平面向量的加法与减法运算

合集下载

向量的加减法运算法则

向量的加减法运算法则

向量的加减法运算法则
在向量的加减法运算中,可以用向量的模量和方向来进行计算,并且有四种基本计算规则,分别是:
1、向量的加法:将两个向量在平面上以具有相同方向性的标准坐标系下把向量放在一起,然后把它们合并在一起,将每一个坐标轴上的分量所对应的向量分量累加在一起即可得到两个向量之和。

2、向量的减法:将两个向量以相反方向放在一起,然后把它们合并在一起,将每一个坐标轴上的分量所对应的向量分量累减在一起即可得到两个向量之差。

3、向量的乘法:将两个向量的模量乘在一起,然后乘以向量夹角的余弦值,即可得到两个向量之积。

4、向量的除法:将一个向量的模量除以另一个向量的模量,然后乘以向量夹角的余弦值,即可得到两个向量的商。

向量的加减法是数学中一个基本的操作,但是要掌握它就必须正确理解向量的含义,以及向量的模量和方向性。

如果运算错误,得到的结果可能是不正确的,因此一定要仔细检查计算的准确性,以保证求得的结果是正确的。

平面向量加、减运算的坐标表示讲解

平面向量加、减运算的坐标表示讲解

平面向量加、减运算的坐标表示讲解
平面向量的加法和减法运算可以通过坐标表示进行讲解。

首先,让我们考虑两个平面向量a和b,它们分别可以表示为(a1, a2)和
(b1, b2),其中a1、a2、b1和b2分别表示向量a和b在x轴和y
轴上的分量。

对于向量的加法,我们可以将两个向量a和b相加得到一个新
的向量c,表示为c = a + b。

这个新向量c的坐标表示为(c1, c2),其中c1等于a1加上b1,c2等于a2加上b2。

换句话说,c1和c2
分别表示了向量a和b在x轴和y轴上的分量之和,从而得到了向
量c的坐标表示。

对于向量的减法,我们可以将两个向量a和b相减得到一个新
的向量d,表示为d = a b。

这个新向量d的坐标表示为(d1, d2),
其中d1等于a1减去b1,d2等于a2减去b2。

同样地,d1和d2分
别表示了向量a和b在x轴和y轴上的分量之差,从而得到了向量
d的坐标表示。

总结起来,平面向量的加法和减法运算的坐标表示可以通过对
应分量的加法和减法来实现,这样可以更直观地理解向量之间的关系。

希望这样的讲解能够帮助你更好地理解平面向量的加减运算。

6.2 平面向量的运算(第一课时)

6.2 平面向量的运算(第一课时)

课文精讲
➢ 导入 1.(重点我)们知道,数能进行运算,因为有了
运算而使数的威力无穷.那么,向量是否也 能像数一样进行运算呢?人们从向量的物理 背景和数的运算中得到启发,引进了向量的 运算.本节我们就来研究平面向量的运算, 探索其运算性质,体会向量运算的作用.
课文精讲
➢ 向量加法运算及其几何意义 1.(重点)
平面向量的运算 (第一课时)
授课教师:赵强
学习目标
1.借助实例和平面向量的几何意义,掌握平 面向量的加法、减法运算及其运算规律. (重点)
2.理解平面向量的加法、减法运算的几何意 义.
温故知新
向量的实际背景与概念




向量的几何表示



相等向量与共线向量
既有大小又有方 向的量叫做向量
几何表示 向量的模 零向量 单位向量

量 向量加法的运算律 的
运 算
向量减法的定义
向量减法的几何意义
再见
(1)两个法则的使用条件不同. 三角形法则适用于任意两个非零向量 求和,平行四边形法则只适用于两个 不共线的向量求和.
课文精讲
➢ 向量加法运算及其几何意义 1.(重点)
(2)当两个向量不共线时,两个法则是一
致的.如图所示,在□ABCD中,
AC AB AD (平行四边形法则)
又因为BC AD,
O
aA
b
B
课文精讲
例1: 如图,已知向量a,b,求作向量 a b.
1.(重点)
b
解: 作法2:在平面内任取一点O, a
□ 以OA,OB为邻边作 OAa,OBb, OACB,
连接OC,则
Oa

平面向量的概念与运算

平面向量的概念与运算

平面向量的概念与运算平面向量是线性代数中的重要概念,广泛应用于数学、物理、工程等领域。

本文将从平面向量的定义开始,介绍平面向量的概念以及基本运算,包括向量的加法、减法、数乘等,以便读者对平面向量有更深入的理解。

一、平面向量的定义平面向量是具有大小和方向的量,常用有向线段表示。

在平面直角坐标系中,平移一个向量的有向线段,可以得到一个与原始向量大小和方向相同的向量。

平面向量通常用小写粗体字母表示,如a、b。

二、平面向量的表示平面向量可以用其在平面直角坐标系下的坐标表示。

设向量a的终点坐标为(x₁, y₁),起点坐标为(0, 0),则向量a可以表示为a = x₁i +y₁j,其中i和j分别表示x轴和y轴的单位向量。

三、平面向量的加法平面向量的加法遵循平行四边形法则。

设有向线段AB表示向量a,有向线段BC表示向量b,连接向量a的起点与向量b的终点,该有向线段表示向量a + b。

其数学表示为a + b = (x₁ + x₂)i + (y₁ + y₂)j,其中(x₁, y₁)为向量a的坐标,(x₂, y₂)为向量b的坐标。

四、平面向量的减法平面向量的减法可以通过将被减向量取反并进行加法运算得到。

设有向线段AB表示向量a,有向线段BC表示向量b的负向量,连接向量a的起点与向量b的终点,该有向线段表示向量a - b。

其数学表示为a - b = (x₁ - x₂)i + (y₁ - y₂)j,其中(x₁, y₁)为向量a的坐标,(x₂,y₂)为向量b的坐标。

五、平面向量的数乘平面向量的数乘是指将向量的长度进行缩放。

设k为一个实数,向量a乘以k后得到的向量记为ka,则ka = k(x₁i + y₁j) = (kx₁)i +(ky₁)j,其中(x₁, y₁)为向量a的坐标。

六、平面向量的数量积平面向量的数量积又称为内积或点积,用符号·表示。

设有向线段AB表示向量a,有向线段BC表示向量b,则a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a和向量b的长度,θ是向量a和向量b之间的夹角。

【课件】向量的加法运算 向量的减法运算课件高一下学期数学人教A版(2019)必修第二册

【课件】向量的加法运算 向量的减法运算课件高一下学期数学人教A版(2019)必修第二册
第六章 平面向量及其应用
6.2.1 向量的加法运算 6.2.2 向量的减法运算
教学目标
借助实例和平面向量的几何意义,掌握平面向量
1
的加法、减法运算及其运算规律.
2 理解平面向量的加法、减法运算的几何意义.
(1)向量的加法:求两个向量和的运算, 叫做向量的加法.
对于零向量与任意向量a ,规定a+0 0 a a .
本节课学习了平面向量的加法、减 法运算.
解析:由题意和图形可知 BAC 90 ,因为| AB | 300 ,| BC | 300 2 ,
所以| AC | 300 ,因为 ABC 45 ,A 地在 B 地南偏东 30°的方向处. 所以 C 地在 B 地南偏东 75°的方向处. 故飞机从 B 地向 C 地飞行的方向为南偏东 75°.
9.化简下列各式: (1) ( AB MB) (OB MO) . (2) AB AD DC .
B a-b
b Oa A
例 1 长江两岸之间没有大桥的地方,常常通过轮渡进行运 输.如图,一艘船从长江南岸 A 地出发,垂直于对岸航行, 航行速度的大小为 15 km/h,同时江水的速度为向东 6 km/h. (1)用向量表示江水速度、船速以及船实际航行的速度; (2)求船实际航行的速度的大小(结果保留小数点后一位)与方向(用与江水速度 间的夹角表示,精确到 1°).
(2)向量加法的三角形法则:已知非零向量a,b ,在平面内
任取一点 A ,作 AB a , BC b ,则向量 AC 叫做a 与b 的和,
记作 a b ,即 a b AB BC AC .如图.
C
b a+b
Aa
B
(3)向量加法的平行四边形法则:已知两个不共线向量a,b , 作 AB a , AD b ,以 AB , AD 为邻边作 ABCD ,则对角线 上的向量 AC a b .如图.

平面向量加减法口诀

平面向量加减法口诀

向量的加法口诀: 首尾相连,首连尾,方向指向末向量。

以第一个向量的起点为起点,以第二个向量的终点为终点的向量是两向量的和向量。

二、向量的减法两向量做减法运算,图像如下图所示:向量的减法口诀: 首首相连,尾连尾,方向指向被减向量。

以第一个向量的终点为起点,以第二个向量的终点为终点的向量是两向量的差向量。

向量的学习是高一数学必修四第二章的内容,要求同学们会向量的基本运算,其中就包括加法、减法、数乘。

要求大家能根据运算法则解决基本的向量运算,学会运用图像解决向量加减法,向量的数乘等问题。

向量的相关题目难度也不是很大,只要大家认真学习,认真做好笔记,认真做做题目,总结做题规律,那么当我们遇到类似题目时就会似曾相识,做起来也很顺手,再细心点的话,得满分也没有问题。

学习方法很多,重要的事找到适合自己的方法,当然适合自己方法就是最好的方法。

附一;三角形定则解决向量加减的方法将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。

注:两个向量相减,则表示两个向量起点的字母必须相同;差向量的终点指向被减向量的终点。

平行四边形定则解决向量加法的方法实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的λ∣倍.数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ 3、向量的的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.向量的数量积的坐标表示:a·b=x·x'+y·y'.向量的数量积的运算律a·b=b·a(交换律);(λa)·b=λ(a·b)(关于数乘法的结合律);(a+b)·c=a·c+b·c(分配律);向量的数量积的性质a·a=|a|的平方.a⊥b 〈=〉a·b=0.|a·b|≤|a|·|b|.向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.3、|a·b|≠|a|·|b|4、由 |a|=|b| ,推不出 a=b或a=-b.4、向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.。

7.2-平面向量的加法、减法和数乘向量


a
交换律:
ab
总结: 向量的加法满足交换律与结合律。
ba
结合律:
a b c a b c
典例分析
例2:如图所示,已知 a, b,用向量加法的三角形 法则 作和向量a b。
a b
(1)
解析: 作AB a, BC b;
A B
C
a b AB BC AC
D O A B
C
练习3
如图所示,已知O是正六边形ABCDEF的中心, 则:
A F O E
( 1 ) OA OC ______ OB ;
(2) BC EF ______ 0 ;
B
0 ; ( 3) OA FE ______
D C (4) AB BC CD DE EF FA ________ 0 。
(1)用向量加法的平行四边形法则作出 箭尾所受两个方向力F1、F2的合力F。 (2)如果力F1、F2的大小为100N,它 们的夹角为90°,则它们的合力F的大小 是多少?
典例分析
例3:如图所示,已知a, b,用向量加法的平行四边 形法则作和向量a b。
b
a
A
C
D
B
在平面内任取一点 A, 作AB b, AC a, 解: 以AC、AB为邻边作平行四边形 ABDC,
(3)b / / a(a 0)是b a成立的什么条件?
成立 充要
41
向量共线定理:
向量a (a 0)与b共线, 当且仅当有唯一一个实数 , 使b a.
即a与b共线
b a (a 0)
思考:1) a 为什么要是非零向量?

平面向量的线性运算

平面向量的线性运算平面向量是解决平面几何问题的重要工具。

平面向量之间可以进行线性运算,包括加减法、数量乘法和应用特殊运算规则的向量乘法。

本文将详细介绍平面向量的线性运算及其应用。

一、平面向量的基本概念在平面直角坐标系中,向量由两个有序实数对表示,分别表示向量在 x 轴和 y 轴上的分量。

设向量 a 的分量为 (a1, a2),则向量 a 可表示为 a = a1i + a2j,其中 i 和 j 分别是 x 轴和 y 轴的单位向量。

二、平面向量的加法设有两个平面向量 a = a1i + a2j, b = b1i + b2j,其和为 c = (a1 +b1)i + (a2 + b2)j。

向量的加法满足交换律、结合律和零向量的存在性。

三、平面向量的减法设有两个平面向量 a = a1i + a2j, b = b1i + b2j,其差为 c = (a1 - b1)i + (a2 - b2)j。

向量的减法也满足交换律和结合律。

四、平面向量的数量乘法设有平面向量 a = a1i + a2j,实数 k,k与向量 a 的数量积为 k * a =ka1i + ka2j。

数量乘法满足结合律、分配律和对数乘法的分布律等性质。

五、平面向量的线性运算应用1. 向量共线与平行若有两个非零向量 a 和 b,当且仅当存在实数 k,使得 a = kb,称向量 a 和 b 共线。

若向量 a 和 b 共线且方向相同或相反,则称向量 a 和b 平行。

2. 向量的线性组合设有向量组 a1, a2, ..., an,其中每个向量的形式为 ai = ai1i + ai2j。

对于任意给定的实数 k1, k2, ..., kn,向量 b = k1a1 + k2a2 + ... + knan 称为向量组 a1, a2, ..., an 的线性组合。

3. 向量的共面性若存在不全为零的实数 k1, k2, k3,使得 k1a1 + k2a2 + k3a3 = 0,称向量组 a1, a2, a3 共面。

平面向量的加法减法与数乘运算课件


数乘的运算性 质
结合律
$\lambda(\mu\mathbf{a})=(\lambda\mu)\mathbf{a}$。
分配律
$\lambda(\mathbf{a}+\mathbf{b})=\lambda\mathbf{a}+\lambd a\mathbf{b}$。
反交换律
$\lambda\mathbf{a}\cdot\mathbf{b}=\lambda(\mathbf{a}\cdot \mathbf{b})$。
2023
PART 04
平面向量的加法减法与数 乘运算的应用
REPORTING
在物理学中的应用
力的合成
电磁学中的向量表示
在物理中,向量加法可以应用于力的 合成,例如两个力的向量和可以表示 为它们的加法运算。
在电磁学中,向量加法可以用于表示 电磁场中的向量,例如电场强度和磁 场强度。
速度和加速度
速度和加速度是物理学中重要的向量 概念,通过向量加法可以计算出物体 在不同方向上的速度和加速度。
详细描述
2. 这类题目需要学生灵活运用所学知识,进行深入思考 和细致计算。
2023
REPORTING
THANKS
感谢观看
求解向量与轴的夹角
通过数乘运算可以求得向量与 轴之间的夹角。
投影问题
通过数乘运算可以求得一个向 量在另一个向量上的投影。来自 2023PART 03
平面向量的加法减法与数 乘运算的几何意 义
REPORTING
平面向量的几何意 义
01
02
03
04
向量表示为有向线段
向量的起点为线段的起点,终 点为线段的终点
向量的长度和方向

平面向量的加减法运算教学设计

平面向量的加减法运算教学设计以平面向量的加减法运算为主题的教学设计第一节:引入引导学生回顾平面向量的定义和性质,强调向量的表示方法和运算规则。

简要介绍平面向量的加法和减法运算,以及它们的几何意义。

第二节:平面向量的加法运算1.1 向量的加法定义向量的加法是指将两个向量的对应分量相加得到一个新的向量。

引导学生根据定义进行向量的加法运算。

1.2 加法运算的性质向量的加法满足交换律、结合律和零向量的存在性。

通过示例和练习题让学生理解和应用这些性质。

1.3 加法运算的几何意义向量的加法可以用平行四边形法则来解释,即将两个向量的起点相连,得到一个新的向量,它的起点和终点分别为原向量的起点和终点。

第三节:平面向量的减法运算2.1 向量的减法定义向量的减法是指将第二个向量取负后与第一个向量进行加法运算。

引导学生根据定义进行向量的减法运算。

2.2 减法运算的性质向量的减法满足减去一个向量等于加上其相反向量,即a-b=a+(-b)。

通过示例和练习题让学生理解和应用这个性质。

2.3 减法运算的几何意义向量的减法可以用平行四边形法则来解释,即将第二个向量的起点与第一个向量的终点相连,得到一个新的向量,它的起点和终点分别为原向量的起点和第二个向量的终点。

第四节:应用练习通过一些实际问题和练习题,让学生应用所学的平面向量的加减法运算解决几何和物理问题。

可以设计一些场景,如力的合成、位移的计算等。

第五节:总结与拓展对平面向量的加减法运算进行总结,强调运算的规则和性质,以及几何意义。

鼓励学生进一步拓展应用平面向量的知识,如向量的数量积和向量的夹角等。

通过以上教学设计,可以帮助学生系统掌握平面向量的加减法运算,理解其几何意义,并能够应用于实际问题的求解。

同时,通过练习和拓展,培养学生的问题解决能力和数学思维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量的加法与减法运算平面向量是在平面内有大小和方向的线段,用箭头表示,表示为AB → 或a →。

在平面向量的运算中,加法和减法是两个基本操作。

一、平面向量的加法运算
平面向量的加法运算是指将两个向量的对应部分相加,得到一个新的向量。

设有两个向量AB → 和CD →,它们的和为E →。

要计算两个向量的和,可以通过构造一个平行四边形法则或使用分量法。

1. 平行四边形法则
根据平行四边形法则,将向量AB → 和CD → 的起点连接起来,形成一个平行四边形。

从共同的起点开始,以两个向量的尾部作为相邻边,将平行四边形的对角线作为向量E → 的位移。

2. 分量法
根据分量法,将向量AB → 和CD → 分解为平行于x轴和y轴的分量。

假设AB → 的终点坐标为(Ax, Ay),CD → 的终点坐标为(Cx, Cy),向量E → 的终点坐标为(Ex, Ey)。

则E → 的x轴分量为Ex = Ax + Cx,y轴分量为Ey = Ay + Cy。

二、平面向量的减法运算
平面向量的减法运算是指将一个向量减去另一个向量,得到一个新的向量。

设有两个向量AB → 和CD →,它们的差为E →。

要计算两个向量的差,可以通过将减去的向量CD → 取负数,然后与AB → 求和。

即E → = AB → + (-CD →)。

根据加法运算的方法,使用平行四边形法则或分量法来计算向量的差。

三、向量的性质
1. 交换律
向量的加法满足交换律,即AB → + CD → = CD → + AB →。

向量的减法不满足交换律,即AB → - CD → ≠ CD → - AB →。

2. 结合律
向量的加法满足结合律,即(AB → + CD →) + EF → = AB → + (CD → + EF →)。

向量的减法不满足结合律,即(AB → - CD →) - EF → ≠ AB → - (CD → - EF →)。

3. 零向量
对于任意向量AB →,都有AB → + 0 → = AB →。

零向量是一个长度为零的向量,它的起点和终点重合。

4. 负向量
对于任意向量AB →,都存在一个负向量-AB →,使得AB → + (-AB →) = 0 →。

负向量的大小和方向与原向量相同,但方向相反。

四、应用举例
1. 位移向量
在平面上,当一个物体从一个位置移动到另一个位置时,可以使用位移向量来描述这个移动过程。

假设物体从点A移动到点B,位移向量AB → 就表示了这个移动的方向和距离。

如果物体从点B又移动回到点A,位移向量BA → 就表示了反向的移动。

2. 力的合成
在力学中,当多个力作用于同一个物体时,可以使用平面向量的加法运算来求得合力。

假设有两个力F1 → 和F2 →,它们的合力F → 可以通过将它们的对应分量相加得到。

3. 平面图形
在平面几何中,可以使用向量来研究平面图形的性质。

例如,在研究三角形时,可以通过向量来表示三角形的边,使用向量的加法和减法来研究三角形的性质。

五、小结
平面向量的加法和减法运算是在平面上进行向量运算的基本操作。

通过平行四边形法则或分量法,可以计算两个向量的和或差。

在实际应用中,向量的加法和减法经常用于描述物体的位移、力的合成以及研究平面图形的性质。

熟练掌握平面向量的加法和减法运算对于解决相关问题非常重要。

相关文档
最新文档