2015广东高考复习数学专项训练5(概率统计)

合集下载

【步步高】(广东专用)2015届高考数学二轮复习 专题突破训练七 第3讲 统计与统计案例 理(含20

【步步高】(广东专用)2015届高考数学二轮复习 专题突破训练七 第3讲 统计与统计案例 理(含20

第3讲 统计与统计案例考情解读 1.该部分常考内容:样本数字特征的计算、各种统计图表、线性回归方程、独立性检验等;有时也会在知识交汇点处命题,如概率与统计交汇等.2.从考查形式上来看,大部分为选择题、填空题,重在考查基础知识、基本技能,有时在知识交汇点处命题,也会出现解答题,都属于中、低档题.1.随机抽样(1)简单随机抽样特点是从总体中逐个抽取.适用X 围:总体中的个体较少.(2)系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用X 围:总体中的个体数较多.(3)分层抽样特点是将总体分成几层,分层进行抽取.适用X 围:总体由差异明显的几部分组成.2.常用的统计图表 (1)频率分布直方图 ①小长方形的面积=组距×频率组距=频率; ②各小长方形的面积之和等于1;③小长方形的高=频率组距,所有小长方形的高的和为1组距.(2)茎叶图在样本数据较少时,用茎叶图表示数据的效果较好. 3.用样本的数字特征估计总体的数字特征 (1)众数、中位数、平均数数字特征 样本数据 频率分布直方图众数出现次数最多的数据取最高的小长方形底边中点的横坐标 中位数将数据按大小依次排列,处在最中间位置的一个数据(或最中间两个数据的平均数)把频率分布直方图划分左右两个面积相等的分界线与x 轴交点的横坐标 平均数样本数据的算术平均数每个小矩形的面积乘以小矩形底边中点的横坐标之和(2)方差:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].标准差:s =1n[x 1-x2+x 2-x2+…+x n -x2].4.变量的相关性与最小二乘法(1)相关关系的概念、正相关和负相关、相关系数.(2)最小二乘法:对于给定的一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),通过求Q = i =1n(y i -a -bx i )2最小时,得到线性回归方程y ^=b ^x +a ^的方法叫做最小二乘法. 5.独立性检验对于取值分别是{x 1,x 2}和{y 1,y 2}的分类变量X 和Y ,其样本频数列联表是y 1 y 2 总计x 1 a b a +b x 2c d c +d 总计a +cb +dn则K 2(χ2)=n ad -bc 2a +bc +d a +cb +d(其中n =a +b +c +d 为样本容量).热点一 抽样方法例1 (1)(2013·某某)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A .11 B .12 C .13 D .14(2)(2014·某某高三调研)某学校共有师生3 200人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是________.思维启迪 (1)系统抽样时需要抽取几个个体,样本就分成几组,且抽取的间隔相同;(2)分层抽样最重要的是各层的比例. 答案 (1)B (2)200 解析 (1)由84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12. (2)本题属于分层抽样,设该学校的教师人数为x ,所以1603 200=160-150x ,所以x =200.思维升华 (1)随机抽样各种方法中,每个个体被抽到的概率都是相等的;(2)系统抽样又称“等距”抽样,被抽到的各个间隔相同;分层抽样满足:各层抽取的比例都等于样本容量在总体容量中的比例.(1)某校高一、高二、高三分别有学生人数为495,493,482,现采用系统抽样方法,抽取49人做问卷调查,将高一、高二、高三学生依次随机按1,2,3,…,1 470编号,若第1组有简单随机抽样方法抽取的为23,则高二应抽取的学生人数为( ) A .15 B .16 C .17 D .18(2)(2014·某某)已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .200,20B .100,20C .200,10D .100,10 答案 (1)C (2)A解析 (1)由系统抽样方法,知按编号依次每30个编号作为一组,共分49组,高二学生的编号为496到988,在第17组到第33组内,第17组抽取的编号为16×30+23=503,为高二学生,第33组抽取的编号为32×30+23=983,为高二学生,故共抽取高二学生人数为33-16=17,故选C.(2)该地区中、小学生总人数为3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20,故选A.热点二 用样本估计总体例2 (1)(2014·某某)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒X 压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.6 B.8 C.12 D.18(2)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据某地某日早7点至晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A.甲 B.乙C.甲乙相等 D.无法确定甲乙20.04123 6930.0596210.06293310.079640.08770.09246思维启迪(1)根据第一组与第二组的人数和对应频率估计样本总数,然后利用第三组的频率和无疗效人数计算;(2)直接根据公式计算方差.答案(1)C (2)A解析(1)志愿者的总人数为200.16+0.24×1=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.(2)x甲=(0.042+0.053+0.059+0.061+0.062+0.066+0.071+0.073+0.073+0.084+0.086+0.097)÷12≈0.068 9,x乙=(0.041+0.042+0.043+0.046+0.059+0.062+0.069+0.079+0.087+0.092+0.094+0.096)÷12≈0.067 5,s2=112[(0.042-0.068 9)2+(0.053-0.068 9)2+…+(0.097-0.068 9)2]≈0.000 212.s2=112[(0.041-0.067 5)2+(0.042-0.067 5)2+…+(0.096-0.067 5)2]≈0.000 429.所以甲、乙两地浓度的方差较小的是甲地.思维升华(1)反映样本数据分布的主要方式:频率分布表、频率分布直方图、茎叶图.关于频率分布直方图要明确每个小矩形的面积即为对应的频率,其高低能够描述频率的大小,高考中常常考查频率分布直方图的基本知识,同时考查借助频率分布直方图估计总体的概率分布和总体的特征数,具体问题中要能够根据公式求解数据的均值、众数和中位数、方差等. (2)由样本数据估计总体时,样本方差越小,数据越稳定,波动越小.(1)某商场在庆元宵促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.(2)(2014·某某)设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A .1+a,4 B .1+a,4+a C .1,4 D .1,4+a 答案 (1)10 (2)A解析 (1)由频率分布直方图可知: 0.100.40=2.5x ,所以x =10. (2)x 1+x 2+…+x 1010=1,y i =x i +a ,所以y 1,y 2,…,y 10的均值为1+a ,方差不变仍为4. 故选A.热点三 统计案例例3 (1)以下是某年2月某地区搜集到的新房屋的销售价格y 和房屋的面积x 的数据.房屋面积x /m 2115 110 80 135 105 销售价格y /万元24.821.618.429.222根据上表可得线性回归方程y ^=b ^x +a ^中的b ^=0.196 2,则面积为150 m 2的房屋的销售价格约为________万元.(2)(2014·某某)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表4A.成绩 B .视力 C 思维启迪 (1)回归直线过样本点中心(x ,y ); (2)根据列联表,计算K 2的值 答案 (1)31.244 2 (2)D解析 (1)由表格可知x =15(115+110+80+135+105)=109,y =15(24.8+21.6+18.4+29.2+22)=23.2.所以a ^=y -b ^x =23.2-0.196 2×109=1.814 2.所以所求线性回归方程为y ^=0.196 2x +1.814 2.故当x =150时,销售价格的估计值为y ^=0.196 2×150+1.814 2=31.244 2(万元). (2)A 中,a =6,b =14,c =10,d =22,a +b =20,c +d =32,a +c =16,b +d =36,n =52, K 2=52×6×22-14×10220×32×16×36=131 440. B 中,a =4,b =16,c =12,d =20,a +b =20,c +d =32,a +c =16,b +d =36,n =52, K 2=52×4×20-16×12220×32×16×36=637360. C 中,a =8,b =12,c =8,d =24,a +b =20,c +d =32,a +c =16,b +d =36,n =52, K 2=52×8×24-12×8220×32×16×36=1310. D 中,a =14,b =6,c =2,d =30,a +b =20,c +d =32,a +c =16,b +d =36,n =52, K 2=52×14×30-6×2220×32×16×36=3 757160. ∵131 440<1310<637360<3 757160, ∴与性别有关联的可能性最大的变量是阅读量.思维升华 (1)线性回归方程求解的关键在于准确求出样本点中心.回归系数的求解可直接把相应数据代入公式中求解,回归常数的确定则需要利用中心点在回归直线上建立方程求解;(2)独立性检验问题,要确定2×2列联表中的对应数据,然后代入K 2(χ2)计算公式求其值,根据K 2(χ2)取值X 围求解即可.(1)已知x 、y 取值如下表:x 0 1 4 5 6 8 y1.31.85.66.17.49.3从所得的散点图分析可知:y 与x 线性相关,且y ^=0.95x +a ^,则a ^等于( ) A .1.30 B .1.45 C .1.65 D .1.80(2)某研究机构为了研究人的脚的大小与身高之间的关系,随机抽测了20人,若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”,“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”.得以下2×2列联表:高个 非高个 总计 大脚 5 2 7 非大脚 1 12 13 总计61420(附:P (K 2>k ) 0.05 0.01 0.001k3.841 6.635 10.828)答案 (1)B (2)0.01解析 (1)依题意得,x =16×(0+1+4+5+6+8)=4,y =16(1.3+1.8+5.6+6.1+7.4+9.3)=5.25;又直线y ^=0.95x +a ^必过样本点中心(x ,y ),即点(4,5.25),于是有5.25=0.95×4+a ^,由此解得a ^=1.45. (2)由题意得K 2=20×5×12-1×226×14×7×13≈8.802>6.635.而K 2>6.635的概率约为0.01,所以在犯错误的概率不超过0.01的前提下认为人的脚的大小与身高之间有关系.1.随机抽样的方法有三种,其中简单随机抽样适用于总体中的个体数量不多的情况,当总体中的个体数量明显较多时要使用系统抽样,当总体中的个体具有明显的层次时使用分层抽样.系统抽样最重要的特征是“等距”,分层抽样,最重要的是各层的“比例”. 2.用样本估计总体(1)在频率分布直方图中,各小长方形的面积表示相应的频率,各小长方形的面积的和为1. (2)众数、中位数及平均数的异同:众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量.(3)当总体的个体数较少时,可直接分析总体取值的频率分布规律而得到总体分布;当总体容量很大时,通常从总体中抽取一个样本,分析它的频率分布,以此估计总体分布. ①总体期望的估计,计算样本平均值x =1n ∑n i =1x i .②总体方差(标准差)的估计:方差=1n∑n i =1(x i-x )2,标准差=方差,方差(标准差)较小者较稳定.3.线性回归方程y ^=b ^x +a ^过样本点中心(x ,y ),这为求线性回归方程带来很多方便. 4.独立性检验(1)作出2×2列联表.(2)计算随机变量K 2(χ2)的值.(3)查临界值,检验作答.真题感悟1.(2014·某某)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.答案 24解析 底部周长在[80,90)的频率为0.015×10=0.15, 底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm 的株数为(0.15+0.25)×60=24. 2.(2014·某某)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3 B.y ^=2x -2.4C.y ^=-2x +9.5 D.y ^=-0.3x +4.4 答案 A解析 因为变量x 和y 正相关,则回归直线的斜率为正,故可以排除选项C 和D.因为样本点的中心在回归直线上,把点(3,3.5)的坐标分别代入选项A 和B 中的线性回归方程进行检验,可以排除B ,故选A. 押题精练1.某地区对某路段公路上行驶的汽车速度实施监控,从中抽取50辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,根据该图,时速在70 km/h 以下的汽车有________辆.答案 20解析 时速在70 km/h 以下的汽车所占的频率为0.01×10+0.03×10=0.4,共有0.4×50=20(辆).2.某教育在高三期末考试结束后,从某市参与考试的考生中选取600名学生对在此期间购买教辅资料的情况进行调研,得到如下数据:购买图书情况只买试题类只买讲解类试题类和讲解类都买人数240200160若该教育计划用分层抽样的方法从这600人中随机抽取60人进行座谈,则只买试题类的学生应抽取的人数为________. 答案 24解析 只买试题类的学生应抽取的人数为60×240600=24.3.下表提供了某厂节能减排技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:x 3 4 5 6 y2.5t44.5根据上表提供的数据,求出y 关于x 的线性回归方程为y ^=0.7x +0.35,那么表中t 的值为________. 答案 3解析 ∵样本点中心为⎝⎛⎭⎪⎫4.5,11+t 4,∴11+t 4=0.7×4.5+0.35,解得t =3. 4.春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:做不到“光盘”能做到“光盘”男 45 10 女3015附:P (K 2≥k 0)0.10 0.05 0.025 k 02.7063.8415.024K 2=n ad -bc 2a +bc +d a +cb +d参照附表,得到的正确结论是( )A .在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关” 答案 C解析由公式可计算K2的观测值k=n ad-bc2a+b c+d a+c b+d=100×45×15-30×10255×45×75×25≈3.03>2.706,所以有90%以上的把握认为“该市民能否做到‘光盘’与性别有关”,故选C.(推荐时间:40分钟)一、选择题1.(2014·某某)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3答案 D解析由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p1=p2=p3.2.某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,现从中抽取一个容量为200人的样本,则高中二年级被抽取的人数为( )A.28 B.32C.40 D.64答案 D解析由已知,得样本容量为400+320+280=1 000,所以,高中二年级被抽取的人数为2001 000×320=64,选D.3.(2013·某某)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816657208026314070243699728019832049234493582003623486969387481A.08 BC.02 D.01答案 D解析 从第1行第5列、第6列组成的数65开始由左到右依次选出的数为:08,02,14,07,01,所以第5个个体编号为01.4.为了了解某城市今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为120,则抽取的学生人数是( )A .240B .280C .320D .480 答案 D解析 由频率分布直方图知:学生的体重在65~75 kg 的频率为(0.012 5+0.037 5)×5=0.25,则学生的体重在50~65 kg 的频率为1-0.25=0.75. 从左到右第2个小组的频率为0.75×26=0.25.所以抽取的学生人数是120÷0.25=480.5.某产品在某零售摊位上的零售价x (单位:元)与每天的销售量y (单位:个)的统计资料如下表所示:x 16 17 18 19 y50344131由上表可得线性回归方程y ^=b x +a ^中的b ^=-4,据此模型预计零售价定为15元时,每天的销售量为( ) A .48个 B .49个 C .50个 D .51个 答案 B解析 由题意知x =17.5,y =39,代入线性回归方程得a ^=109,109-15×4=49,故选B. 6.某校为了研究学生的性别和对待某一活动的态度(支持和不支持的两种态度)的关系,运用2×2列联表进行独立性检验,经计算K 2=7.069,则所得到的统计学结论是:有________的把握认为“学生性别与支持该活动有关系.”( ) 附:P(K2≥k0)0.1000.0500.0250.0100.001k0 2.706 3.841 5.024 6.63510.828% B.1%C.99% D.99.9%答案 C解析因为7.069与附表中的6.635最接近,所以得到的统计学结论是:有1-0.010=0.99=99%的把握认为“学生性别与支持该活动有关系”,选C.7.某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组数据,对两块地抽取树苗的高度的平均数x甲,x乙和中位数y甲,y乙进行比较,下面结论正确的是( )A.x甲>x乙,y甲>y乙B.x甲<x乙,y甲<y乙C.x甲<x乙,y甲>y乙D.x甲>x乙,y甲<y乙答案 B二、填空题8.从某中学高一年级中随机抽取100名同学,将他们的成绩(单位:分)数据绘制成频率分布直方图(如图).则这100名学生成绩的平均数、中位数分别为________.答案125,124解析由图可知(a+a-0.005)×10=1-(0.010+0.015+0.030)×10,解得a=0.025,则x =105×0.1+115×0.3+125×0.25+135×0.2+145×0.15=125.中位数在120~130之间,设为x,则0.01×10+0.03×10+0.025×(x-120)=0.5,解得x=124.9.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是__________.答案 1解析 当x ≥4时,89+89+92+93+92+91+947=6407≠91,∴x <4,∴89+89+92+93+92+91+x +907=91,∴x =1.10.某小学对学生的身高进行抽样调查,如图,是将他们的身高(单位:厘米)数据绘制的频率分布直方图.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人,则从身高在[140,150]内的学生中选取的人数应为________.答案 3解析 由图可知,身高在[100,110),[110,120),[120,130),[130,140),[140,150]这五组的频率分别是0.05、0.35、10α、0.2、0.1,因为五组频率之和应为1,所以10α=0.3.根据分层抽样的知识,在[120,130),[130,140),[140,150]三组内的学生中取18人,则从身高在[140,150]内的学生中选取的人数应为18×0.10.3+0.2+0.1=3.三、解答题11.(2014·课标全国Ⅱ)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9(1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:b ^=∑i =1nt i -ty i -y∑i =1nt i -t2,a ^=y -b ^t .解 (1)由所给数据计算得t =17(1+2+3+4+5+6+7)=4,y =17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑i =17=(t i -t )2=9+4+1+0+1+4+9=28,∑i =17(t i -t)(y i -y )=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑i =17t i -ty i -y∑i =17t i -t2=1428=0.5, a ^=y -b ^t =4.3-0.5×4=2.3,所求线性回归方程为y ^=0.5t +2.3.(2)由(1)知,b ^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t =9代入(1)中的线性回归方程,得y ^=0.5×9+2.3=6.8, 故预测该地区2015年农村居民家庭人均纯收入为6.8千元.12.某城市随机抽取一年(365天)内100天的空气质量指数API 的监测数据,结果统计如下: API [0,50] (50,100] (100,150] (150,200] (200,250](250,300] >300空气质量 优 良 轻微污染 轻度污染 中度污染中重度污染 重度污染 天数413183091115系式为:S =⎩⎪⎨⎪⎧0, 0≤w ≤1004w -400,100<w ≤3002 000, w >300,试估计在本年度内随机抽取一天,该天经济损失S 大于200元且不超过600元的概率;(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染.完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?非重度污染 重度污染 合计 供暖季 非供暖季 合计100附:P (K 2≥k 0)0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 0 1.3232.0722.7063.8415.0246.6357.87910.828K 2=n ad -bc 2a +bc +d a +cb +d.解 (1)设“在本年内随机抽取一天,该天经济损失S 大于200元且不超过600元”为事件A , 由200<S≤600,得150<w ≤250,频数为39, 所以P (A )=39100.(2)根据以上数据得到如下列联表:非重度污染重度污染合计 供暖季 22 8 30 非供暖季 63 7 70 合计8515100K 2的观测值k =100×63×8-22×7285×15×30×70≈4.575>3.841.所以有95%的把握认为空气重度污染与供暖有关.。

高考数学复习专题训练—统计与概率解答题(含解析)

高考数学复习专题训练—统计与概率解答题(含解析)

高考数学复习专题训练—统计与概率解答题1.(2021·广东广州二模改编)根据相关统计,2010年以后中国贫困人口规模呈逐年下降趋势,2011~2019年全国农村贫困发生率的散点图如下:注:年份代码1~9分别对应年份2011年~2019年.(1)求y 关于t 的经验回归方程(系数精确到0.01);(2)已知某贫困地区的农民人均年纯收入X (单位:万元)满足正态分布N (1.6,0.36),若该地区约有97.72%的农民人均纯收入高于该地区最低人均年纯收入标准,则该地区最低人均年纯收入标准大约为多少万元?参考数据与公式:∑i=19y i =54.2,∑i=19t i y i =183.6. 经验回归直线y ^=b ^t+a ^的斜率和截距的最小二乘估计分别为b ^=∑i=1n t i y i -nt y ∑i=1n (t i -t )2 ,a ^=y −b ^t . 若随机变量X 服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.682 7,P (μ-2σ≤X ≤μ+2σ)≈0.954 5,P (μ-3σ≤X ≤μ+3σ)≈0.997 3.2.(2021·湖北黄冈适应性考试改编)产品质量是企业的生命线.为提高产品质量,企业非常重视产品生产线的质量.某企业引进了生产同一种产品的A,B 两条生产线,为比较两条生产线的质量,从A,B 生产线生产的产品中各自随机抽取了100件产品进行检测,把产品等级结果和频数制成了如图的统计图.(1)依据小概率值α=0.025的独立性检验,分析数据,能否据此推断是否为一级品与生产线有关.(2)生产一件一级品可盈利100元,生产一件二级品可盈利50元,生产一件三级品则亏损20元,以频率估计概率.①分别估计A,B生产线生产一件产品的平均利润;②你认为哪条生产线的利润较为稳定?并说明理由.附:①参考公式:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.②临界值表:3.(2021·福建宁德模拟改编)某工厂为了检测一批新生产的零件是否合格,从中随机抽测100个零件的长度d(单位:mm).该样本数据分组如下:[57,58),[58,59),[59,60),[60,61),[61,62),[62,63],得到如图所示的频率分布直方图.经检测,样本中d大于61的零件有13个,长度分别为61.1,61.1,61.2,61.2,61.3,61.5,61.6,61.6,61.8,61.9,62.1,62.2,62.6.(1)求频率分布直方图中a,b,c的值及该样本的平均长度x(结果精确到1 mm,同一组数据用该区间的中点值作代表);(2)视该批次样本的频率为总体的概率,从工厂生产的这批新零件中随机选取3个,记ξ为抽取的零件长度在[59,61)的个数,求ξ的分布列和数学期望;(3)若变量X满足|P(μ-σ≤X≤μ+σ)-0.682 7|<0.03且|P(μ-2σ≤X≤μ+2σ)-0.954 5|≤0.03,则称变量X满足近似于正态分布N(μ,σ2)的概率分布.如果这批样本的长度d满足近似于正态分布N(x,12)的概率分布,则认为这批零件是合格的,将顺利出厂;否则不能出厂.请问,能否让该批零件出厂?4.(2021·山东潍坊期末)在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度,为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r(0<r<1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r的最小值;(2)当r=0.9时,求能正常工作的设备数X的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万元的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1:更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更新设备硬件总费用为8万元; 方案2:对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策?答案及解析1.解 (1)t =1+2+3+4+5+6+7+8+99=5, y =12.7+10.2+8.5+7.2+5.7+4.5+3.1+1.7+0.69≈6.02, b ^=∑i=19t i y i -9t y∑i=19(t i -5)2=183.6-270.960≈-1.46,a ^=y −b ^t =6.02-(-1.46)×5=13.32.故y 关于t 的经验回归方程为y ^=-1.46t+13.32.(2)因为P (μ-2σ≤X ≤μ+2σ)≈0.954 5,所以P (X>μ-2σ)=0.954 5+1-0.954 52=0.977 25. 因为某贫困地区的农民人均年纯收入X 满足正态分布N (1.6,0.36),所以μ=1.6,σ=0.6,μ-2σ=0.4,P (X>0.4)=0.977 25,故该地区最低人均年纯收入标准大约为0.4万元.2.解 (1)根据已知数据可建立列联表如下:零假设为H 0:是否为一级品与生产线无关.χ2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d )=200×(20×65-35×80)255×145×100×100≈5.643>5.024=x 0.025,依据小概率值α=0.025的独立性检验,推断H 0不成立,即认为是否为一级品与生产线有关.(2)A 生产线生产一件产品为一、二、三级品的概率分别为15,35,15.记A 生产线生产一件产品的利润为X ,则X 的取值为100,50,-20,其分布列为B生产线生产一件产品为一、二、三级品的概率分别为720,25 ,14.记B生产线生产一件产品的利润为Y,则Y的取值为100,50,-20, 其分布列为①E(X)=100×15+50×35+(-20)×15=46,E(Y)=100×720+50×25+(-20)×14=50.故A,B生产线生产一件产品的平均利润分别为46元、50元.②D(X)=(100-46)2×15+(50-46)2×35+(-20-46)2×15=1 464.D(Y)=(100-50)2×720+(50-50)2×25+(-20-50)2×14=2 100.因为D(X)<D(Y),所以A生产线的利润更为稳定.3.解(1)由题意可得P(61≤d<62)=10100=0.1,P(62≤d≤63)=3100=0.03,P(59≤d<60)=P(60≤d<61)=12(1-2×0.03-0.14-0.1)=0.35,所以a=0.031=0.03,b=0.11=0.1,c=0.351=0.35.x=(57.5+62.5)×0.03+58.5×0.14+(59.5+60.5)×0.35+61.5×0.1=59.94≈60.(2)由(1)可知从该工厂生产的新零件中随机选取1件,长度d在(59,61]的概率P=2×0.35=0.7,且随机变量ξ服从二项分布ξ~B(3,0.7),所以P(ξ=0)=C30×(1-0.7)3=0.027,P(ξ=1)=C31×0.7×(1-0.7)2=0.189,P(ξ=2)=C32×0.72×(1-0.7)=0.441,P(ξ=3)=C33×0.73=0.343,所以随机变量ξ的分布列为E(ξ)=0×0.027+1×0.189+2×0.441+3×0.343=2.1.(3)由(1)及题意可知x=60,σ=1.所以P(x-σ≤X≤x-σ)=P(59≤X≤61)=0.7.|P(x-σ≤X≤x+σ)-0.682 7|=|0.7-0.682 7|=0.017 3≤0.03,P(x-2σ≤X≤x-2σ)=P(58≤X≤62)=0.14+0.35+0.35+0.1=0.94,|P(x-2σ≤X≤x+2σ)-0.954 5|=|0.94-0.954 5|=0.014 5≤0.03.所以这批新零件的长度d满足近似于正态分布N(x,12)的概率分布.所以能让该批零件出厂.4.解(1)要使系统的可靠度不低于0.992,则P(X≥1)=1-P(X<1)=1-P(X=0)=1-(1-r)3≥0.992,解得r≥0.8,故r的最小值为0.8.(2)X为正常工作的设备数,由题意可知,X~B(3,r),P(X=0)=C30×0.90×(1-0.9)3=0.001,P(X=1)=C31×0.91×(1-0.9)2=0.027,P(X=2)=C32×0.92×(1-0.9)1=0.243,P(X=3)=C33×0.93×(1-0.9)0=0.729,从而X的分布列为(3)设方案1、方案2的总损失分别为X1,X2,采用方案1,更换部分设备的硬件,使得设备可靠度达到0.9,由(2)可知计算机网络断掉的概率为0.001,不断掉的概率为0.999,故E(X1)=80000+0.001×500 000=80 500元.采用方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,由(1)可知计算机网络断掉的概率为0.008,故E(X2)=50 000+0.008×500 000=54 000元,因此,从期望损失最小的角度,决策部门应选择方案2.。

(完整版)高三复习高中数学统计案例习题(有详细答案)

(完整版)高三复习高中数学统计案例习题(有详细答案)

2015年高三复习高中数学统计案例习题(有详细答案)一.选择题(共15小题)1.(2014•四川模拟)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.(2014•湖北模拟)某社区现有480个住户,其中中等收入家庭200户、低收入家庭160户,其他为高收入家庭.在建设幸福广东的某次分层抽样调查中,高收入家庭被抽取了6户,则该社区本次被抽取的总户数为()A.20 B.24 C.30 D.363.(2014•湖南一模)从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,8,16,324.(2014•锦州一模)为了研究一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm),根据所得数据画出的样本频率分布直方图如图,那么在这片树木中底部周长大于100cm的株树大约中()A.3000 B.6000 C.7000 D.80005.(2014•许昌二模)在样本频率分布直方图中,共有五个小长方形,这五个小长方形的面积由小到大成等差数列{a n}.已知a2=2a1,且样本容量为300,则小长方形面积最大的一组的频数为()A.100 B.120 C.150 D.2006.(2014•云南模拟)已知一组数据如图所示,则这组数据的中位数是()A.27.5 B.28.5 C.27 D.287.(2014•青浦区三模)已知图1、图2分别表示A、B两城市某月1日至6日当天最低气温的数据折线图(其中横轴n表示日期,纵轴x表示气温),记A、B两城市这6天的最低气温平均数分别为和,标准差分别为s A和s B,则它们的大小关系是()A.>,sA>s B B.>,sA<s BC.<,sA<s BD.<,sA>s B8.(2014•天门模拟)如图是根据变量x,y的观测数据(x i,y i)(i=1,2,…10)得到的散点图,由这些散点图可以判断变量x,y具有相关关系的图是()A.①②B.①④C.②③D.③④9.(2014•邯郸二模)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程,利用下表中数据推断a的值为()零件数x(个)10 20 30 40 50加工时间y(min)62 a 75 81 89A.68.2 B.68 C.69 D.6710.(2013•福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.12011.(2013•陕西)对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为()A.0.09 B.0.20 C.0.25 D.0.4512.(2013•辽宁)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.6013.(2012•成都一模)某小区有125户高收入家庭、280户中等收入家庭、95户低收人家庭.现采用分层抽样的方法从中抽取100户,对这些家庭社会购买力的某项指标进行调查,则中等收入家庭中应抽选出的户数为()A.70 户B.17 户C.56 户D.25 户14.(2012•泸州一模)某校高三680名学生(其中男生360名、女生320名)在学术报告厅听了应考心理讲座,为了解有关情况,学校用分层抽样的方法抽取了一个样本,已知该样本中的女生人数为16名,那么该样本中的男生人数为()A.15 B.16 C.17 D.1815.(2012•绵阳二模)要从60人中抽取6人进行身体健康检查,现釆用分层抽样方法进行抽取,若这60人中老年人和中年人分别是40人,20人,则老年人中被抽取到参加健康检查的人数是()A.2人B.3人C.4人D.5人二.解答题(共15小题)16.为了了解学生的身体发育情况,某校对年满16周岁的60名男生的身高进行测量,其结果如下:身高(m)1.57 1.59 1.60 1.62 1.63 1.64 1.65 1.66 1.68人数 2 1 4 2 3 4 2 7 6身高(m)1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77人数8 7 4 3 2 1 2 1 1(1)根据上表,估计这所学校,年满16周岁的男生中,身高不低于1.65m且不高于1.71m的约占多少?不低于1.63m 的约占多少?(2)将测量数据分布6组,画出样本频率分布直方图;(3)根据图形说出该校年满16周岁的男生在哪一范围内的人数所占的比例最大?如果年满16周岁的男生有360人,那么在这个范围的人数估计约有多少人?17.改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,…,2005年编号为5,数据如下:年份(x) 1 2 3 4 5人数(y) 3 5 8 11 13求y关于x的回归方程=x+所表示的直线必经的点.18.甲、乙两位同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取4次,绘制成茎叶图如图:甲乙9 7 78 1 2 8 535(Ⅰ)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(Ⅱ)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.19.下表是某单位在2013年1﹣5月份用水量(单位:百吨)的一组数据:月份x 1 2 3 4 5用水量y 4.5 4 3 2.5 1.8(Ⅰ)若由线性回归方程得到的预测数据与实际检验数据的误差不超过0.05,视为“预测可靠”,通过公式得,那么由该单位前4个月的数据中所得到的线性回归方程预测5月份的用水量是否可靠?说明理由;(Ⅱ)从这5个月中任取2个月的用水量,求所取2个月的用水量之和小于7(单位:百吨)的概率.参考公式:回归直线方程是:,.20.某校高三数学竞赛初赛考试后,对考生的成绩进行统计(考生成绩均不低于90分,满分为150分),将成绩按如下方式分成六组,第一组[90,100)、第二组[100,110)…,第六组[140,150],如图为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人.(Ⅰ)求第四和第五组频率,并补全频率分布直方图;(Ⅱ)若不低于120分的同学进入决赛,不低于140分的同学为种子选手,完成下面2×2列联表(即填写空格处的数据),并判断是否有99%的把握认为“进入决赛的同学成为种子选手与专家培训有关”.[120,140)[140,150]合计参加培训8 8未参加培训合计 4附:K2=P(K2≥k0)0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001K0 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.82821.为了了解某中学高二女生的身高情况,该校对高二女生的身高进行了一次随机抽样测量,所得数据整理后列出了频率分布表如下:(单位:cm)(1)表中m、n、M、N所表示的数分别是多少?(2)绘制频率分布直方图;(3)估计该校女生身高小于162.5cm的百分比.22.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求x值;(2)(理科)从成绩不低于80分的学生中随机的选取2人,该2人中成绩在90以上(含90分)的人数记为ξ,求ξ的概率分布列及数学期望Eξ.(文)从从成绩不低于80分的学生中随机的选取3人,该3人中至少有2人成绩在90以上(含90分)的概率.23.某网站针对2014年中国好声音歌手A,B,C三人进行网上投票,结果如下观众年龄支持A 支持B 支持C20岁以下200 400 80020岁以上(含20岁)100 100 400(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值.(2)在支持C的人中,用分层抽样的方法抽取6人作为一个总体,从这6人中任意选取2人,求恰有1人在20岁以下的概率.24.某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:组号第一组第二组第三组第四组第五组分组[50,60)[60,70)[70,80)[80,90)[90,100](Ⅰ)求图中a的值;(Ⅱ)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;(Ⅲ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?25.从某实验中,得到一组样本容量为60的数据,分组情况如下:(Ⅰ)求出表中m,a的值;分组5~15 15~25 25~35 35~45频数 6 2l m频率 a 0.05(Ⅱ)估计这组数据的平均数.26.某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.(1)问各班被抽取的学生人数各为多少人?(2)求平均成绩;(3)在抽取的所有学生中,任取一名学生,求分数不小于90分的概率.27.在参加世界杯足球赛的32支球队中,随机抽取20名队员,调查其年龄为25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28.(1)填写下面的频率分布表(2)并画出频率分布直方图.(3)据此估计全体队员在哪个年龄段的人数最多?占总数的百分之几?分组频数频率20.5~22.522.5~24.524.5~26.526.5~28.528.5~30.5合计28.如图是调查某地某公司1000名员工的月收入后制作的直方图.(1)求该公司员工的月平均收入及员工月收入的中位数;(2)在收入为1000至1500元和收入为3500至4000元的员工中用分层抽样的方法抽取一个容量15的样本,员工甲、乙的月收入分别为1200元、3800元,求甲乙同时被抽到的概率.29.某市为了解全市居民日常用水量的分布情况,现采用抽样调查的方式,获得了n位居民某年的月均用水量(单位:t),样本统计结果如图表:(Ⅰ)分别求出x,n,y的值;(Ⅱ)若从样本中月均用水量在[5,6]内的5位居民a,b,c,d,e中任选2人作进一步的调查研究,求居民a被选中的概率.分组频数频率[0,1)25 y[1,2)0.19[2,3)50 x[3,4)0.23[4,5)0.18[5,6] 530.为了分析某次考试数学成绩情况,用简单随机抽样从某班中抽取25名学生的成绩(百分制)作为样本,得到频率分布表如下:分数[50,60)[60,70)[70,80)[80,90)[90,100]频数2 3 9 a 1频率0.08 0.12 0.36 b 0.04(Ⅰ)求样本频率分布表中a,b的值,并根据上述频率分布表,在下表中作出样本频率分布直方图;(Ⅱ)计算这25名学生的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)从成绩在[50,70)的学生中任选2人,求至少有1人的成绩在[60,70)中的概率.参考答案与试题解析一.选择题(共15小题)1.(2014•四川模拟)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样考点:分层抽样方法.专题:阅读型.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.2.(2014•湖北模拟)某社区现有480个住户,其中中等收入家庭200户、低收入家庭160户,其他为高收入家庭.在建设幸福广东的某次分层抽样调查中,高收入家庭被抽取了6户,则该社区本次被抽取的总户数为()A.20 B.24 C.30 D.36考点:分层抽样方法.专题:计算题.分析:根据社区里的高收入家庭户和高收入家庭户要抽取的户数,得到每个个体被抽到的概率,用求到的概率乘以低收入家庭户的户数,得到结果.解答:解:∵区现有480个住户,高收入家庭120户,抽取了6户∴每个个体被抽到的概率是∴该社区本次被抽取的总户数为=24,故选B.点评:本题考查分层抽样方法,这种题目类型是高考题目中一定会出现的题目,运算量不大,是一个必得分题目.3.(2014•湖南一模)从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,8,16,32考点:系统抽样方法.专题:计算题.分析:由系统抽样的特点知,将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,这时间隔一般为总体的个数除以样本容量.从所给的四个选项中可以看出间隔相等且组距为10的一组数据是由系统抽样得到的.解答:解:从50枚某型导弹中随机抽取5枚,采用系统抽样间隔应为=10,只有B答案中导弹的编号间隔为10,故选B.点评:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本.4.(2014•锦州一模)为了研究一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm),根据所得数据画出的样本频率分布直方图如图,那么在这片树木中底部周长大于100cm的株树大约中()A.3000 B.6000 C.7000 D.8000考点:频率分布直方图.专题:概率与统计.分析:在频率分布表中,频数的和等于样本容量,频率的和等于1,每一小组的频率等于这一组的频数除以样本容量.频率分布直方图中,小矩形的面积等于这一组的频率.底部周长小于100cm的矩形的面积求和乘以样本容量即可.解答:解:由图可知:底部周长小于100cm段的频率为(0.01+0.02)×10=0.3,则底部周长大于100cm的段的频率为1﹣0.3=0.7那么在这片树木中底部周长大于100cm的株树大约10000×0.7=7000人.故选C.点评:本小题主要考查样本的频率分布直方图的知识和分析问题以及解决问题的能力.统计初步在近两年高考中每年都以小题的形式出现,基本上是低起点题.5.(2014•许昌二模)在样本频率分布直方图中,共有五个小长方形,这五个小长方形的面积由小到大成等差数列{a n}.已知a2=2a1,且样本容量为300,则小长方形面积最大的一组的频数为()A.100 B.120 C.150 D.200考点:频率分布直方图.专题:概率与统计.分析:根据直方图中的各个矩形的面积代表了频率,各个矩形面积之和为1,求出小长方形面积最大的一组的频率,再根据频数=频率×样本容量,求出频数即可.解答:解:∵直方图中的各个矩形的面积代表了频率,这5个小方形的面积由小到大构成等差数列{a n},a2=2a1,∴d=a1,a3=3a1,a4=4a1,a5=5a1根据各个矩形面积之和为1,则a1+a2+a3+a4+a5=15a1=1∴a1=,小长方形面积最大的一组的频率为a5=5×=根据频率=可求出频数=300×=100故选:A.点评:本题考查了频率、频数的应用问题,各小组频数之和等于样本容量,各小组频率之和等于1.6.(2014•云南模拟)已知一组数据如图所示,则这组数据的中位数是()A.27.5 B.28.5 C.27 D.28考点:众数、中位数、平均数.专题:概率与统计.分析:利用中位数的定义即可得出.解答:解:这组数据为16,17,19,22,25,27,28,30,30,32,36,40的中位数是=27.5.故选:A.点评:本题考查了中位数的定义及其计算方法,属于基础题.7.(2014•青浦区三模)已知图1、图2分别表示A、B两城市某月1日至6日当天最低气温的数据折线图(其中横轴n表示日期,纵轴x表示气温),记A、B两城市这6天的最低气温平均数分别为和,标准差分别为s A和s B,则它们的大小关系是()A.>,sA>s B B.>,sA<s BC.<,sA<s BD.<,sA>s B考点:众数、中位数、平均数.专题:概率与统计.分析:本题可以由折线图上的数据做出两个城市的平均气温和方差,也可以根据两个折线图的高低和变化的趋势即波动的大小,得到结果.解答:解:由折线图可知A市的平均气温是,B市的平均气温是=11.7,由折线图也可以看出B市的气温较高,可以看出B市的气温的变化不大,方差较小;故选D.点评:本题考查了折线图以及平均数和方差的求法;求两组数据的平均值和方差是研究数据常做的两件事,平均值反映数据的平均水平,而方差反映数据的波动大小,从两个方面可以准确的把握数据的情况.8.(2014•天门模拟)如图是根据变量x,y的观测数据(x i,y i)(i=1,2,…10)得到的散点图,由这些散点图可以判断变量x,y具有相关关系的图是()A.①②B.①④C.②③D.③④考点:散点图.专题:计算题.分析:通过观察散点图可以知道,y随x的增大而减小,各点整体呈下降趋势,x与y负相关,u随v的增大而增大,各点整体呈上升趋势,u与v正相关.解答:解:由题图③可知,y随x的增大而减小,各点整体呈下降趋势,x与y负相关,由题图④可知,u随v的增大而增大,各点整体呈上升趋势,u与v正相关.故选D.点评:本题考查散点图,是通过读图来解决问题,考查读图能力,粗略的反应两个变量之间的关系,是不是线性相关,是正相关还是负相关.9.(2014•邯郸二模)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程,利用下表中数据推断a的值为()零件数x(个)10 20 30 40 50加工时间y(min)62 a 75 81 89A.68.2 B.68 C.69 D.67考点:线性回归方程.专题:计算题;概率与统计.分析:由题意,将20代入可得68.2,故可能值为68.解答:解:由题意,y=0.68×20+54.6=68.2,又由表可知加工时间y(min)都是以整数记,故a可能为68,故选B.点评:本题考查了线性回归方程的应用及数学问题与实际问题的转化,属于基础题.10.(2013•福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.120考点:频率分布直方图.专题:图表型.分析:根据频率分布直方图,成绩不低于60分的频率,然后根据频数=频率×总数可求出所求.解答:解:根据频率分布直方图,成绩不低于60(分)的频率为1﹣10×(0.005+0.015)=0.8.由于该校高一年级共有学生600人,利用样本估计总体的思想,可估计该校高一年级模块测试成绩不低于60(分)的人数为600×0.8=480人.故选B.点评:本小题主要考查频率、频数、统计和概率等知识,考查数形结合、化归与转化的数学思想方法,以及运算求解能力.11.(2013•陕西)对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为()A.0.09 B.0.20 C.0.25 D.0.45考点:频率分布直方图.分析:在频率分布表中,频数的和等于样本容量,频率的和等于1,小矩形的面积等于这一组的频率,则所以面积和为1,建立等量关系即可求得长度在[25,30)内的频率即得.解答:解:设长度在[25,30)内的频率为a,根据频率分布直方图得:a+5×0.02+5×0.06+5×0.03=1⇒a=0.45.则根据频率分布直方图估计从该批产品中随机抽取一件,则其为二等品的概率为0.45.故选D.点评:本小题主要考查样本的频率分布直方图的知识和分析问题以及解决问题的能力.统计初步在近两年高考中每年都以小题的形式出现,基本上是低起点题.12.(2013•辽宁)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.60考点:频率分布直方图.专题:概率与统计.分析:由已知中的频率分布直方图,我们可以求出成绩低于60分的频率,结合已知中的低于60分的人数是15人,结合频数=频率×总体容量,即可得到总体容量.解答:解:∵成绩低于60分有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20则成绩低于60分的频率P=(0.005+0.010)×20=0.3,又∵低于60分的人数是15人,则该班的学生人数是=50.故选B.点评:本题考查的知识点是频率分布直方图,结合已知中的频率分布直方图,结合频率=矩形的高×组距,求出满足条件的事件发生的频率是解答本题的关键.13.(2012•成都一模)某小区有125户高收入家庭、280户中等收入家庭、95户低收人家庭.现采用分层抽样的方法从中抽取100户,对这些家庭社会购买力的某项指标进行调查,则中等收入家庭中应抽选出的户数为()A.70 户B.17 户C.56 户D.25 户考点:分层抽样方法.专题:概率与统计.分析:由分层抽样的计算方法:中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得出答案.解答:解:由已知可得中等收入家庭中应抽选出的户数==56.故选C.点评:本题考查了分层抽样,掌握分层抽样的计算方法是解决问题的关键.14.(2012•泸州一模)某校高三680名学生(其中男生360名、女生320名)在学术报告厅听了应考心理讲座,为了解有关情况,学校用分层抽样的方法抽取了一个样本,已知该样本中的女生人数为16名,那么该样本中的男生人数为()A.15 B.16 C.17 D.18考点:分层抽样方法.专题:计算题.分析:设该样本中的男生人数为x,则由分层抽样的定义和方法可得=,由此解得x 的值.解答:解:设该样本中的男生人数为x,则由分层抽样的定义和方法可得=,解得x=18,故选D.点评:本题主要考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.15.(2012•绵阳二模)要从60人中抽取6人进行身体健康检查,现釆用分层抽样方法进行抽取,若这60人中老年人和中年人分别是40人,20人,则老年人中被抽取到参加健康检查的人数是()A.2人B.3人C.4人D.5人考点:分层抽样方法.专题:计算题.分析:先求出每个个体被抽到的概率,用该层的个体数乘以每个个体被抽到的概率,就等于该层应抽取的个体数.解答:解:每个个体被抽到的概率等于=,老年人中被抽取到参加健康检查的人数是40×=4,故选C.点评:本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.二.解答题(共15小题)16.为了了解学生的身体发育情况,某校对年满16周岁的60名男生的身高进行测量,其结果如下:身高(m)1.57 1.59 1.60 1.62 1.63 1.64 1.65 1.66 1.68人数 2 1 4 2 3 4 2 7 6身高(m)1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77人数8 7 4 3 2 1 2 1 1(1)根据上表,估计这所学校,年满16周岁的男生中,身高不低于1.65m且不高于1.71m的约占多少?不低于1.63m 的约占多少?(2)将测量数据分布6组,画出样本频率分布直方图;(3)根据图形说出该校年满16周岁的男生在哪一范围内的人数所占的比例最大?如果年满16周岁的男生有360人,那么在这个范围的人数估计约有多少人?考点:频率分布直方图;频率分布表.专题:概率与统计.分析:(1)根据上表求出身高不低于1.65m且不高于1.71m的频率与不低于1.63m的频率;(2)将测量数据分组,求频数与频率,列出频率分布表,画出频率分布直方图;(3)根据图形得出正确的结论以及估计结果.解答:解:(1)根据上表得,身高不低于1.65m且不高于1.71m的频率是=≈0.567,∴约占总体的56.7%;不低于1.63m的频率是1﹣=1﹣0.15=0.85,约占总体的85%;(2)将测量数据分布6组,∴=0.033,∴组距是0.04,计算频数与频率,列出频率分布表,如下;分组频数频率156.5﹣160.5 7 0.11160.5﹣164.5 9 0.15164.5﹣168.5 15 0.25168.5﹣172.5 22 0.37172.5﹣176.5 6 0.10176.5﹣180.5 1 0.02合计60 1.00画出样本频率分布直方图,如图所示;(3)根据图形知,该校年满16周岁的男生在168.5﹣172.5内的人数所占的比例最大,如果年满16周岁的男生有360人,那么在这个范围的人数估计约为360×0.37=133人.点评:本题考查了频率分布直方图的应用问题,也考查了列表和画图的能力,解题时应根据图中数据进行有关的计算,是基础题.17.改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,…,2005年编号为5,数据如下:年份(x) 1 2 3 4 5人数(y) 3 5 8 11 13求y关于x的回归方程=x+所表示的直线必经的点.考点:回归分析的初步应用.专题:计算题;概率与统计.分析:求平均值,回归直线必过样本点的中心.解答:解:==3,==8,故回归方程=x+所表示的直线必经过点(3,8).点评:本题考查了回归分析,回归直线必过样本点的中心,同时考查了平均数的求法,属于基础题.18.甲、乙两位同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取4次,绘制成茎叶图如图:甲乙9 7 78 1 2 8 535(Ⅰ)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(Ⅱ)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.考点:茎叶图;众数、中位数、平均数;极差、方差与标准差.专题:概率与统计.分析:(I)由茎叶图知甲乙两同学的成绩分别为:甲:82 81 79 88 乙:85 77 83 85.利用“列举法”及其古典概型的概率计算公式即可得出.(II)分别计算出甲乙的平均成绩及其方差即可得出.。

【状元之路】2015版高考数学二轮复习 统计与统计案例专题训练(含解析)

【状元之路】2015版高考数学二轮复习 统计与统计案例专题训练(含解析)

【状元之路】2015版高考数学二轮复习 统计与统计案例专题训练(含解析)一、选择题1.(2014·四川卷)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是( )A .总体B .个体C .样本的容量D .从总体中抽取的一个样本解析 由题目条件知5 000名居民的阅读时间的全体是总体;其中1名居民的阅读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.答案 A2.(2014·重庆卷)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250解析 由分层抽样的特点可知703 500=n3 500+1 500,解之得n =100. 答案 A3.(2014·广东卷)为了解 1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .20解析 由系统抽样的定义知,分段间隔为1 00040=25.故答案为C .答案 C4.为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到频率分布直方图,如图所示,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生人数为b ,则a ,b 的值分别为( )A .0.27,78B .0.27,83C .2.7,84D .2.7,83解析 前4组的频数成等比数列,由图知:第一组的频率是0.01,故第一组有1名学生;第二组的频率为0.03,故第二组有3名;所以第三组有9名,第四组有27名.所以后6组共87名学生,设最后一组人数为x ,则27+x 2×6=87,解得x =2,故公差d =2-275=-5,所以a =27100=0.27,倒数第二组人数为7,则b =87-2-7=78.故选A .答案 A5.对于下列表格所示的五个散点,已知求得的线性回归直线方程为y ^=0.8x -155.则实数m 的值为( A .8 B .8.2 C .8.4D .8.5解析 本题主要考查统计的相关知识,意在考查考生的运算求解能力.依题意得x -=15(196+197+200+203+204)=200,y -=15(1+3+6+7+m)=17+m 5,回归直线必经过样本中心点(x -,y -),于是有17+m5=0.8×200-155,由此解得m =8,选A .答案 A6.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:女由K 2=+b+++算得,K 2=-260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”解析 根据独立性检验的思想方法,正确选项为C . 答案 C 二、填空题7.从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为________.解析 根据系统抽样的特点,共有80个产品,抽取5个样品,则可得组距为805=16,又其中有1个为28,则与之相邻的为12和44,故所取5个依次为12,28,44,60,76,即最大的为76.答案 768.某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生人数是________.解析 因为(0.002+0.006+0.012)×10×200=40,40x =2003 000,所以x =600.故在该次数学考试中成绩小于60分的学生人数是600.答案 600 9.已知某单位有40名职工,现要从中抽取5名职工,将全体职工随机按1~40编号,并按编号顺序平均分成5组.按系统抽样方法在各组内抽取一个号码.(1)若第1组抽出的号码为2,则所有被抽出职工的号码为________;(2)分别统计这5名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,则该样本的方差为________.解析 (1)由题意知被抽出职工的号码为2,10,18,26,34. (2)由茎叶图知5名职工体重的平均数 x -=59+62+70+73+815=69,则该样本的方差s 2=15[(59-69)2+(62-69)2+(70-69)2+(73-69)2+(81-69)2]=62.答案 (1)2,10,18,26,34 (2)62 三、解答题10.(2014·课标全国卷Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数; (2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评价.解 (1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部分评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.11.(2014·课标全国卷Ⅰ)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表); (3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解 (1)(2)质量指标值的样本平均数为x -=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100. 质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.B级——能力提高组1.(2014·郑州一模)PM2.5是指大气中直径小于或等于 2.5微米的颗粒物,也称为可入肺颗粒物.如图是根据某地某日早7点至晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A.甲B.乙C.甲、乙相等D.无法确定解析从茎叶图上可以观察到:甲监测点的样本数据比乙监测点的样本数据更加集中,因此甲地浓度的方差较小.答案A2.(理)(2014·贵州六校联考)某校学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语不优秀的有140人,外语成绩优秀但语文不优秀的有100人.(1)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系?(2)将上述调查所得的频率视为概率,从该校高二年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3个成绩中语文、外语两科成绩至少有一科优秀的个数为X,求X的分布列和期望E(X).解(1)由题意得列联表:外语不优秀因为K 2=160×640×200×600≈16.667>10.828,所以能在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系. (2)由已知数据,语文、外语两科成绩至少一科为优秀的频率是38.则X ~B ⎝ ⎛⎭⎪⎫3,38, P(X =k)=C k 3⎝ ⎛⎭⎪⎫38k ⎝ ⎛⎭⎪⎫583-k,k =0,1,2,3.X 的分布列为E(X)=3×38=98.2.(文)(2014·东北三校联考)某城市随机抽取一年(365天)内100天的空气质量指数API 的监测数据,结果统计如下:(250,300] 式为S =⎩⎪⎨⎪⎧0,0≤w≤100,4w -400,100<w≤300,2 000,w>300,试估计在本年度内随机抽取一天,该天经济损失S 大于200元且不超过600元的概率;(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染.完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?附:解(1)设“在本年内随机抽取一天,该天经济损失S大于200元且不超过600元”为事件A,由200<S≤600,得150<w≤250,频数为39,所以P(A)=39100.(2)根据以上数据得到如下列联表:K2的观测值为85×15×30×70≈4.575>3.841.所以有95%的把握认为空气重度污染与供暖有关.。

广东历年高考——9概率统计小题

广东历年高考——9概率统计小题

历年广东高考之——概率统计小题9.概率统计(2007年高考广东卷第8题)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A.310B.15C.110D.112【解析】从五个球中任取两个共有=10种,而1+2=3,2+4=6,1+5=6,取出的小球标注的数字之和为3或6的只有3种情况,故取出的小球标注的数字之和为3或6的概率为103。

答案:A(2008年高考广东卷第11题)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量。

产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95),由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[55,75)的人数是_______。

【解析】20(0.06510)13⨯⨯=,故答案为13. (2009年高考广东卷第12题)某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。

若用分层抽样方法,则40岁以下年龄段应抽取 人.【解析】由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37. 40岁以下年龄段的职工数为2000.5100⨯=,则应抽取的人数为4010020200⨯=人. 【答案】37, 20 (2010年高考广东卷第12题)某市居民2005~2009年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:根据统计资料,居民家庭年平均收入的中位数是 ,家庭年平均收入与年平均支出有 线性相关关系.答案:13 ˆ3yx =- (2011年高考广东卷第13题)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:小李这5天的平均投篮命中率为 ;用线形回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 .解析:小李这5天的平均投篮命中率1(0.40.50.60.60.4)0.55y =++++= 3x =,1222221()()0.2000.1(0.2)0.01(2)(1)012()niii nii x x y y b x x ==--++++-===-+-+++-∑∑,0.47a y bx =-=∴线性回归方程0.010.47y x =+,则当6x =时,0.53y =∴预测小李该月6号打6小时篮球的投篮命中率为0.53 答案:0.5;0.53(2012年高考广东卷第13题)由整数组成的一组数据,,,,4321x x x x 其平均数和中位数都是2,且标准差等于1,则这组数据为______________________.(从小到大排列)【解析】不妨设1234x x x x ≤≤≤得:231234144,84x x x x x x x x +=+++=⇒+=2222212341(2)(2)(2)(2)420,1,2i s x x x x x =⇔-+-+-+-=⇒-=①如果有一个数为0或4;则其余数为2,不合题意 ②只能取21i x -=;得:这组数据为1,1,3,3(2014年高考广东卷第6题)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本, 则分段的间隔为( )A .20B .25C .40D .50 解析:本题考查系统抽样的特点。

215年高考模拟试题_2015届广东省12大市高三二模数学(理)试题分类汇编11:概率与统计(解析版)

215年高考模拟试题_2015届广东省12大市高三二模数学(理)试题分类汇编11:概率与统计(解析版)
.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD版))某商场销售甲、乙、丙三种不同型号的钢笔,甲、乙、丙三种型号钢笔的数量之比依次为2﹕3﹕4.现用分层抽样的方法抽出一个容量为 的样本,其中甲型钢笔有12支,则此样本容量 ____.
.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD版))某项测量中,测量结果 服从正态分布N(1, 2)( >0),若 在(0,1)内取值的概率为0.4,则 在(0,2)内取值的概率为____
(1)求这15天数据的平均值(结果保留整数).
(2)从这15天的数据中任取3天的数据,记表示其中空气质量达到一级的天数 ,求 的分布列和数学期望;
(3)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中大约有多少天的空气质量达到一级.
.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD版))某市甲、乙两校高二级学生分别有1100人和1000人,为了解两校全体高二级学生期末统考的数学成绩情况,采用分层抽样方法从这两所学校共抽取105名高二学生的数学成绩,并得到成绩频数分布表如下,规定考试成绩在[120,150]为优秀.
.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)某个部件由两个电子元件按图(2)方式连接而成,元件1或元件2正常工作,则部件正常工作,设两个电子元件的使用寿命(单位:小时)均服从正态分布 ,且各个图(2)元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为_________.
(2)甲、乙两人在罚球线各投球二次,求甲恰好比乙多得分的概率.
.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)高三(1)班和高三(2)班各已选出3名学生组成代表队,进行乒乓球对抗赛,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不得参加两盘单打比赛;③先胜两盘的队获胜,比赛结束.已知每盘比赛双方胜的概率均为 .

[vip专享]【步步高】2015届高考数学第一轮复习(典型题+详解)中档题目强化练概率专项基础训练

中档题目强化练——概率A 组 专项基础训练一、选择题1.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( )A. B.C.D.15253545答案 C解析 记取到语文、数学、英语、物理、化学书分别为事件A 、B 、C 、D 、E ,则A 、B 、C 、D 、E 是彼此互斥的,取到理科书的概率为事件B 、D 、E 的概率的和,即P (B ∪D ∪E )=P (B )+P (D )+P (E )=++=.故选C.151515352.在40根纤维中,有12根的长度超过30 mm ,从中任取一根,取到长度超过30 mm 的纤维的概率是( )A. B.C.D .以上都不对3431025答案 B解析 在40根纤维中,有12根的长度越过30mm ,即基本事件总数为40,所求事件包含12个基本事件,且它们是等可能发生的,因此所求事件的概率为P ==,故选B.12403103.设集合P ={b,1},Q ={c,1,2},P ⊆Q ,b 、c ∈{2,3,4,5,6,7,8,9},则b =c 的概率为( )A. B.C.D.18141234答案 C解析 因为P ⊆Q ,所以当b =2时,c 可以取3,4,5,6,7,8,9中任意一个数,共7种情况,当b =c 时,c 可以取3,4,5,6,7,8,9中任意一个数,共7种情况.所以所求概率为=.77+7124. 如图所示,在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,则该阴影部分的面积约为( )A. B.35125C. D.65185答案 B解析 豆子落在阴影区域内的概率是=,设阴影部分的面积为S ,则=,解12020035S S 正方形35得S =,故选B.1255.设a 是甲抛掷一枚骰子得到的点数,则方程x 2+ax +2=0有两个不相等的实数根的概率为( )A. B.C.D.231312512答案 A 二、填空题6.在区间上随机取一个数x ,cos x 的值介于0到之间的概率为________.[-π2,π2]12答案 13解析 ∵-≤x ≤,而0≤cos x ≤,π2π212故-≤x ≤-或≤x ≤,π2π3π3π2∴根据几何概型的概率公式得所求概率为.137.在平面直角坐标系xOy 中,不等式组Error!表示的平面区域为W ,从W 中随机取点M (x ,y ).若x ∈Z ,y ∈Z ,则点M 位于第二象限的概率为________.答案 16解析 画出平面区域,列出平面区域内的整数点如下:(-1,0),(-1,1),(-1,2),(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),共12个,其中位于第二象限的有(-1,1),(-1,2),共2个,所以所求概率P =.168.我们把日均收看体育节目的时间超过50分钟的观众称为“超级体育迷”.已知5名“超级体育迷”中有2名女性,若从中任选2名,则至少有1名女性的概率为________.答案 710解析 用a i 表示男性,其中i =1,2,3,b j 表示女性,其中j =1,2.记“选出的2名全都是男性”为事件A ,“选出的2名有1名男性1名女性”为事件B ,“选出的2名全都是女性”为事件C ,则事件A 包含(a 1,a 2),(a 1,a 3),(a 2,a 3),共3个基本事件,事件B 包含(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共6个基本事件,事件C 包含(b 1,b 2),共1个基本事件.事件A ,B ,C 彼此互斥,事件至少有1名女性包含事件B 和C ,所以所求事件的概率为=.6+13+6+1710三、解答题9.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.解 方法一 (利用互斥事件求概率)记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球},则P (A 1)=,P (A 2)=,P (A 3)=,P (A 4)=,512412212112根据题意知,事件A 1、A 2、A 3、A 4彼此互斥,由互斥事件的概率公式,得(1)取出1球为红球或黑球的概率为P (A 1∪A 2)=P (A 1)+P (A 2)=+=.51241234(2)取出1球为红球或黑球或白球的概率为P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=++=.5124122121112方法二 (利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A 1∪A 2的对立事件为A 3∪A 4,所以取出1球为红球或黑球的概率为P (A 1∪A 2)=1-P (A 3∪A 4)=1-P (A 3)-P (A 4)=1--=.21211234(2)因为A 1∪A 2∪A 3的对立事件为A 4,所以取出1球为红球或黑球或白球的概率为P (A 1∪A 2∪A 3)=1-P (A 4)=1-=.112111210.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.解 (1)甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E 、F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F )共9种.从中选出的两名教师性别相同的结果有(A ,D ),(B ,D ),(C ,E ),(C ,F )共4种.故选出的两名教师性别相同的概率为P 1=.49(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F )共15种.从中选出的两名教师来自同一学校的结果有(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F )共6种.故选出的两名教师来自同一学校的概率为P 2==.61525B 组 专项能力提升1.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是( )A. B.C.D.151445110答案 C解析 从盒中的10个铁钉中任取一个铁钉包含的基本事件总数为10,其中抽到合格铁钉(记为事件A )包含8个基本事件,所以所求的概率为P (A )==.故选C.810452.四边形ABCD 为长方形,AB =2,BC =1,O 为AB 的中点.在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A. B .1-C.D .1-π4π4π8π8答案 B解析 对应长方形的面积为2×1=2,而取到的点到O 的距离小于或等于1时,其区域是以O 为圆心,半径为1的半圆,对应的面积为×π×12=π,那么所求的概率为12121-=1-,故选B.12π2π43.已知x ∈[-1,1],y ∈[0,2],则点P (x ,y )落在区域Error!内的概率为________.答案 38解析 不等式组表示的区域如图所示,阴影部分的面积为×3×212-×3×1=,则所求概率为.1232384.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于的概率为________.S4答案 34解析 如图,当BM =BA 时,△MBC 的面积为,而当P 在M 、A 之间运动时,△PBC14S4的面积大于,而MA =AB ,则△PBC 的面积大于的概率P ==.S 434S 434AB AB 345.某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X 12345fa0.20.45bc(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a 、b 、c 的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.解 (1)由频率分布表得a +0.2+0.45+b +c =1,即a +b +c =0.35.因为抽取的20件日用品中,等级系数为4的恰有3件,所以b ==0.15.320等级系数为5的恰有2件,所以c ==0.1.220从而a =0.35-b -c =0.1.所以a =0.1,b =0.15,c =0.1.(2)从日用品x 1,x 2,x 3,y 1,y 2中任取两件,所有可能的结果为{x 1,x 2},{x 1,x 3},{x 1,y 1},{x 1,y 2},{x 2,x 3},{x 2,y 1},{x 2,y 2},{x 3,y 1},{x 3,y 2},{y 1,y 2}.设事件A 表示“从日用品x 1,x 2,x 3,y 1,y 2中任取两件,其等级系数相等”,则A 包含的基本事件为{x 1,x 2},{x 1,x 3},{x 2,x 3},{y 1,y 2},共4个.又基本事件的总数为10,故所求的概率P (A )==0.4.410。

高考数学总复习专题五概率与统计课件文


题型 2 线性回归分析 散点图与线性回归方程的有关知识,是高考考试的重要知 识点,因此是高考命题的一种重要题型,广东 2007 年高考就出 过关于线性回归方程知识的大题,因此要注意熟练掌握.
例2:(2014 年广东深圳一模)一次考试中,5 名学生的数学、
物理成绩如下表所示:
学生
A1
A2
数学/x 分 89 91
时间 x/时 1 2 3 4
5
命中 y 0.4 0.5 0.6 0.6 0.4 小李这 5 天的平均投篮命中率为____________;用线性回
归分析的方法,预测小李该月 6 号打 6 小时篮球的投篮命中率
为__________.
解析:由题意,得小李这 5 天的平均投篮命中率为
-y =15(0.4+0.5+0.6+0.6+0.4)=0.5,-x =3,
在犯错误的概率不超过 1%的前提下,认为该企业员工“性别”
与“工作是否满意”有关?
参考数据:
P(K2≥k0) k0
0.10 0.050 0.025 0.010 0.001 2.706 3.841 5.024 6.635 10.828
解:(1)从表中可知,30 名员工中有 8 名得分大于 45 分, 所以任选 1 名员工,它的得分大于 45 分的概率是380=145. 所以估计此次调查中,该单位共有 900×145=240 名员工的得分 大于 45 分.
高考数学总复习专题五概率与统 计课件文
题型1 概率与统计 例1:(2013 年广东)从一批苹果中,随机抽取 50 个,其重
量(单位:克)的频数分布表如下:
分组 频数
[80,85) [85,90)
5
10
[90,95) 20

2015届高考数学必考题型过关练:专题八+概率与统计 学生版

第38练“排列、组合”的常考问题题型一排列问题例1即将毕业的6名同学排成一排照相留念,个子较高的明明同学既不能站最左边,也不能站最右边,则不同的站法种数为________.题型二组合问题例2在一次国际抗震救灾中,从7名中方搜救队队员,4名外籍搜救队队员中选5名组成一支特殊搜救队到某地执行任务,按下列要求,分别计算有多少种组队方法.(1)至少有2名外籍搜救队队员;(2)至多有3名外籍搜救队队员.题型三排列与组合的综合应用问题例34个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?总结提高(1)求解排列、组合问题,应按元素的性质或题意要求进行分类,对事件发生的过程进行分步,做到分类标准明确,分步层次清楚,才能保证不“重”不“漏”.(2)关于“至少”“至多”等计数问题,一般需要进行分类,若分类比较复杂,可用间接法,找出其对立事件来求解.1.设集合A={1,2,3,4,5,6},B={4,5,6,7,8},则满足S⊆A且S∩B≠∅的集合S的个数是()A.57 B.56 C.49 D.82.(2013·四川)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是()A.9 B.10 C.18 D.203.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A.3×3! B.3×(3!)3C.(3!)4D.9!4.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种5.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种6.现有12件商品摆放在货架上,摆成上层4件下层8件,现要从下层8件中取2件调整到上层,若其他商品的相对顺序不变,则不同调整方法的种数是()A.420 B.560 C.840 D.20 1607.(2014·达州模拟)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A.232 B.252 C.472 D.4848.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.2799.(2014·四川)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有() A.192种B.216种C.240种D.288种10.方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A.60条B.62条C.71条D.80条11.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答) 12.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有________种.(用数字作答) 13.(2014·北京)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.14.(2014·浙江)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)15.回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则:(1)4位回文数有________个;(2)2n+1(n∈N*)位回文数有________个.16.(2014·雅安模拟)用红、黄、蓝、白、黑五种颜色涂在“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,则所有涂色方法的种数为________.第39练二项式定理的两类重点题型——求和与求展开项题型一用公式求展开项例1若(x+2x2)n展开式中只有第六项的二项式系数最大,则展开式中的常数项是() A.360 B.180 C.90 D.45题型二赋值法求系数之和例2 若(1+2x )2n =a 0+a 1x +a 2x 2+…+a 2n -1x 2n -1+a 2n x 2n ,则a 1+a 3+…+a 2n -1=________.总结提高 (1)(1)在使用通项公式T k +1=C k n an -k b k时,通项公式表示的是第k +1项的值,而不是第k 项的值,展开式中第k +1项的二项式系数C k n 与第k +1项的系数不同.(2)二项展开式中项的系数的和或差可以通过对二项式展开式两端字母的赋值进行解决,一般是对x 赋值为±1或0.另外要注意掌握(1+x )n 展开式中各项系数的绝对值的和就是展开式中各项系数的和,只需令x =1即可.而要求(1-x )n 的展开式中各项系数的绝对值的和,只需令x =-1即可.1.(2014·四川)在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15 D .102.(2014·浙江)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)等于( )A .45B .60C .120D .210 3.设⎝⎛⎭⎫5x -1x n的展开式的各项系数之和为M ,二项式系数之和为N ,若M -N =240,则展开式中x 的系数为( )A .-150B .150C .300D .-3004.设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a 的值为( ) A .0 B .1 C .11 D .125.若(1+x )(2-x )2 011=a 0+a 1x +a 2x 2+…+a 2 011x 2 011+a 2 012x 2 012,则a 2+a 4+…+a 2 010+a 2 012等于( ) A .2-22 011 B .2-22 012 C .1-22 011 D .1-22 0126.设f (x )是⎝⎛⎭⎫x 2+12x 6展开式的中间项,若f (x )≤mx 在区间⎣⎡⎦⎤22,2上恒成立,则实数m 的取值范围是( ) A .(-∞,5) B .(-∞,5] C .(5,+∞) D .[5,+∞) 7.(2014·大纲全国)⎝⎛⎭⎫x y-yx 8的展开式中x 2y 2的系数为________.(用数字作答)8.(2014·山东)若(ax 2+bx )6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.9.(2014·成都模拟)已知(x +a x)6(a >0)的展开式中常数项为240,则(x +a )(x -2a )2的展开式中x 2项的系数为________.10.(1-x )20的二项展开式中,x 的系数与x 9的系数之差为________.11.已知(1+2x )n 的展开式中,某一项的系数是它前一项系数的2倍,而又等于它后一项系数的56.(1)求展开后所有项的系数之和及所有项的二项式系数之和; (2)求展开式中的有理项.12.已知⎝⎛⎭⎫12+2x n.(1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.第40练 概率的两类模型题型一 古典概型问题例1 某班级的某一小组有6位学生,其中4位男生,2位女生,现从中选取2位学生参加班级志愿者小组,求下列事件的概率: (1)选取的2位学生都是男生;(2)选取的2位学生一位是男生,另一位是女生.题型二 几何概型问题例2 (2013·四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A.14 B.12 C.34 D.78题型三 古典概型与几何概型的综合问题例3 已知关于x 的一元二次方程9x 2+6ax -b 2+4=0,a ,b ∈R .(1)若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求已知方程有两个不相等实根的概率;(2)若a 是从区间[0,3]内任取的一个数,b 是从区间[0,2]内任取的一个数,求已知方程有实数根的概率.总结提高 (1)求解古典概型问题的三个步骤①判断本次试验的结果是否是等可能的,设出所求事件A .②分别计算基本事件的总数n 和所求事件A 所包含的基本事件的个数m .③利用古典概型的概率公式P (A )=mn 求出事件A 的概率.若直接求解比较困难,则可以利用间接的方法,如逆向思维,先求其对立事件的概率,进而再求所求事件的概率.(2)几何概型并不限于向平面(或直线、空间)投点的试验,如果一个随机试验有无限多个等可能的基本结果,每个基本结果可以用平面(或直线、空间)中的一点来表示,而所有基本结果对应于一个区域Ω,这时,与试验有关的问题即可利用几何概型来解决.(3)几何概型的概率求解,一般要将问题转化为长度、面积或体积等几何问题.在转化中,面积问题的求解常常用到线性规划知识,也就是用二元一次不等式(或其他简单不等式)组表示区域.几何概型的试验中事件A 的概率P (A )只与其所表示的区域的几何度量(长度、面积或体积)有关,而与区域的位置和形状无关.1.从标有1,2,3,…,7的7个小球中取出一球,记下它上面的数字,放回后再取出一球,记下它上面的数字,然后把两数相加得和,则取得的两球上的数字之和大于11或者能被4整除的概率是( ) A.1649 B.1549 C.27 D.13492.已知实数a ,b 满足⎩⎪⎨⎪⎧0≤a ≤4,0≤b ≤4,x 1,x 2是关于x 的方程x 2-2x +b -a +3=0的两个实根,则不等式0<x 1<1<x 2成立的概率是( ) A.332 B.316 C.532 D.9163.(2014·陕西)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) A.15B.25C.35D.454.有一底面半径为1,高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.13 B.23 C.34 D.145.(2014·泸州模拟)在面积为S 的矩形ABCD 内随机取一点P ,则△PBC 的面积小于S 4的概率是( )A.16B.14C.13D.126.已知点A 在坐标原点,点B 在直线y =1上,点C (3,4),若AB ≤10,则△ABC 的面积大于5的概率是( )A.1924B.13C.524D.5277.一个箱子中有9张标有1,2,3,4,5,6,7,8,9的卡片,从中依次取两张,在第一张是奇数的条件下,第二张也是奇数的概率是________.8.(2013·课标全国Ⅱ)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________.9.(2013·江苏)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为______.10.在日前举行的全国大学生智能汽车总决赛中,某高校学生开发的智能汽车在一个标注了平面直角坐标系的平面上从坐标原点出发,每次只能移动一个单位,沿x 轴正方向移动的概率是23,沿y 轴正方向移动的概率为13,则该机器人移动6次恰好移动到点(3,3)的概率为________.11.已知向量a =(-2,1),b =(x ,y ).(1)若x 、y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.12.某同学参加省学业水平测试,物理、化学、生物成绩获得等级A 和获得等级不是A 的机会相等,且三个学科成绩获得等级A 的事件分别记为W 1,W 2,W 3,获得等级不是A 的事件分别记为W 1,W 2,W 3. (1)试列举该同学在这次水平测试中物理、化学、生物成绩是否为A 的所有可能结果(如三科成绩均为A 记为(W 1,W 2,W 3));(2)求该同学参加这次水平测试获得两个A 的概率;(3)试设计一个关于该同学参加这次水平测试物理、化学、生物成绩情况的事件,使该事件的概率大于85%,并说明理由.第41练 随机变量及其分布列题型一 离散型随机变量的期望例1 2014年男足世界杯在巴西举行,为了争夺最后一个小组赛参赛名额,甲、乙、丙三支国家队要进行比赛,根据规则:每支队伍比赛两场,共赛三场,每场比赛胜者得3分,负者得0分,没有平局,获得第一名的队伍将夺得这个参赛名额.已知乙队胜丙队的概率为15,甲队获得第一名的概率为16,乙队获得第一名的概率为115.(1)求甲队分别战胜乙队和丙队的概率P 1,P 2;(2)设在该次比赛中,甲队得分为ξ,求ξ的分布列和数学期望.题型二 相互独立事件的概率例2 红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6、0.5、0.5.假设各盘比赛结果相互独立. (1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E (ξ).题型三 二项分布问题例3 (2013·山东)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X 的分布列及数学期望.总结提高 (1)离散型随机变量的期望的求解,一般分两步:一是定型,即先判断随机变量的分布是特殊类型,还是一般类型,如两点分布、二项分布、超几何分布等属于特殊类型;二是定性,对于特殊类型的期望可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其分布列然后代入相应公式计算,注意离散型随机变量的取值与概率间的对应.(2)两个事件相互独立是指一个事件的发生与否对另一个事件的发生与否没有关系,在一些问题中我们可以根据问题的实际意义来判断两个事件是否相互独立.(3)对于能够判断为服从二项分布的随机变量,可直接代入公式.1.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.49 B.13 C.29 D.192.(2013·广东)已知离散型随机变量X 的分布列为则X 的数学期望E (X )等于( ) A.32 B .2 C.52D .3 3.(2014·绵阳模拟)甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为( ) A.34 B.23 C.45 D.7104.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a ,b ,c ∈(0,1)),已知他投篮一次得分的数学期望为1(不计其他得分的情况),则ab 的最大值为( ) A.148 B.124 C.112 D.165.盒子中装有形状、大小完全相同的3个红球和2个白球,从中随机取出一个记下颜色后放回,当红球取到2次时停止取球.那么取球次数恰为3次的概率是( ) A.18125 B.36125 C.44125 D.81125 6.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)A.16 B.13 C.12 D.237.将一枚均匀的硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________.8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.9.小王参加了2014年春季招聘会,分别向A ,B 两个公司投递个人简历.假定小王得到A 公司面试的概率为13,得到B 公司面试的概率为p ,且两个公司是否让其面试是独立的.记ξ为小王得到面试的公司个数.若ξ=0时的概率P (ξ=0)=12,则随机变量ξ的数学期望E (ξ)=________.10.(2014·成都模拟)某工厂生产甲、乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如下:(1)(2)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(1)的前提下,①记X 为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X 的分布列和数学期望;②求生产5件芯片乙所获得的利润不少于140元的概率.11.在体育课上,甲、乙、丙三位同学进行篮球投篮练习,甲、乙、丙投中的概率分别为p 1,p 2,25,且p 1+p 2=1,现各自投篮一次,三人投篮相互独立.(1)求三人都没有投进的概率的最大值,并求此时甲、乙投篮命中的概率;(2)在(1)的条件下,求三人投中次数之和X的分布列和数学期望.12.(2013·重庆)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列与期望E(X).。

2015高考数学(理)(北师大版)复习配套-五年高考真题分类汇编:第9章 计数原理、概率、随机变量及其分布汇编

计数原理、概率、随机变量及其分布一、选择题1.【合肥二模】从1到1O 这十个自然数中随机取三个数,则其中一个数是另两个数之和的概率是( )A .B .C .D .2.(白山一模)盒中装有形状,大小完全相同的5个球,其中红色球3个,黄色球2个,若从中随机取出2个球,已知其中一个为红色,则另一个为黄色的概率为( ) A. 35 B. 910 C. 23 D. 253. (兰州诊断)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有( )种A.150B.300C.600D.9005.(白山一模)二项式102x⎛+ ⎝的展开式中的常数项是( )A.第10项B.第9项C.第8项D.第7项6. (海淀期末) 322x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为( )A. 12B. 12-C.6D. 6-7.【云南省第二次高中毕业生复习统一检测】 两位同学一起参加某单位的招聘面试,单位负责人对他们说:“我们要从面试的人中招聘3人,假设每位参加面试的人被招聘的概率相等,你们俩同时被招聘的概率是701”.根据这位负责人的话可以推断出这次参加该单位招聘面试的人有( ) (A )44人 (B )42人(C )22人(D )21人10.【玉溪一中高三上学期月考】6(42)x x -+的展开式中的常数项是 ( ) (A )1 (B )6 (C )15 (D )2012.【哈尔滨市九中高三月考】5(2)x a +的展开式中,2x 的系数等于40,则0(2)ax e x dx +⎰等于( )A. eB. 1e -C. 1D. 1e +13.(德州月考)已知()|2||4|f x x x =++-的最小值是n ,则二项式1()nx x-展开式中2x 项的系数为( )A .15B .15-C .30D .30-14.(青岛期末考试)六张卡片上分别写有数字1,1,2,3,4,5,从中取四张排成一排,可以组成不同的四位奇数的个数为( )A .180B .126C .93D .6015.(烟台期末考试)将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,()P B A 分别是( ) A.6091,12B.12,6091C.518,6091D.91216,1216.【淮南二中高三上学期月考数学】袋中标号为1,2,3,4的四只球,四人从中各取一只,其中甲不取1号球,乙不取2号球,丙不取3号球,丁不取4号球的概率为( ) A. 41 B. 83 C. 2411 D. 242317.【望江四中高三上学期月考】一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有( ) A .12种 B .15种C .17种D .19种18.【合肥二模】已知a=[(sin )2﹣]dx :,则(ax+)9展开式中关于x 的一次项的系数为( )A .﹣B .C . ﹣D .考点: 二项式定理;微积分基本定理. 专题: 计算题;概率与统计.分析: 先求定积分得到a 的值,在二项展开式的通项公式中,令x 的幂指数等于1,求出r 的值,即可求得关于x 的一次项的系数.19.【望江四中高三上学期月考】一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有( ) A .12种 B .15种C .17种D .19种【答案】D20.【望江四中高三上学期月考】在下列命题中, ①“2απ=”是“sin 1α=”的充要条件;②341()2x x+的展开式中的常数项为2;③设随机变量ξ~(0,1)N ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-. 其中所有正确命题的序号是( )A .②B .②③C .③D .①③21.【福建莆田一中段考】三个学校分别有1名、2名、3名学生获奖,这6名学生要排成一排合影,则同校学生排在一起的概率是( ) A .130B .115C .110D .15二、填空题22.【江南十校高三摸底联考】已知集合(){},2,,,A x y x y x y Z =+≤∈集合(){}22,2,,,B x y xy x y Z =+≤∈在集合A 中任取一个元素a ,则a B ∈的概率是 .概率是913. 考点:概率的计算(古典概型).23.【望江四中高三上学期月考】若正整数,,,w x y z 满足!!!!w x y z =++,则数组(),,,w x y z 可能是 .24.【安徽池州一中高三月考】已知3sin a xdx π=⎰,则71x x ax ⎛⎫+ ⎪⎝⎭的展开式中的常数项是_________(用数字作答).25.【福建莆田一中段考】732x⎛⎝的展开式中常数项为 .26.(普陀调研)在nx )3(-的展开式中,若第3项的系数为27,则=n.27.(白山一模)已知实数a,b 满足11,11a b -≤≤-≤≤,则函数f(x)= 32153x ax bx -++的两个极值点都在(0,1)内的概率为______ 【答案】112【解析】不等式11,11a b -≤≤-≤≤表示正方形,其面积为4; 易知2()2f x x ax b '=-+,若函数f(x)=32153x ax bx -++的两个极值点都在(0,1)内,需满足:2440(0)0(1)12001a b f b f a b a ⎧∆=->⎪'=>⎪⎨'=-+>⎪⎪<<⎩, 此约束条件表示的面内(在正方形内的部分)为,故所求的概率为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015广东高考复习数学专项训练5(概率统计)
1.某校有行政人员、教学人员和教辅人员共200人,其中行政人员有24人,现采取分层抽样容量为50的样本,那么行政人员应抽取的人数为 A .3 B .4 C .6 D . 8
2.某小礼堂有25排座位,每排有20个座位.一次心理讲座时礼堂中坐满了学生,会后为了了解有关情况,留下了座位号是15的所有的25名学生测试.这里运用的抽样方法是
A .抽签法
B .随机数表法
C .分层抽样法
D .系统抽样法 3.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时 A .y 平均减少1.5个单位 B .y 平均减少2个单位 C .y 平均增加1.5个单位
D .y 平均增加2个单位
4.在抽查产品的尺寸过程中,将尺寸分成若干组,[a ,b )是其中的一组,抽查出的个体在该组上的频率为m ,该组上的直方图的高为h ,则|a -b |=
A .hm
B .m h
C .h
m
D .m h +
5.右图是2008年某市举办“改革开放三十年”演讲比赛大赛上, 七位评委为某位选手打出的分数的茎叶图,去掉一个最高分和 一个最低分后,所剩数据的平均数和方差分别为 A .5;1.6 B .85;1.6 C .85;0.4
D .5;0.4
6.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是 .
7.200辆汽车经过某一雷达地区,时速 频率分布直方图如图所示,则时速超 过70km/h 的汽车数量为 .
8.在长为10cm 线段AB 上任取一点P , 并以线段AP 为边作正方形,这个正 方形的面积介于25 cm 2与49 cm 2之间 的概率为 .
79
84446793
班别: 姓名: 成绩:
9.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如右表(单位:辆): 按类型分层抽样的方法在这个 月生产的轿车中抽取50辆,其 中有A 类轿车10辆. (1)求z 的值;
(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看
成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率; (3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如
下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,求这8
个数据的方差.
2015广东高考复习数学专项训练5(概率统计)参考答案
9.
(1).设该厂本月生产轿车为n 辆,由题意得,,所以n=2000. z=2000-100-300-150-450-600=400 ………….. 3分 (2) 设所抽样本中有m 辆舒适型轿车,因为用分层抽样的方法在C 类轿车中抽取一个容量为5的样本,所以
,解得m=2也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S 1,S 2;B 1,B 2,B 3,则从中任取2辆的所有基本事件为(S 1, B 1), (S 1, B 2) , (S 1, B 3) (S 2 ,B 1), (S 2 ,B 2), (S 2 ,B 3),( (S 1, S 2),(B 1 ,B 2), (B 2 ,B 3) ,(B 1 ,B 3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件: (S 1, B 1), (S 1, B 2) , (S 1, B 3) (S 2 ,B 1), (S 2 ,B 2), (S 2 ,B 3),( (S 1, S 2),所以从中任取2辆,至少有1辆舒适型轿车的概率为
. ….. 7分 (3)样本的平均数为
则这8个数据的方差为
=0.1925…13分
5010100300
n =+40010005
m
=7
10
1
(9.48.69.29.68.79.39.08.2)98
x =+++++++=222222222
1(9.49)(8.69)(9.29)(9.69)(8.79)(9.39)(99)(8.29)8s ⎡⎤=-+-+-+-+-+-+-+-⎣
⎦。

相关文档
最新文档