单片机频率计实验报告
单片机实验报告

单⽚机实验报告单⽚机实验报告姓名学号时间地点实验题⽬软件开发环境和简单程序设计⼀、实验⽬的1. 学习I/O⼝的使⽤⽅法。
2. 学习延时⼦程序、查表程序的编写和使⽤。
⼆、实验主要仪器及环境PC机、W A VE软件、仿真器+仿真头、实验板、电源等。
三、实验内容1、P0⼝做输出⼝,接⼋只LED,编写程序,使LED循环点亮,间隔0.5秒。
2、P1.0--P1.7作输⼊⼝接拨动开关S0--S7;P0.0--P0.7作输出⼝,接发光⼆极管L1—L8,编写程序读取开关状态,将此状态在对应的发光⼆极管上显⽰出来,同时将开关编号(0—7)显⽰在LED数码管上四、实验步骤1、先编写好程序并通过伟福仿真软件调试。
2、将编好的程序通过仿真器掻到实验板上进⾏相应的实验。
五、实验程序流程框图、实验程序1. ORG 0000HAJMP MAINMAIN: MOV A,#01H;置初值LOOP: MOV P0,A ;数据输出RL A ;左移⼀位ACALL DELAYSJMP LOOPDELAY:MOV R0,#10 ;延时0.5sK1:MOV R1,#125K2:MOV R2,#200K3:DJNZ R2,K3DJNZ R1,K2DJNZ R0,K1RETP0⼝循环点灯框图AJMP STARTORG 0030HSTART: MOV DPTR,#TABLESETB P1MOV P2,#00HMAIN: MOV A,P1 ;读P1⼝值CJNE A,#0FFH,LOOP;判断是否有输⼊SJMP MAINLOOP: MOV P0,AMOV R0,#00HLOOP1:RRC AJNC LOOP2INC R0 ;计数AJMP LOOP1LOOP2:MOV A,R0MOVC A,@A+DPTR ;查表MOV P2,A ;P2⼝输出AJMP MAINTABLE:DB 03FH 06H 5BH 4FH 66H 6DH 7DH 07HP1⼝输⼊/输出框图六、实验程序分析、讨论及测试1、实验1欲改变LED循环的⽅向程序应如何修改?循环的时间间隔由什么决定?写出间隔时间为1秒的延时程序并说明计算⽅法。
电子系统设计实验报告

基于单片机和FPGA的等精度频率计一、设计任务工作频率通信系统极为重要的参数,频率测量是通信系统基本的参数测试之一。
本设计的主要任务是使用单片机与 EDA 技术设计制作一个简易的等精度频率测试仪,可对输入周期信号的频率进行测量、显示。
被测信号的频率范围和测试的精度要求见相应的设计任务书。
二、设计框图图 1 硬件系统原理框图等精度频率计的主系统硬件框图如图1 示,主要由以下几部分组成:(1)信号整形电路:用于对于放大信号进行放大和整流,以作为PLD 器件的输入信号(2)测频电路:是测频的核心电路模块,由FPGA 或CPLD 器件组成。
(3)单片机电路模块:用于控制FPGA 的测频操作和读取测频数据,并做出相应处理。
(4)数码显示模块:用8 个数码管显示测试结果,考虑到提高单片机I/O 口的利用率,降低编程复杂性,提高单片机的计算速度以及降低数码显示器对主系统的干扰,可以采用串行静态显示方式。
三、测频原理分析3.1 等精度频率测试的原理频率是一个基本的物理量,其它的物理量可以转换为频率进行测量。
测试频率的基本方法包括直接测频和测周法。
其中直接测频法是产生一个标准宽度(例如1s)的时基信号,然后在这个信号时间范围内打开闸门对被测频率信号进行计数。
此方法的弱点之一是高精度的标准时基信号不容易获得;其二,这种方法对于高频信号的测量精度比较有保证,但是对于低频信号由于计数周期有限测试精度较低。
测周法是用被测信号作为闸门信号、对标准脉冲信号进行计数,显然这种方法适合测量低频信号的频率。
等精度测频法的核心思想是用两个计数器分别对标准和被测脉冲进行计数,计数的时间严格同步于被测脉冲。
这种方法的最大优点是测试的精度和被测信号的频率无关,因而可以做到等精度测量。
其测试原理如图2 示。
预置闸门信号是测试命令,即测频的使能信号,该信号为高电平的期间进行测频。
但是当预置闸门信号为高电平时,测频并不是立即开始,而是要等到被测信号的上升沿到来以后,实际闸门信号跳为高电平,测频才真正开始。
单片机实验报告 附含说明书

第一章 DICE-5208K开发型单片机综合实验仪概述一、系统简介DICE-5208K型单片机实验系统由DICE-5208K开发型单片机综合实验箱、DICE-3000型仿真器、扩展卡和DICE-51仿真开发系统软件等组成。
是《MCS-51单片机原理与接口》、《单片机控制技术》、《C8051Fxxx高速SOC单片机原理及应用》、《EDA》、《VHDL硬件描述语言》、《CPLD/FPGA应用基础》等课程教学的配套实验设备。
新增加了几乎所有最实用、新颖的接口电路(如1 WIRE /I2C/SPI总线等)和通讯类接口实验(如USB2.0通讯/TCP/IP网络通讯/CAN总线/红外线收发等)。
可进行MCS-51、C8051F嵌入式单片机、CPLD/FPGA等课程的开放式实验教学。
二、主要特点1.该实验系统配置DICE-3000型高性能MCS-51硬件仿真器,64K数据空间,64K程序空间全部开放,不占用CPU资源,采用双CPU模式,仿真CPU和用户CPU独立运行,上位仿真软件支持汇编、C语言、PL/M语言。
可运行于WIN98/2000/NT/XP操作系统平台。
2.实验系统带有ISP在线下载电路,学生在完成实验后可脱离仿真机和PC机独立运行学生自行设计的单片机系统。
(可在线编程AT89S51/52/53系列单片机)。
3.该实验系统可扩展C8051F020嵌入式实验开发模块, 并配有DICE-EC5型USB高速通讯仿真器,通过4脚的JTAG接口可以进行非侵入式、全速的在线系统调试、仿真;集成开发环境支持Silicon Labs IDE和KEIL C软件。
4.该实验系统可扩展CPLD/FPGA模块,并配有相应的并口下载电路,轻松变成一台EDA实验开发平台。
5.该实验系统可扩展“数控式电子演示装置”,该装置是本公司的专利产品,结合上位演示软件和USB接口,可为该实验系统扩展多达十五个生动、形象、复杂的实验,其中大部分是闭环实验,实验践性非常强。
毕业设计129基于51单片机频率计的设计

摘要数字频率计是数字电路中的一个典型应用,实际的硬件设计用到的器件较多,而且会产生比较大的延时,造成测量误差、可靠性差。
传统的数字频率计一般是由分离元件搭接而成,随着单片机的大规模的应用,单片机在频率测量方面也越来越多的被使用。
在本课题中使用的AT89S51这种低功耗,高性能CMOS 8位单片机系列的单片机的出现,具有更好的稳定性,更快和更准确的运算精度,推动了工业生产,影响着人们的工作和学习。
而本次设计就是要通过以AT89S51单片机为控制核心,实现对信号频率进行准确计数的设计。
单片机是将微型计算机的基本功能部件全部集成在一块半导体电路芯片上,具有功能强、体积小、价格低、稳定可靠、研制周期短等优点,具有广阔的应用前景。
本次毕业设计以ATMEL 公司的AT89S51单片机为核心,实现频率计数功能。
频率计装置由单片机系统模块,LED显示模块、MAX232串口通信模块组成,实现对频率进行测试并在LED显示出来。
本次毕业设计基于AT89S51单片机的频率计装置,设计sch电路原理图,并根据原理图完成硬件部分的制作,采用KEIL-51单片机应用系统编制C语言系统程序,最后通过综合调试,能实现所有要求的功能,完全满足本次毕业设计的要求。
关键词:频率计;单片机;LED显示;MAX232;定时器/计数器AbstractThe digital frequency meter is in a digital circuit model application, the actual hardware design uses component more, moreover can have the quite big time delay, creates the measuring error, the reliability is bad. The traditional digital frequency meter generally is becomes byseparative element joining, along with the monolithic integrated circuit large-scale application, the monolithic integrated circuit more and more are also many in the frequency measurement aspect is used. A T89S51 this kind of low power loss uses which in this topic, high performance CMOS 8 monolithic integrated circuits series monolithic integrated circuit appearance, has a better stability, is quicker and the more accurate operation precision, impelled the industrial production, is interfering with people's work and the study. But this design is must through take the A T89S51 monolithic integrated circuit as the control core, realizes design which carries on to the signalling frequency accurately counts.The monolithic integrated circuit is completely integrates the microcomputer basic function part on together the semiconductor electric circuit chip, has the function strongly, the volume small, the price low, stable reliable, the development cycle is short and soon the merit, has the broad application prospect. This graduation project take A TMEL Corporation's A T89S51 monolithic integrated circuit as the core, the realization frequency counts the function. The frequency meter installment by the monolithic integrated circuit system module, LED demonstrated the module, the MAX232 string mouth connection module composes, realizes carries on the test to the frequency and demonstrates in LED.This graduation project based on the A T89S51 monolithic integrated circuit frequency meter installment, designs the sch electric circuit schematic diagram, and completes the hardware partial manufactures according to the schematic diagram, uses the KEIL-51 monolithic integrated circuit application system to establish the C language system program, finally through the synthesis debugging, can realize all requests function, completely satisfies this graduation project the request.Key words: Frequency meter; Monolithic integrated circuit; LED demonstrated; MAX232; Timer/counter目录引言 (1)1 基于AT89S51单片机的频率计的设计装置原理图及其设计思路 (2)2 单片机系统模块原理设计 (3)2.1 AT89S51芯片介绍 (3)2.2 AT89S51芯片管脚介绍 (3)2.3 AT89S51复位电路原理 (5)2.4AT89S51的时钟 (6)2.4.1 AT89S51基本时序周期 (7)2.5AT89S51各端口工作原理讲解 (7)2.5.1 P0口介绍 (7)2.5.2P1口介绍 (8)2.5.3 P2口介绍 (9)2.5.4 P3口介绍 (10)2.5.5端口的负载能力和输入/输出操作 (11)2.5.6串行端口的基本特点 (11)2.5.7串行端口的工作方式 (12)2.5.8串行端口的控制寄存器 (14)2.6 定时器/计数器 (14)2.6.1定时器/计数器结构 (14)2.6.2定时器/计数器控制寄存器 (14)2.6.3定时器/计数器工作模式 (15)2.6.4定时器/计数器的初始化 (16)2.7中断系统 (17)2.7.1中断系统的结构 (17)2.7.2中断系统的控制寄存器 (18)2.7.3中断的响应过程 (19)3 硬件设计 (20)3.1 LED显示模块设计原理 (20)3.1.1LED发光原理 (20)3.1.2种类和符号 (20)3.1.3LED的特性 (21)3.2 LED数码管介绍 (21)3.2.1 LED数码管原理结构 (21)3.2.2LED数码管工作方式 (22)3.2.3静态显示方式 (23)3.2.4动态显示方式 (24)3.2.5LED显示控制原理 (24)3.3 MAX232芯片介绍 (25)4 软件设计 (25)5 硬件的调试与测试 (26)5.1 硬件制作 (26)5.1.2PCB图的制作 (26)5.1.3电路板制作过程 (27)5.2 硬件调试 (28)5.3软件调试 (29)5.4硬件测试 (30)6 结论 (30)谢辞 (31)参考文献 (32)附录 (33)引言单片机的英文名字为Microcontroller(微控制器),从词义上理解它已能比较准确地反映出单片机的本质。
基于AT89C51单片机频率计的设计(含程序)

AT89C51单片机频率计的设计摘要基于在电子领域内,频率是一种最基本的参数,并与其他许多电参量的测量方案和测量结果都有着十分密切的关系。
由于频率信号抗干扰能力强、易于传输,可以获得较高的测量精度。
因此,频率的测量就显得尤为重要,测频方法的研究越来越受到重视。
频率计作为测量仪器的一种,常称为电子计数器,它的基本功能是测量信号的频率和周期频率计的应用范围很广,它不仅应用于一般的简单仪器测量,而且还广泛应用于教学、科研、高精度仪器测量、工业控制等其它领域。
随着微电子技术和计算机技术的迅速发展,特别是单片机的出现和发展,使传统的电子侧量仪器在原理、功能、精度及自动化水平等方面都发生了巨大的变化,形成一种完全突破传统概念的新一代侧量仪器。
频率计广泛采用了高速集成电路和大规模集成电路,使仪器在小型化、耗电、可靠性等方面都发生了重大的变化。
目前,市场上有各种多功能、高精度、高频率的数字频率计,但价格不菲。
为适应实际工作的需要,本次设计给出了一种较小规模和单片机(AT89C51)相结合的频率计的设计方案,不但切实可行,而且体积小、设计简单、成本低、精度高、可测频带宽,大大降低了设计成本和实现复杂度。
频率计的硬件电路是用Ptotues绘图软件绘制而成,软件部分的单片机控制程序,是以KeilC做为开发工具用汇编语言编写而成,而频率计的实现则是选用Ptotues仿真软件来进行模拟和测试。
关键词:单片机;AT89C51;频率计;汇编语言选题的目的意义数字频率计的主要功能是测量周期信号的频率。
其基本原理就是用闸门计数的方式测量脉冲个数。
频率是单位时间( 1s )内信号发生周期变化的次数。
如果我们能在给定的 1s 时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。
数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。
单片机测量信号频率的方法

单片机测量信号频率的方法
单片机是一种功能强大的电子控制器,可以用于测量和控制各种物理量。
在测量信号频率方面,单片机可以使用定时器和计数器模块来实现。
测量信号频率的方法主要有两种:时间测量法和计数测量法。
时间测量法是利用定时器模块测量信号周期的时间,再通过计算得出信号频率。
具体实现方法是,将信号输入到单片机的外部中断口,每当信号变化时触发定时器中断,记录时间,并清零计数器。
当定时器达到指定时间后,再记录时间,并计算时间差。
由于信号周期等于两次时间差之和,因此可以得到信号频率。
计数测量法是利用计数器模块统计信号的脉冲数,再通过计算得出信号频率。
具体实现方法是,将信号输入到单片机的计数器输入端,设置计数器为上升沿触发或下降沿触发,当计数器达到指定的计数值后,再记录时间并计算信号频率。
在实际应用中,两种方法可以根据实际需要进行选择。
时间测量法适用于频率较低的信号,计数测量法适用于频率较高的信号。
同时,还需要考虑单片机的时钟精度和计算复杂度等因素,选择合适的测量方法。
总之,单片机测量信号频率的方法可以帮助我们实现精确的信号测量和控制,具有广泛的应用前景。
- 1 -。
数字频率计的设计实验报告
数字频率计的设计实验报告实验名称:数字频率计的设计实验日期:2021年7月1日实验目的:设计并实现一个基于计数器的数字频率计,使用计数器测量输入信号的频率,并将结果显示在数码管上。
实验器材:FPGA开发板、数字频率计模块、计数器模块、数码管模块。
实验原理:1. 计数器模块设计一个计数器模块,用于计数示波器输入脉冲信号的时间。
计数器的计数时间可以根据需要进行调整。
2. 数字频率计模块设计一个数字频率计模块,用于将计数器的计数时间转换为输入信号的频率。
通过计算计数器的计数值来计算频率,并将结果显示在数码管上。
3. 数码管模块设计一个数码管模块,用于将数字频率计模块计算出的频率值转换为可以在数码管上显示的数码。
实验步骤:1. 搭建实验电路将FPGA开发板连接到计数器模块、数字频率计模块和数码管模块。
2. 编写Verilog代码根据上述原理,编写计数器模块、数字频率计模块和数码管模块的Verilog代码。
3. 编译代码并下载到FPGA开发板使用Xilinx Vivado软件将Verilog代码编译成比特流文件,并将比特流文件下载到FPGA开发板中。
4. 测试实验将示波器的输出信号连接到数字频率计的输入端,并将数字频率计连接到数码管。
通过计算数字频率计的输出,验证数字频率计的测量准确性。
实验结果:经过测试,数字频率计的测量准确度在实验误差范围内。
输入不同频率的信号时,数码管能够正确显示频率值。
实验总结:通过本次实验,成功设计并实现了一个基于计数器的数字频率计。
该实验不仅巩固了计数器、数码管等模块的设计知识,也提高了学生的Verilog编程能力。
在实验中,学生还学习了如何使用FPGA开发板进行数字电路实验,以及测试和验证数字电路的方法和技巧。
用51单片机完成等精度频率测量仪的设计毕业论文
(4)编写软件;
(5)系统调试,仿真。
2等精度频率计的原理与应用
2.1 等精度频率计的原理
频率计的核心为单片机对数据的运算处理,而此等精度测量方法是以同步门逻辑控制电路为核心的。同步门逻辑控制电路由D触发器构成。
基本频率测量要求:
幅度:0.5V~5V
频率:1Hz~500kHz
用51单片机完成等精度频率测量仪的设计毕业论文
1 绪 论
1.1 数字频率计简介
数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字,显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号,方波信号以及其他各种单位时间变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精度高,显示直观,所以经常要用到数字频率计。
国际国通用数字频率计的主要技术参数:1.频率测量围:电子计数器的测频围,低端大部分从10Hz开始;高端则以不同型号的频率计而异。因此高端频率是确定低、中、高速计数器的依据。如果装配相应型号的变频器,各种类型的数字频率计的测量上限频率,可扩展十倍甚至几十倍。2.周期测量围:数字频率计最大的测量周期,一般为10s,可测周期的最小时间,依不同类型的频率计而定。对于低速通用计数器最小时间为1ys;对中速通用计数器可小到0.1ys。3.晶体振荡器的频率稳定度:是决定频率计测量误差的一个重要指标。可用频率准确度、日波动、时基稳定度、秒级频率稳定度等指标,来描述晶体振荡器的性能。4.输入灵敏度:输入灵敏度是指在侧频围能保证正常工作的最小输入电压。目前通用计数器一般都设计二个输入通道,即d通道和月通道。对于4通道来说,灵敏度大多为50mV。灵敏度高的数字频率计可达30mV、20mV。5.输入阻抗:输入阻抗由输入电阻和输入电容两部分组成。输入阻抗可分为高阻(1M//25PF、500k//30PF)和低阻(50)。一般说来,低速通用计数器应设计成高阻输入;中速通用计数器,测频围最高端低于100MHz,仍设计为高阻输入;对于高速通用计数器,测频>100MHz, 设计成低阻 (50Q) 输入,测频<100MHz,设计成高阻(500k//30PF)输入。
基于51单片机数字频率计的设计
基于51单片机数字频率计的设计在电子技术领域中,频率计是一种常见的测试仪器,它可以用来测量信号的频率。
在本文中,我们将通过介绍基于51单片机数字频率计的设计实现来了解它的工作原理和设计流程。
1. 确定设计需求在进行任何项目之前,我们需要明确自己的设计需求。
对于频率计而言,它的主要需求就是准确地测量信号的频率。
因此,我们需要确定我们需要测量的频率范围和精确度。
2. 确定硬件设计在确定了设计需求之后,我们需要确定硬件设计。
对于数字频率计而言,它需要一个计数器来计算信号的脉冲数量。
在本设计中,我们采用74LS90计数器芯片来实现计数功能。
我们还需要一个51单片机来读取计数器的计数值,并将其转换为对应的频率值。
另外,我们还需要硬件板、LCD显示屏、按键等元件来搭建数字频率计的电路结构。
3. 确定软件设计硬件设计完成后,我们需要开发相应的软件来实现我们的需求。
在本设计中,我们使用KEIL C51软件来编写51单片机的程序。
编写软件的主要步骤是读取计数器计数值、计算出对应的频率值、将频率值显示在LCD屏幕上,并实现按键控制。
我们需要将这些步骤按照程序流程依次实现。
4. 进行测试在软件编写完成后,我们需要对数字频率计进行测试,以确保其满足我们的需求。
我们可以使用信号发生器给数字频率计输入不同频率的信号,然后观察LCD屏幕上显示出来的相应频率值是否准确。
如果测试结果不满足我们的需求,则需要对硬件或软件进行优化或调试,直到数字频率计能够正常工作为止。
总之,基于51单片机的数字频率计设计是一个较为简单的电子设计项目。
通过上述步骤的详细介绍,我们了解了数字频率计的设计流程和工作原理,并明确了设计中需要注意的细节和注意事项。
希望能够对大家理解数字频率计的设计过程有所帮助。
单片机测量信号频率的方法
单片机测量信号频率的方法
1.基于定时器的频率测量方法:
这是最常见的测量信号频率的方法之一、单片机内部的定时器可以作为频率计数器,通过设定定时器的预定数值,开始计数,当计数溢出时,说明已经计满一个周期,从而可以根据溢出的次数计算出信号的频率。
2.基于输入捕获的频率测量方法:
这种方法是通过输入捕获功能来测量信号频率。
单片机的输入捕获功能可以用于捕获外部信号的上升沿或下降沿,并记录下捕获到的时间。
通过连续捕获两个上升沿或下降沿之间的时间差,可以计算出信号的周期,从而获得信号的频率。
3.基于计数器的频率测量方法:
这种方法一般用于高频信号的测量。
通过将信号输入到单片机的一个计数器引脚,设置计数器在一定时间内累加该信号的脉冲数,然后通过计算脉冲数与时间的比值来获得信号的频率。
4.基于软件延时的频率测量方法:
这种方法适用于信号频率较低的情况。
通过在程序中使用软件延时的方式来计算指定时间内信号的脉冲数,并通过脉冲数与时间的比值来计算信号的频率。
需要注意的是,测量信号频率还需要考虑到一些细节问题,例如时钟的精度、测量时间的长度以及测量结果的误差等。
在实际应用中,还需要结合具体需求来选择合适的测量方法和相应的参数设置。
同时,根据不同的单片机型号和功能,可能还有其他特定的测量频率的方法,因此在实际应用中,需要根据具体的单片机型号和数据手册来选择合适的方法和配置参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机频率计实验报告
实验报告:单片机频率计
摘要:
本实验通过使用单片机设计和实现了一种简单的频率计,通过测量输入信号的周期来计算其频率。
实验结果表明,该方法可以准确地测量信号的频率,并且具有较高的稳定性和精确度。
1.引言
在电子测量领域中,频率是一个重要的参数,它是指单位时间内信号变化周期的次数。
测量信号的频率可以帮助我们了解信号的特性和性能。
而单片机作为常见的嵌入式微处理器,提供了较高的计算和控制能力,可以应用于频率计的设计和实现中。
2.实验原理
在本实验中,我们使用了一种简单的基于单片机的频率测量方法。
该方法基于计算输入信号的周期,并以此计算信号的频率。
具体实验原理如下:
(1)信号输入:将需要测量频率的信号接入单片机的输入口。
(2)信号计数:通过单片机的定时器,测量输入信号的时间间隔。
(3)计算频率:将信号的周期时间转换为频率值。
3.实验设备与材料
(1)单片机:使用STC89C52单片机。
(2)信号发生器:产生需要测量频率的信号。
(3)蜂鸣器:用于发出测量结果。
(4)杜邦线:用于连接单片机和其他器件。
4.实验步骤
(1)搭建实验电路:将单片机与信号发生器、蜂鸣器等器件通过杜邦线连接。
(2)编写程序:使用汇编语言或C语言编写程序,设置定时器,测量输入信号的时间间隔。
(3)烧录程序:将编写好的程序烧录到单片机中。
(4)测量频率:通过信号发生器产生不同频率的信号,并使用单片机进行测量。
(5)显示结果:将测量得到的频率值通过蜂鸣器等方式显示出来。
5.实验结果
经过多次测量和对比,我们得到了较为准确的信号频率测量结果。
实验结果表明,该频率计具有较高的稳定性和精确度,可以满足日常实验工作的要求。
6.实验总结
通过本次实验,我们了解了基于单片机的频率计的设计和实现方法,并成功地搭建了一个简单的频率计电路。
实验结果表明,这种方法可以比较准确地测量信号的频率,并且具有较高的稳定性和精确度。
然而,在实
际应用中可能还需要考虑一些其他因素,如输入信号的幅度和噪声等。
因此,我们可以进一步改进和优化该频率计,以满足更高的实际需求。
[1]《单片机原理及应用》苏志燕,王淑梅,薛竑宇著高等教育出版社2024年
附录:实验代码
```c
#include <reg52.h>
sbit beep = P1^0; //蜂鸣器连接的IO口
int frequency = 0; //存储测量的频率值
//定时器0中断函数
void Timer0Interrupt( interrupt 1
TH0=0xFC;
TL0=0x66;
frequency++; //计数器加一
//延时函数
void Delay(unsigned int t)
unsigned int i, j;
for (i = 0; i < t; i++)
for (j = 0; j < 120; j++);
//主函数
void main
EA=1;//打开总中断
ET0=1;//打开定时器0中断
TR0=1;//启动定时器0
while (1)
frequency = 0; //计数器清零
Delay(1000); //延时一段时间
TR0=0;//停止定时器0
if (frequency != 0) //如果计数器有计数
if (frequency <= 20) //低频率信号可以直接通过蜂鸣器声音判断beep = 0;
else
beep = 1;
}
TR0=1;//启动定时器0
}。