数学题找规律的方法
初中数学规律题汇总(全部有解析)

初中数学规律题拓展研究“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
三年级找规律填数字

三年级找规律填数字引言在数学学习中,找规律填数字是培养孩子逻辑思维和数学思维的一种重要方法。
通过找规律来填写数字能够帮助孩子发现数字之间的内在关系,并进行推理和预测。
本文将介绍三年级数学找规律填数字的方法和常见题型,帮助孩子提高数学解题能力。
一、找规律填数字的方法找规律填数字的方法主要包括观察比较、数列分析和数形结合三个方面。
下面将详细介绍这几种方法。
1. 观察比较法观察比较法是最基本的找规律填数字的方法。
通过观察数列中数字的变化规律,进而填写下一个数字。
常见的观察比较法包括: - 顺序增加:数列中的数字按照一定的顺序递增,可以通过加法或乘法来找出规律。
- 顺序减少:数列中的数字按照一定的顺序递减,可以通过减法或除法来找出规律。
- 奇数偶数交替:数列中的数字按照奇偶数交替出现,可以通过判断奇偶性来找出规律。
2. 数列分析法数列分析法是通过将数列中的数字进行拆解、分类、计算等操作,找到其中的规律。
常见的数列分析法包括: - 相邻数之差:观察数列中相邻两个数的差值,判断差值是否有规律,进而填写下一个数字。
- 数字拆解:将数列中的数字进行拆解,例如将一个两位数拆成十位数和个位数,判断十位数和个位数之间是否有规律。
-数列分类:将数列中的数字按照某种规律进行分类,例如按照奇偶性、个位数、十位数等分类,观察每个分类中的数字是否有规律。
3. 数形结合法数形结合法是将数列中的数字与图形进行结合,找出数字和图形之间的关联规律。
常见的数形结合法包括: - 数字图形:观察数列中的数字表示的图形,判断图形之间的关系是否有规律,进而填写下一个数字。
- 图形模式:观察数列中图形排列的模式,例如图形的大小、颜色、形状等特征,判断模式是否有规律。
二、常见的三年级找规律填数字题型三年级的找规律填数字题型多种多样,下面将介绍几种常见的题型,并提供解题思路。
1. 顺序增加或减少题型这种题型要求根据数列中数字的变化规律填写下一个数字。
二年级数学下册重要知识点:找规律填数的方法

找规律填数知识导航找规律在奥数题目中属于常见题型,主要分为找规律填图和找规律填数。
在之前的课程里面我们已经接触过这一类型的题,这一讲我们继续加深对这一类型题目的认识和理解。
小朋友们,要认真观察、勇敢地去探索规律,相信你们都能找出空缺的数。
精典例题例1:找规律填数。
(1)1,3,5,7,(),()。
(2)65,60,55,50,(),()。
(3)1,10,100,1000,(),()。
(4)1,2,4,7,11,(),()。
(5)1,2,4,8,(),()。
(6)1,3,4,7,11,(),(),()。
思路点拨第(1)题,从左往右依次增加;第(2)题从左往右依次减少;第(3)题,从左往右依次在末尾添加一个,或者说依次乘;第(4)题从左往右,相邻两个数相差1,2,3,4……第(5)题中,1×2=2,2×2=4,4×2=8,所以,8×2=……第(6)题中,从第三个数开始,每个数都等于前面两个数的和。
模仿练习模仿练习仔细观察每组图的规律,在空白处填合适的数。
(1)(2)例3:根据下表中的排列规律,在空格里填上适当的数。
思路点拨分析表格中的数可以发现,按行看,12+6=18,8+7=15,也就是说每一行中间的数等于两边的两个数的和。
依此规律可以填出空格中的数。
模仿练习根据下表中的排列规律,在空格里填上适当的数。
(1)(2)学以致用A级1. 仔细观察每组数的规律,在括号里填上适当的数。
(1)2、6、10、14、( )、22、26(2)3、6、9、12、( )、18、21(3)33、28、23、( )、13、( )、3(4)55、49、43、( )、31、( )、192. 仔细观察每组数的规律,在括号里填上合适的数。
(1)1、2、4、7、( )、16、22(2)10、11、13、16、20、( )、31(3)9、11、15、21、29、( )、51(4)3、4、6、10、18、( )、663.找规律填数。
初中数学 数列的找规律

初中数学数列的找规律:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b 为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n 位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是.解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2(三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196,…?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?例2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)例3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差下面是常用的一些求和公式:。
初中数学规律题(全部有解析)

规律题应用知识汇总“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学找规律常见公式

一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n 位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,,144,196,… (第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律(2)第二、三组分别跟第一组有什么关系(3)取每组的第7个数,求这三个数的和2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。
初中数学规律题题型与解题基本方法(初三)
初中数学规律题题型与解题方法(一)数列或数式的找规律一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
强调:均匀变化的数列规律可用待定系数法来求一次函数的解析式来求解。
例:4、10、16、22、28、……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2 (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17、……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1。
所以,第n位数是2+ n2-1= n2+1。
此解法虽然较烦,却是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出。
强调:增幅不均匀变化的数列规律可尝试用待定系数法来求二次函数的解析式来求解,一定要验证。
(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
数学找规律方法怎么教五年级小孩数学
数学找规律⽅法怎么教五年级⼩孩数学找规律是数学学习题型的⼀种,找规律要求有较强的思维逻辑,下⾯就是⼩编给⼤家带来的数学找规律⽅法,希望⼤家喜欢!数学找规律⽅法代数中的规律“有⽐较才有鉴别”。
通过⽐较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题⽬,通常按照⼀定的顺序给出⼀系列量,要求我们根据这些已知的量找出⼀般规律。
揭⽰的规律,常常包含着事物的序列号。
所以,把变量和序列号放在⼀起加以⽐较,就⽐较容易发现其中的奥秘。
例1 观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是___。
”分析:解答这⼀题,可以先找⼀般规律,然后使⽤这个规律,计算出第100个数。
我们把有关的量放在⼀起加以⽐较:给出的数:0,3,8,15,24,……。
序列号: 1,2,3, 4, 5,……。
平⾯图形中的规律:图形变化也是经常出现的。
作这种数学规律的题⽬,都会涉及到⼀个或者⼏个变化的量。
所谓找规律,多数情况下,是指变量的变化规律。
所以,抓住了变量,就等于抓住了解决问题的关键。
2数学找规律⽅法⼀从具体的.实际的恩提出发,观察各个数量的特点及相互之间的变化规律。
由此及彼,合理联想,⼤胆猜想善于类⽐,从不同事物中发现相似或相同点;总结规律,得出结论,并验证结论正确与否;在探索规律的过程中,要善于变化思维⽅式,做到事半功倍探索规律是⼀种思维活动,及思维从特殊到⼀半的跳跃,需要有⼀定的归纳与综合能⼒。
当以知的数据有很多组时,需要仔细观察,反复⽐较,才能准确找出规律。
需⽤到的数学⽅法有:分类讨论法.转化法.归纳法.通过观察.分析.综合.归纳.概括.推理.判断等⼀系列探索活动,解答有关探索规律性问题的特点是问题的结论或条件不直接给出,需要逐步确定需要的结论和条件。
解答这类题的关键是认真审题,掌握规律.合理推测.认真验证,从⽽得出问题的正确结论。
数学找规律⽅法3数学找规律⽅法⼆标出序列号:找规律的题⽬,通常按照⼀定的顺序给出⼀系列量,要求我们根据这些已知的量找出⼀般规律。
二年级数学下册重要知识点:找规律填数的方法
找规律填数知识导航找规律在奥数题目中属于常见题型,主要分为找规律填图和找规律填数。
在之前 的课程里面我们已经接触过这一类型的题,这一讲我们继续加深对这一类型题目 的认识和理解。
小朋友们,要认真观察、勇敢地去探索规律,相信你们都能找出 空缺的数。
精典例题例 1 :找规律填数 1) 1, 3, 5, 7, ( ), ( )。
2) 65 ,60 55,50 , ( ), ( )。
3) 1, 10, 1 00,1000 ,( ) ,( )。
4) 1, 2, 4, 7,11, ( ), ( )。
5) 1, 2, 4, 8,( ), ( )。
6) 1, 3, 4, 7, 11, ( ), ( ),( )思路点拨第( 1 )题,从左往右依次增加 ;第( 2 )题从左往右依次减少 ;第( 3 )题,从左往右依次在末尾添加一个 ,或者说依次乘 ;第( 4)题从左往右, 相邻两个数相差 1,2,3,4 ⋯⋯第( 5 )题中, 1×2= 2,2 ×2= 4,4 ×2=8,所以, 8×2 =⋯⋯第( 6)题中,从第三个数开始,每个数都等于前面两个数的和。
3)模仿练习找规律填数。
1)2,4,6,8,())。
2)1,5,9,13 ,(),()。
3)2,20,200 ,2000,(),()。
4)1,2,2,4,3,6,4,8 ,(),()。
5)49, 42 ,35 ,()(),()。
6)4,6,9,13 ,(),24 ,()。
7)10081 ,64 ,(),36 ,25 ,(), 9,4, 1例2 :仔细观察下列组图,在每一组的“?”处填上合适的数3)4)5)思路点拨第( 1)题中, 3+4+8=15 ;第( 2)题中, 2×3+1=7;第( 3)题中,3×4 + 5= 17 ;第( 4)题中 4×5 - 5 = 20 ;第( 5 )题中, 5+3+7=15,15 +15=30 。
六年级数学找规律题型总结
六年级数学找规律知识点1.算术中的规律【知识点归纳】在数学算式中探索规律,应认真观察算式的特点,再观察结果的特点,进而,根据规律填出这一类算式的结果.例如:1×1=1;11×11=121;111×111=12321;1111×1111=1234321;通过观察发现:每个算式中,两个因数各个数位上的数字都是1,且个数相同.积里的数字呈对称形式,且前半部分是从1开始,写至某个数字(此数即因数的位数),积的后半部分再顺次写出.①一个数乘11,101的规律一个数乘11的规律:可采用“两头一拉,中间相加”的方法计算.如:123×11=1353一个数乘101的规律:可采用“两两一位,隔位一加”的方法计算.如:58734×101=5932134②一个数乘5,15,25,125的规律一个数乘5,转化为一个数乘10,然后,再除以2.如:28×5=28×10÷2=280÷2=140这种情况可以概括为“添0求半”.根据同级运算可交换位置的性质,也可以先除以2,再乘10.如:28×5=28÷2×10=14×10=140.即“求半添0”的方法.一个数乘15,可分解为先用这个数乘10,再加上这个数乘5,乘5的方法同上.如:264×15=264×10+264×5=2640+264×10÷2=2640+2640÷2=2640+1320=3960.这种情况可以概括为“添0补半”一个数乘125,因为125×8=1000,所以,可将一个数乘125转化为先乘1000,再除以8,或先除以8,再乘1000.如:864×125=864×1000÷8=864000÷8=108000.常考题型:例1:4÷11的商用循环小数表示,则小数点后面第20位数字是()A、0B、3C、7D、6例2:按规律计算.3+6+12=12×2﹣3=213+6+12+24=24×2﹣3=453+6+12+24+48=48×2﹣3=933+6+12+24+ (192)a+2a+4a+8a+16a+…+1024a=.知识点2.数列中的规律【知识点归纳】按一定的次序排列的一列数,叫做数列.(1)规律蕴涵在相邻两数的差或倍数中.例如:1,2,3,4,5,6…相邻的差都为1;1,2,4,8,16,32…相邻的两数为2倍关系.(2)前后几项为一组,以组为单位找关系,便于找到规律.例如:1,0,0,1,1,0,0,1…从左到右,每四项为一组;1,2,3,5,8,13,21…规律为,从第三个数开始,每个数都是它前面两个数的和.(3)需将数列本身分解,通过对比,发现规律.例如,12,15,17,30,22,45,27,60…在这里,第1,3,5…项依次相差5,第2,4,6…项依次相差15.(4)相邻两数的关系中隐含着规律.例如,18,20,24,30,38,48,60…相邻两数依次差2,4,6,8,10,12…常考题型:例1:一列数1,2,2,3,3,3,4,4,4,4,….中的第35个数为()A、6B、7C、8D、无答案例2:一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子.那么,从一对刚出生的兔子开始,一年后可变成对兔子.知识点3.“式”的规律【知识点归纳】把一些算式排列在一起,从中发现规律,也是探索规律的重要内容.在探索“式”的规律时,要从组成“式”的要素中去探索.常考题型:例:观察1+3=4 4+5=9 9+7=16 16+9=25 25+11=36这五道算式,找出规律,则下一道算式是.知识点4.数与形结合的规律【知识点归纳】在探索数与形结合的规律时,一方面要考虑图形的对称(上下对称和左右对称),另一方面要考虑数的排列规律,通过数形结合、对应等方法,来解决问题.常考题型:例:用小棒照下面的规律搭正方形,搭一个用4根,搭2个用7根…,搭10个要用根小棒,搭n个要用根小棒..知识点5.数表中的规律【命题方向】常考题型:例:如图是一张月历卡,用形如的长方形去框月历卡里的日期数,每次同时框出3个数.框出的3个数的和最大是,一共可以框出种不同的和.知识点6.事物的间隔排列规律常考题型:例:六一儿童节用彩色小灯泡布置教室,按“三红、二黄、二绿”的规律连接起来,第37个小灯泡是()A、红B、黄C、绿D、不确定知识点7.事物的简单搭配规律小红有2顶不同的帽子,3件不同的上衣,2条不同的裤子.若帽子、上衣和裤子搭配穿着,共有种不同的搭配方法.知识点8.简单周期现象中的规律常考题型:例:体育课上同学们站成一排,老师让他们按1、2、3、4、5循环报数,最后一个报的数是2,这一排同学有()人.A、26B、27C、28知识点9.简单图形覆盖现象中的规律常考题型:例:如图是2006年6月的月历,认真观察阴影部分五个数的关系.想一想:如果像这种形式的五个数的和105,则中间的那个数是.达标检测1.将化成小数后,小数点后第2013位上的数字是()A.2B.4C.3D.82.下面的数是有规律排列的,但有一个数“与众不同”,这个数是()4,10,16,5,7,13,19.A.4B.5C.193.看算式,发现规律,找出答案.()3×6=18 33×66=2178 333×666=221778 3333×6666=22217778 …=A.B.C.4.木材厂将木头按下图堆放,第五堆有()个.A.15B.21C.28D.345.一个自然数表如下(零除外,表中下一行数的个数是上一行的2倍),第六行最后一个数是()A.31B.63C.64D.1276.一串珠子按●●●○○的顺序依次排列,第48颗珠子是()色.A.黑B.白C.不能确定7.找一下规律,空格内的应该是()图.A.B.C.D.8.一组图形有规律的排列着.…第78个是()A.B.C.D、9.在下面的月历卡中,用“十”字形框5个数,共可以框出()个不同的和.A.14B.15C.10D.11巩固练习1.循环小数0.02的小数点后第2012位上的数字是()A.4B.5C.6D.82.按规律填数:1、、、、、…,第11个数是()A.B.C.D.3.加法算式1+2,2+5,3+8,1+11,2+14,3+17,…是按一定的规律排列的,则第40个加法算式是()A.1+120B.2+119C.1+119D.3+1194.下面的3个图形都是由相同的小棒拼成,根据前3个图形的排列规律,第5个图形由()根小棒拼成.A.20B.18C.16D.145.下表表示的是一辆汽车在启动前五秒的速度变化关系.按照表中的规律,表中的“?”处应填()A.96B.72C.60D.586.操场的一边按3面红旗,4面黄旗,5面蓝旗插着一排彩旗.那么第60面是()A.红旗B.黄旗C.蓝旗7.观察下列各图,找出图中数与数之间的变化规律,那么?处的数是()A.4B.5C.6D.7 E.88.小红按照红、黄、蓝这样的顺序串珠子,第32个珠子是()颜色.A.红B.黄C.蓝9.小强观察一个建筑物模型(由若干个相同的小正方体拼成),分别从前面,右面,上面观察,看到的图案如图所示,那么该模型共由()个小正方体拼成.A.8B.9C.10D.1110.自己观察下列算式,寻找规律填数.2+4=2×32+4+6=3×42+4+6+8=4×52+4+6+8+10+…+50=×.11.找规律:,,,,.12.摆1个正方形需要4根小棒,摆2个需要7根小棒,摆3个需要10根小棒,摆n个正方形需要根小棒.13.观察找规律:用同样长的小棒摆第10个图形需要根小棒,第12个图形是形.14.把2015 名学生排成一排,按1,2,3,4,5,6,7,6,5,4,3,2,1,1,2,3,4,5,6,7,6,5,4,3,2,1…循环报数,则第201名学生所报的数是.15.一列分数的前4个是,,,,根据这4个分数的规律可知,第8个分数是。。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学题找规律的方法
找规律的方法在数学题中是一种重要的解题策略。
以下是一些常用的找规律的方法:
1. 观察数字之间的关系:仔细观察已知的数字或数列中数字之间的规律,例如增减关系、倍数关系、幂关系等。
2. 找出常见的模式:寻找已知数字或数列中常见的模式,例如等差数列、等比数列等。
3. 列举特殊情况:列举一些特殊情况,找出数字之间的共同特征。
这可以帮助找到一般规律。
4. 利用数学公式:针对某些特定类型的问题,可以运用已知的数学公式或定理来推导出解题方法。
5. 假设和验证:先假设一种规律或关系,然后通过验证来确定这个规律是否正确。
6. 归纳法:通过观察已知的几个例子,尝试归纳出数字之间的规律。
然后再利用这个规律解决问题。
以上方法并不是适用于所有的数学题目,但可以作为一种启发式的思维方式,帮助我们更快地找出数字之间的规律。
在实际解题中,还需要根据具体题目的要求和条件进行灵活运用。