令x =-1得y 二的-5)儿+ 8, my l - 3__ - (4m - + 8、即 M - 1 , ------ 丛一,€ m y 1 -3 丿 同理可得j - 1 ,的-5汕+ 8€ m y 2 - 3 丿(4m - 5)y〔 + 8 (4m - 5)y 2 + 8 (2m - D 2y 1y 2 + (8m - 10)(y 1+y 2) + 16m 2y 1y 2- 3m (y 1+ y 2)+ 9-4(2m - |,2 + 4m (8m - 10) + 16-4m 2 - 3m ・4m + 916m 2- 9= 二-1 ,- 16m 2+ 9:.MF 丄NF , 故以MN 为直径的圆过点F .(也可用MF ・NF=0).热点二 定值问题 :'k MF k NF2(my 1 - 3) 2(my 2 - 3)求定值问题常见的方法有两种(1)从特殊情况入手,求出定值,再证明这个定值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.例2已知椭圆C:02+b2=l(a>b>O)经过点(0, V3),离心率为2,左、右焦点分别为厲(一c,0),F2(c,0).(1)求椭圆C的方程;3(2)P, N是C上异于M的两点,若直线PM与直线PN的斜率之积为一4证明:M, N两点的横坐标之和为常数.(1)解因为椭圆经过点(0,间,所以b =\:3 , 又因为e二2,所以V,2 a 2又C2 = a2~ b2 ,解得a 二 2 , b 二护, 所以椭圆C的方程为》+等二1.⑵证明设P , M , N三点坐标分别为(x p, y p) , (x M, y M) , (x N, y N), 设直线PM , PN斜率分别为k i, k2, 则直线pM方程为y~y p = k1(x - x P),x2+y2 二 1 由方程组,4 3' 消去y,得、y-y P二k1…x - x P(3 + 4k#)x2 - 8k1(k1x p- y p)x + 4k x p - 8k1x p y p+ 4y p - 12 二0 , 由根与系数的关系可得x +x二贴伙1Xp - yp),M p3+ 4k21故x_8k1(k1x p-y p) X_ 4k2x p- 8k”- 3x p,M_ 3 + 4* p_ 3 + 4k2 '从而 X N + X M =0,即 M ,N 两点的横坐标之和为常数 0.跟踪演练2 (2019.四川百校冲刺卷)已知椭圆C : X 2+y 2=l 的左、右焦点分别为F ], F 2,点 P (m , n )在椭圆C 上.(1)设点P 到直线l : x =4的距离为d 证明:韵为定值;⑵若0V m V 2, A , B 是椭圆C 上的两个动点(都不与点P 重合),且直线PA , PB 的斜率互为 相反数,求直线AB 的斜率(结果用n 表示).(1)证明 由已知,得a 2 = 4 , b 2 = 3 , :.C 2 = a 2 - b 2=1 ,即 F 1(- 1,0), F 2(1,0).(2)解 当0 < m < 2时,则n M 0 ,直线PA , PB 的斜率一定存在.同理可得S + Xp 二 sag 一 y p )3+4k 22.d…l PF 2l 2 为定值.2l m - 4l设 A (X 1, y 1) , B (x 2 , y 2),直线 PA 的斜率为 k ,则直线PA 的方程为y - n 二k (x - m ),即y-kx- km + n ,与椭圆C 的方程3x 2 + 4y 2二12 , 联立组成方程组,消去y ,整理得,(3 + 4k 2)x 2 - 8k (km - n )x + 4(km - n )2 - 12-0.工是4(km - n )2 - 12 于疋 x 二 ',y - kx, - km + n . 1 (3 + 4k 2)m I II 1根据直线PB 的斜率为-k ,将上式中的k 用-k 代替,4( - km - n )2 - 12 4(km + n )2 - 12 得x 二 - 2 [3 + 4( - k )2]m (3 + 4k 2)my 2-- kx 2+ km + n .于是 y 1 - y 2 二(kx 1 - km + n ) - (- kx 2 + km + n )- k (x 1+ x 2)- 2km(3 + 4k 2)m (3 + 4k 2)m 8(k 2m 2 + n 2)- 24 - 2m 2(3 + 4k 2) k •一(3 + 4k 2)m8n 2- 24- 6m 2注意到 3m 2+ 4n 2- 12,得 12- 4n 2- 3m 2,(3 + 4k 2)m k ,4(km - n )2 -12x 1 - x 2 -II 2 (3 + 4k 2)m 由根与系数的关系,得m ・x i4(km - n )2 - 123 + 4k 2 -k 4(km - n )2 - 12 4(km + n )2_ 2km4(km + n )2- 12 (3 + 4k 2)m 4[(km - n )2 - (km + n )2] _ - 16kmn(3 + 4k 2)m(3 + 4k 2)m 因此,直线AB 的斜率为J y^2 x 1 -x 2_ (8n2 - 24 - 6m2)k-16kmn_ 3m2- 4n2+ 12 _ 6m2 _3m_ 寸9- 3m8mn 8mn 4n 2n热点三存在性问题存在性问题的求解策略(1)若给出问题的一些特殊关系,要探索一般规律,并证明所得规律的正确性,通常要对已知关系进行观察、比较、分析,然后概括一般规律;(2)若只给出条件,求“不存在”“是否存在”等语句表述问题时,一般先对结论给出肯定存在的假设,然后由假设出发,结合已知条件进行推理,从而得出结论.例3 (2019•乐山、峨眉山联考)已知椭圆G:a2+b2=1(a>b>0)过点人(1,和点B(0,T)・⑴求椭圆G的方程;(2)设直线y=x+m与椭圆G相交于不同的两点M, N,记线段MN的中点为P,是否存在实数m,使得I BM I = I BN I?若存在,求出实数m;若不存在,请说明理由.解(1)椭圆G:a+b2_1(a>b>0)过点A,1,普…和点B(0,-1),:.b_1 ,由丄+ — _ 1,解得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档