江西省抚州市临川区第一中学高三高考仿真模拟(图片)——数学理(数学理)

合集下载

江西省临川一中高三数学最后一次模拟试题 理

江西省临川一中高三数学最后一次模拟试题 理

临川一中2013届高三数学压轴卷(理科)卷面满分:150分 考试时间:120分钟一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数 ,1i z -=则=+z z1A.i 2321+B.i 2321- C.i 2323- D.i 2123- 2.已知函数)1lg()(2+=x x f 的值域为M ,函数⎪⎩⎪⎨⎧<>=1,2,3)(3x x x x g x 的定义域为N ,则M N =IA. )1,0[B. (2,)+∞C. [)+∞,0D. [)),2(1,0+∞Y3.若C C n n 62=,32102a x dx =⎰,二项式nxa x )1(3-的展开式中常数项是A .28-B .7-C .7D .284.关于直线,,a b l 以及平面βα,,下面命题中正确的是 A .若,//,//βαb a 则.//b aB .若,,//a b a ⊥α则.α⊥bC .若,//,βαa a ⊥则.βα⊥D .若βα⊂⊂b a ,,且,//,b l a l ⊥,则.α⊥l5.右图的程序框图输出结果i=A .6B .7C .8D .96.若方程22(2cos )(2sin )1(02)x y θθθπ-+-=≤≤的任意一组解(,)x y 都满足不等式x y ≤,则θ的取值范围是 A.5[,]44ππB.513[,]1212ππ C.7[,]46ππ D.77[,]126ππ 7.在四棱锥ABCD P -中,)3,2,4(-=→AB ,)0,1,4(-=→AD ,)8,2,6(--=→AP ,则这个四棱锥的高=hA. 1B. 2C. 13D. 26开始S=0,i =0S=S+2i -1S ≥20 i =i +2结束输出i否是8.设)(n G 表示正整数n 的个位数,),()(2n G n G a n -=则数列}{n a 的前2013项的和为 A. 0 B. 2 C. 6 D. 8 9.下列命题中,正确命题的个数是①命题“x R ∃∈,使得013<+x ”的否定是“x R ∀∈,都有013>+x ”.②双曲线)0,0(12222>>=-b a by a x 中,F 为右焦点,A 为左顶点,点),0(b B 且0=⋅→→BF AB ,则此双曲线的离心率为215+. ③将9个人(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分法的种数为70种.④已知,a b r r 是夹角为120o的单位向量,则向量a b λ+r r 与2a b -r r 垂直的充要条件是45=λ.A. 1 个B. 2 个C. 3 个D. 4 个10.如图,给定等边三角形ABC,当正方形PQRS 三个顶点P 、Q 、R 分别在三边AB 、BC 、CA 上移动时,另一点S 的轨迹是A . 抛物线的一部分B .圆的一部分C . 椭圆的一部分 D.线段二、填空题:本大题共4小题,每小题5分,共20分.11.设点),(y x P 在以)1,2()2,1()0,1(C B A 、、三点构成的三角形区域(包含边界)内,则xy 的最大值为 .12.已知三次函数)(x f y =有三个零点321,,x x x ,且在点))(,(i i x f x 处的切线的斜率为)3,2,1(=i k i .则=++321111k k k . 13.已知数列{}n a 满足11log (1)n n a a n ==+,*2()n n N ≥∈,.定义:使乘积12a a ⋅⋅…k a ⋅为正整数的*()k k N ∈叫做“积整数”.则在]2013,1[内所有“积整数”的和为 .14.椭圆191622=+y x 的内切圆为922=+y x ,圆的一条不与x 轴垂直的切线与椭圆交于点B A 、,且切线AB 与圆的切点Q 在y 轴右侧,F 为椭圆的右焦点,则ABF ∆的周长为 .三、选做题:请考生在下列两题中任选一题作答.若两题都做,则按所做的第一题评阅计分.本题共5分.请把答案填在答题卡上.第(10)题图15A .(极坐标与参数方程选讲选做题) 在极坐标系中,点)3,2(π到圆θρcos 2=的圆心的距离为 .15B .(不等式选讲选做题)已知集合{},),0(,14,1143⎭⎬⎫⎩⎨⎧+∞∈+=∈=≤-++∈=t tt x R x B x x R x A 则 集合B A I =________.四、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数)42tan()(π+=x x f .(1)求()f x 的最小正周期和单调增区间; (2)设)2,4(ππα∈,若()2cos 2,2f αα=求α的大小.17.(本小题满分12分)已知正方形ABCD 的边长为2,E F G H 、、、分别是边AB BC CD DA 、、、的中点. (1)在正方形ABCD 内部随机取一点P ,求满足2<PE 的概率;(2)从A B C D E F G H 、、、、、、、这八个点中,随机选取两个点,记这两个点之间的距离的平方..为ξ,求随机变量ξ的分布列与数学期望E ξ.18.(本小题满分12分)如图是三棱柱111C B A ABC -的三视图,正(主)视图和俯视图都是矩形,侧(左)视图为等边三角形,D 为AC 的中点.正(主)视图俯视图侧(左)视图(1)求证:1AB ∥平面1BDC ;(2)设1AB 垂直于1BC ,求二面角C BC D --1的大小. 19.(本小题满分12分)已知等比数列{}n a 的首项20131=a ,公比21-=q ,数列{}n a 前n 项的积.记为n T . (1)求使得n T 取得最大值时n 的值;(2)证明{}n a 中的任意相邻三项按从小到大排列,总可以使其成等差数列,如果所有这些等差数列的公差按从小到大的顺序依次设为n d d d d ,,,321⋅⋅⋅,求数列{}n d 的通项公式. (参考数据1021024=)20.(本小题满分13分)已知抛物线)0(22>=p py x ,直线062=+-y x 截抛物线C 所得弦长为58.(1)求抛物线的方程;(2)已知B A 、是抛物线上异于原点O 的两个动点,记),90(ο≠=∠ααAOB 若,tan αm S AOB =∆试求当m 取得最小值时αtan 的最大值;(3)设抛物线的内接RST ∆的重心为焦点F ,试探求222→→→++FT FS FR 是否为定值?若是,求出该定值,若不是,请说明理由.21.(本小题满分14分)已知函数)0(),1ln()(>+=k xkx x f 在1=x 处取得极小值. (1)求k 的值;(2)若()f x 在))21(,21(f 处的切线方程为)(x g y =,求证:当0>x 时,曲线)(x f y =不可能在直线)(x g y =的下方;(3)若),,1(,0*∈≤≤>N n n i m i 且121=+⋅⋅⋅++n m m m ,试比较)1()1)(1(2211n n m m m m m m +⋅⋅⋅++与nn n ⎪⎪⎭⎫ ⎝⎛+12的大小,并证明你的结论.临川一中2013届高三数学压轴卷(理科)参考答案及评分标准一.选择题.D D C C C B B D C D10.解析:设,,,,θ=∠===RQC r QR x QC a BC由正弦定理,.)30sin(60sin ,)60sin(60sin 0000θθ+-=+=xa r x r 结合等比性质,.)60sin()30sin(60sin 000θθ+++=a r a r SQC QS 233)45sin(2sin 0-=+=∠∴θ (定值)所以所求轨迹为线段 .(2)填空题. 11.4912. 0 13. 2036 14.8 15(A)3 (B)[4,6]14.解析:,479,4742222x y x OQ AO AQ x AF =-+=-=-=故,4=+AQ AF 同理8,4=∴=+∆ABF C BQ BF 三.解答题16.(Ⅰ)由()tan(2),4f x x π=+得()f x 的最小正周期为2π.....2分 令2422πππππ+<+<-k x k 得82832ππππ+<<-k x k 所以函数()tan(2),4f x x π=+的单调增区间为)(82,832Z k k k ∈⎪⎭⎫⎝⎛+-ππππ...............6分 (Ⅱ)由()2cos 2,2f αα=得tan()4πα+2cos 2,α=即22sin()42(cos sin )cos()4παααπα+=-+, 整理得:sin cos 2(cos sin )(cos sin )cos sin αααααααα+=-+-,因为sin cos 0αα+≠,所以可得21(cos sin )2αα-=,解得1sin 22α=,...............10分由)2,4(ππα∈得),2(ππα∈,所以πα652=,πα125=..........12分 17解:(1)这是一个几何概型.所有点P 构成的平面区域是正方形ABCD 的内部,其面积是224⨯=.…………………………………………1分满足2<PE 的点P 构成的平面区域是以E 为圆心,2为半径的圆的内部与正方形ABCD 内部的公共部分,它可以看作是由一个以E 为圆心、2为半径、圆心角为3π的扇形的内部与两个直角边分别为1和3的直角三角形内部构成. …………………………………2分其面积是3323121223212+=⨯⨯⨯+⨯⨯ππ.………………4分 所以满足2<PE 的概率为.4364332+=+ππ…………………………………5分(2)从A B C D E F G H 、、、、、、、这八个点中,任意选取两个点,共可构成28C 28=条不同的线段. ………………………………6分其中长度为1的线段有84条,长度为2的线段有6条,长度为的线段有8条,长度为的线段有2条.所以ξ所有可能的取值为8,5,4,2,1.……………………7分且72288)1(===ξP , 71284)2(===ξP , 143286)4(===ξP ,72288)5(===ξP , 141282)8(===ξP . ………………………………9分所以随机变量ξ的分布列为:随机变量ξ的数学期望为.72414187251434712721=⨯+⨯+⨯+⨯+⨯=ξE ………………………12分18.……10分(1)由三视图画出直观图,如图,这是一个正三棱柱,连接1BC 和C B 1,交点为O ,则O 为C B 1的中点,连接OD ,因为D 为中点,所以111111////BDC AB BDC AB BDC OD AB OD 平面平面平面⇒⎪⎭⎪⎬⎫⊄⊂,……………………6分(2)过D 作BC DG ⊥,垂足为G ,连接GO ,因为侧面垂直于底面,所以11B BCC DG 侧面⊥,所以OD 在11B BCC 侧面内的射影为GO ,因为⊥1AB 1BC ,所以DO BC ⊥1,又DG BC ⊥1,D DO DG =I ,所以1BC ⊥DOG 平面,所以GO BC ⊥1,所以DOG ∠就是所求的二面角的平面角 (10)分取BC 中点F ,连接OF AF ,,则有,,BC AF BC OF ⊥⊥在直角三角形BOG 中,BG OF ⊥,所以BC BC BC 43G O ,4341G B G F G O 2=⨯=⋅=,BCAF D 4321G ==, 故在直角三角形DGO 中,ο45,=∠=DOG OG DG ,即所求的二面角的大小为45o …12分 19.解:(1),n n a a a a T ⋅⋅⋅=321Θ,n n nn a T T )21(201311==∴++,101122013122013<<Θ,则当10≤n 时,n n T T >∴+1;当11≥n 时,n n T T <∴+1,11max T T n =∴,又,0,0,0,01291110>><<T T T Tn T ∴的最大值是129,T T 中的较大者.1)21(2013310121110912>⎥⎦⎤⎢⎣⎡-==a a a T T Θ,,912T T >∴,因此当n=12时,n T 最大.........................6分(2)对1,n n a a +进行调整,||n a 随n 增大而减小,{}n a 奇数项均正,偶数项均负. ①当n 是奇数时,调整为12,,n n n a a a ++.则1111111()()222n n n n n a a a a a -++=-+-=,1121122()22n n n a a a ++=-=, 12122,,,n n n n n n a a a a a a ++++∴+=成等差数列;②当n 是偶数时,调整为21,,n n n a a a ++;则1111111()()222n n n n n a a a a a -++=-+-=-,1121122()22n n n a a a ++=-=-, 12212,,,n n n n n n a a a a a a ++++∴+=成等差数列;综上可知,{}n a 中的任意相邻三项按从小到大排列,总可以使其成等差数列.①n 是奇数时,公差112111311[()()]222n n n n n n ad a a a ++++=-=---=; ②n 是偶数时,公差111211311[()()]222n n n n n n ad a a a +-++=-=---=. 无论n 是奇数还是偶数,都有1132n n a d +=,则112n n d d -=,因此,数列{}n d 是首项为134a ,公比为12的等比数列,160392n n d +=..................12分(20)解:(1)联立0124062222=--⇒⎩⎨⎧=+-=p px x y x py x ,048162>+=∆p p.158481621124222121=⇒=++=⇒⎩⎨⎧-==+p p p MN px x px x y x C 2:2=∴..................................................4(分)8.,tan αm S AOB=∆Θ.21,cos sin sin 21→→⋅=⇒=∴OB OA m m OB OA ααα.......5(分)设)0,4(),2,(),2,(21222211-≠x x xx B x x A 则),4(21222121x x x x m +=令)0,4(21-≠=t x x t],4)2[(81)4(2122-+=+=t t t m 当2-=t 时,.21min -=m 此时,221-=x x ...................8(分)不妨设1>x 则22)2(221221)tan(tan 11121212-≤+-=+-=+-=-=x x x x x x k k k k OAOB OA OB θθα(其中21,θθ为直线OB OA ,的倾斜角)当且仅当112x x =,即21=x 时等号成立. 故当21min -=m 时,αtan 的最大值为22-....................10(分) (3)答:222→→→++FT FS FR 为定值.827证明如下:...................11(分) 设),,(),,(),,(T T S S R R y x T y x S y x R 三角形RST 的重心为焦点)21,0(F ,23,0=++=++T S R T S R y y y x x x ,由对称性,不妨设0,0,<≥T S R x x x , ),,(22T S R i y x i i ==则)1()43(230222232⋅⋅⋅-+=⇒⎪⎩⎪⎨⎧=+-=-+⇒⎪⎩⎪⎨⎧=-+=++SR S R T S RT S RT S R T S R y y y y yy y y y y y y y y y y 由23=++T S R y y y 知, )2()(23)(2249)(249222⋅⋅⋅⎥⎦⎤⎢⎣⎡+-+--=++-=++S R S R S R T R T S S R T S R y y y y y y y y y y y y y y y 将(1)代入(2)得89222=++T S R y y y ,则8274943212121222222222222=+++=++++++=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=++→→→T S R T S R T S R T S R y y y y y y y y y y y y FT FS FR................13(分)21解:(1))1(1)(22+-='kx x kx x f ,由已知得.1011)1(=⇒=+-='k k k f ................3分 当1=k 时)1(1)(22+-='x x x x f ,此时)(x f y =在)1,0(单调递减,在),1(+∞单调递增......4分7.)1(1)(22+-='x x x x f ,56)21(-='=f k ,)(x f y =在)25ln ,21(的切线方程为)21(5625ln--=-x y ,即25ln 5356)(++-==x x g y ...............................6分当0>x 时,曲线)(x f y =不可能在直线)(x g y =的下方⇔)()(x g x f ≥在),0(+∞恒成立,令25ln 5356)1ln()()()(--++=-=x x x x g x f x ϕ,)(5)1086)(21()(32x x x x x x +++-='ϕ 当0)(),,21(,0)(),21,0(>'+∞∈<'∈x x x x ϕϕ,0)21()(min ==ϕϕx ,即0)(≥x ϕ)()(x g x f ≥在),0(+∞恒成立,所以当0>x 时,曲线)(x f y =不可能在直线)(x g y =的下方.............................................9分(3)n n i i in n m m )1()1(1+≥+∑=....................10分先求)(x f y =在))1ln(,1(n n n +处的切线方程,.1)1(23n n n n f +-='故)(x f y =在))1ln(,1(nn n +的切线方程为)1(1)1ln(23n x n n n n n y -+-=+-,即)1ln(1112223nn n n x n n n y +++--+-=,下先证明)1ln(111)(2223n n n n x n n n x f +++--+-≥,令)0)(1ln(111)1ln()(2223>+-+-++--+=x n n n n x n n n x x x h )1)((]2))[(1()(233223+++++--='n x x n n x n x n n n x x h , 当0)(),,1(,0)(),1,0(>'+∞∈<'∈x n x x n x ϕϕ,0)1()(min ==nx ϕϕ)1ln(111)(2223nn n n x n n n x f +++--+-≥∴),,1(,0*∈≤≤>N n n i m i Θ)1ln(111)1ln(2223n n n n m n n n m m i i i +++--+-≥+∴3222111111ln()ln()ln()11nni ii i i n n n m m n n n n n m n n n n ==--∴+≥-++=+++∑∑nni i i nn m m )1()1(1+≥+∴∑=.......................14分。

2020年江西省抚州市临川一中高三数学(理)周练试卷(原卷版)

2020年江西省抚州市临川一中高三数学(理)周练试卷(原卷版)

2020年江西省抚州市临川一中高三周练试卷数学试题(理科)(考试时间:120分钟 满分:150分)注意事项1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚,必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草纸上答题元效.第I 卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只一项是符合题目要求的.1.若集合A ={x ∈N |x ≤ 2 020},a =22,则下列结论正确的是( ) A .{a }⊆A B .a ⊆A C .{a }∈AD .a ∉A2.设z =1-i1+i+2i ,则|z |等于( )A.0B.12 C.1 D. 23.若函数y =f (x )的定义域是[0,2 020],则函数g (x )=f x +1x -1的定义域是( )A .[-1,2 019]B .[-1,1)∪(1,2 019]C .[0,2 020]D .[-1,1)∪(1,2 020]4.下列图象是函数y =⎩⎪⎨⎪⎧x 2,x <0,x -1,x ≥0的图象的是( )5.下列函数中最小正周期为π且图象关于直线x =π3对称的是( )A .y =2sin ⎝⎛⎭⎪⎫2x +π3 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π6C .y =2sin ⎝ ⎛⎭⎪⎫x 2+π3D .y =2sin ⎝⎛⎭⎪⎫2x -π3 6.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A 等于( ) A.3π4 B.π3 C.π4 D.π67.如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列判断正确的是( )A .在区间(-2,1)上f (x )是增函数B .在区间(1,3)上f (x )是减函数C .在区间(4,5)上f (x )是增函数D .当x =2时,f (x )取到极小值8.已知△ABC 外接圆的圆心为O ,AB =23,AC =22,A 为钝角,M 是BC 边的中点,则AM →·AO →等于( )A.3B.4C.5D.6 9.已知f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的关系是( ) A.f (k +1)=f (k )+(2k +1)2+(2k +2)2B.f (k +1)=f (k )+(k +1)2C.f (k +1)=f (k )+(2k +2)2D.f (k +1)=f (k )+(2k +1)210.在平面直角坐标系中,不等式组⎩⎨⎧3x -y ≤0,x -3y +2≥0,y ≥0表示的平面区域的面积是( )A.32B. 3C.2D.2 3 11.设点P (x ,y )是曲线a |x |+b |y |=1(a >0,b >0)上的动点,且满足x 2+y 2+2y +1+x 2+y 2-2y +1≤22,则a +2b 的取值范围为( ) A .[2,+∞) B .[1,2] C .[1,+∞)D .(0,2]12.已知函数f (x )=e xx2-k ⎝ ⎛⎭⎪⎫2x +ln x ,若x =2是函数f (x )的唯一一个极值点,则实数k 的取值范围为( )A .(-∞,e]B .[0,e]C .(-∞,e)D .[0,e)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分.把答案填在答题卡上的相应位置.13.某四面体的三视图由如图所示的三个直角三角形构成,则该四面体六条棱长最长的为________.14.(x y -y x )4的展开式中,x 3y 3项的系数为________.15.设a ∈R ,若函数y =e x+ax 有大于零的极值点,则实数a 的取值范围是________.16.已知抛物线C :x 2=4y 的焦点为F ,M 是抛物线C 上一点,若FM 的延长线交x 轴的正半轴于点N ,交抛物线C 的准线l 于点T ,且FM →=MN →,则|NT |=________.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,-π2<φ<π2的最小正周期是π,且当x =π6时,f (x )取得最大值2.(1)求f (x )的解析式;(2)作出f (x )在[0,π]上的图象(要列表).18.(本小题满分12分)某投资公司在2019年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.19.(本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E -ABC 的体积.20.(本小题满分12分)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e |FA |,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.21.(本小题满分12分)已知函数f (x )=ax -e x(a ∈R ),g (x )=ln x x.(1)求函数f (x )的单调区间;(2)∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x成立,求a 的取值范围.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数),在同一平面直角坐标系中,将曲线C 1上的点按坐标变换⎩⎪⎨⎪⎧x ′=32x +23,y ′=3y +2得到曲线C 2,以原点为极点、x 轴的正半轴为极轴,建立极坐标系.(1)求曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)若直线θ=π4(ρ∈R )与曲线C 1交于M ,N 两点,与曲线C 2交于P ,Q 两点,求|PQ ||MN |的值.23.(本小题满分10分)选修4-5:不等式选讲 (1)已知x ,y 均为正数,且x >y ,求证:2x +1x 2-2xy +y 2≥2y +3;(2)设a ,b ,c >0且ab +bc +ca =1,求证:a +b +c ≥ 3.。

江西省抚州市临川第一中学等2020届高三上学期第一次联考数学(理)试题 Word版含解析

江西省抚州市临川第一中学等2020届高三上学期第一次联考数学(理)试题 Word版含解析

2019—2020届临川一中上学期第一次联合考试高三数学试题(理)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若21iz i-=+,则z z ⋅=( ) A. -2 B. 2C.52D. 52-【答案】C 【解析】 【分析】根据共轭复数的性质可知2||z z z ⋅=,直接利用复数模的性质即可求解. 【详解】因为21iz i-=+, 所以|2|510|||1|22i z i -===+ 2105||42z z z ⋅===,故选C. 【点睛】本题主要考查了复数模的性质,共轭复数的性质,属于中档题.2.设集合{}2A x x a =>,{}32B x x a =<-,若A B =∅I,则a 的取值范围为( )A. ()1,2B. ()(),12,-∞⋃+∞C. []1,2D. (][),12,-∞+∞U【答案】D 【解析】 【分析】集合的交集运算即求两个集合的公共元素,A B =∅I 说明集合,A B 没有公共元素,借助于数轴列式计算.【详解】因为A B φ⋂=,所以232a a ≥-,解得1a ≤或2a ≥. 【点睛】本题考查集合的交集运算,考查运算求解能力与推理论证能力.3.设,a b ∈R ,则“()20a b a ->”是“a b >”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A 【解析】 【分析】利用充分、必要条件的定义即可判断。

【详解】()20a b a ->,因为0a ≠,可推出a b >;a b >时,若0a =,则无法推出()20a b a ->,所以“()20a b a ->”是“a b >”的充分不必要条件,故选A 。

【点睛】本题主要考查分、必要条件的定义的应用。

4.若函数()ln f x ax x =-的图象上存在与直线240x y +-=垂直的切线,则实数a 的取值范围是( ) A. ()2,-+∞ B. 1,2⎛⎫+∞⎪⎝⎭C. 1,2⎛⎫-+∞ ⎪⎝⎭D. ()2,+∞【答案】D 【解析】 【分析】函数()ln f x ax x =-的图象上存在与直线240x y +-=垂直的切线,即()2f x '=有解,转化为12,0a x x=+>有解即可求出. 【详解】因为函数()ln f x ax x =-的图象上存在与直线240x y +-=垂直的切线, 所以函数()ln f x ax x =-的图象上存在斜率为2的切线, 故()12k f x a x'==-=有解, 所以12,0a x x =+>有解, 因为12,0y x x=+>的值域为(2,)+∞所以(2,)a ∈+∞.【点睛】本题主要考查了函数导数的几何意义,方程有根的问题,转化思想,属于中档题.5.若0x >,0y <,则下列不等式一定成立的是( ) A. 222xyx -> B.()1222log 1x y x ->+ C. 221x y x ->+ D. 221x y x ->-【答案】B 【解析】 【分析】利用指数函数与对数函数的性质结合特殊值可得正确答案. 【详解】A 选项,取2,1x y ==-,不等式不成立; B 选项,0,0x y ><Q22,220x y x y ∴>->0,x >Q∴()12log 10x +<∴()1222log 1x yx ->+故B 正确;C 选项,取1,1x y ==-,不等式不成立,D 选项,当0x →, 21x →,11x -→,当0y <且0y →,21y →,所以220x y -→,而11x -→,所以不等式不成立.【点睛】本题主要考查了指数、对数函数性质,以及与不等式的交汇,属于中档题.6.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36︒的等腰三角形(另一种是顶角为108︒的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC ∆中,51BC AC -=.根据这些信息,可得sin 234︒=( )A.154- B. 358+-C. 514-D.45+ 【答案】C 【解析】 【分析】要求sin 234︒的值,需将角234︒用已知角表示出来,从而考虑用三角恒等变换公式解题.已知角有36︒,正五边形内角108︒,72ACB ∠=︒,已知三角函数值有1512cos72BCAC -︒==,所以234=272+90=144+90︒⨯︒︒︒︒,从而sin 234=cos144︒︒.【详解】由题可知72ACB ∠=︒,且1512cos724BCAC ︒==,251cos1442cos 721+︒=︒-=, 则()51sin 234sin 14490cos144+︒=︒+︒=︒=. 【点睛】本题考查三角恒等变换,考查解读信息与应用信息的能力.7.若函数()()222,1log 1,1x x f x x x ⎧+≤⎪=⎨->⎪⎩,在(],a -∞上的最大值为4,则a 的取值范围为( )A. (]1,17B. (]1,9C. []1,17D. []1,9【答案】C 【解析】 【分析】利用分段函数的单调性,结合已知条件求解即可.【详解】因为函数()()222,1log 1,1x x f x x x ⎧+≤⎪=⎨->⎪⎩,(,1]x ∈-∞时,函数为增函数,(1,)x ∈+∞时,函数为增函数,且(1)4,(17)4f f == 所以[1,17]a ∈.【点睛】本题主要考查了分段函数的应用,函数的单调性以及函数的最值求法,属于中档题.8.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法种数是( ) A. 40 B. 60 C. 80 D. 100【答案】A 【解析】解:三个小球放入盒子是不对号入座的方法有2 种,由排列组合的知识可得,不同的放法总数是:36240C = 种.本题选择A 选项.9.执行如图所示的程序框图,若输出的结果是7,则判断框内m 的取值范围是( )A. (3042],B. (30,42)C. (42,56]D. (42,56)【答案】A 【解析】依次运行程序框图中的程序可得:第一次,0212,2S k =+⨯==,满足条件,继续运行; 第二次,2226,3S k =+⨯==,满足条件,继续运行; 第三次,62312,4S k =+⨯==,满足条件,继续运行; 第四次,122420,5S k =+⨯==,满足条件,继续运行; 第五次,202530,6S k =+⨯==,满足条件,继续运行;第六次,302642,7S k =+⨯==,不满足条件,停止运行,输出7. 故判断框内m 的取值范围为3042m <≤.选A .10.已知1F ,2F 为椭圆()222210x y a b a b +=>>的两个焦点,B 为椭圆短轴的一个端点,2121214BF BF F F ⋅≥uuu r uuu r uuu u r ,则椭圆的离心率的取值范围为( )A. 1(0,]2B. 2(0,2C. 3(0,]3D. 1(,1)2【答案】C【解析】 【分析】用,,a b c 表示出21212,BF BF F F ⋅uuu r uuu r uuu u r ,解出不等式得出e 的范围. 【详解】由椭圆定义可知:12BF BF a ==,12OF OF c ==,则1sin cOBF e a∠==, 所以22121cos 12sin 12F BF OBF e ∠=-∠=-,因为2121214BF BF F F ⋅≥uuu r uuu r uuu u r ,即222(12)e a c -≥,22(12)e e -≥,即213e ≤.303e ∴<≤. 【点睛】本题主要考查了椭圆的几何性质,平面向量的数量积运算,属于中档题.11.设曲线cos y x =与x 轴、y 轴、直线6x π=围成的封闭图形的面积为b ,若()22ln 2g x x bx kx =--在[]1,+∞上的单调递减,则实数k 的取值范围是( )A. [)0,+∞B. ()0,∞+C. [)1,+∞ D. ()1,+∞【答案】A 【解析】 【分析】由定积分可以求出b , ()22ln 2g x x bx kx =--在[]1,+∞上单调递减可转化为()0g x '≤在[]1,+∞上恒成立即可求解.【详解】由题意,6601cos sin 2|b xdx x ππ===⎰, 所以()22ln g x x x kx =--,因为()22ln g x x x kx =--在[]1,+∞上的单调递减,所以222()0x kx g x x--+'=≤在[]1,+∞上恒成立,即2()220h x x kx =--+≤在[]1,+∞上恒成立,只需14(1)0k h ⎧-≤⎪⎨⎪≤⎩,解得0k ≥.【点睛】本题主要考查了利用定积分求面积,函数的单调性与导数的关系,不等式的恒成立问题,属于中档题.12.设数列{}n a 的前n 项和为n S ,且满足122a a +=,123n n a S +=+,用[]x 表示不超过x 的最大整数,设[]n n b a =,数列{}n b 的前2n 项和为2n T ,则使22000n T >成立的最小正整数n 是() A. 5 B. 6C. 7D. 8【答案】B 【解析】 【分析】利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得数列{}n a 通项公式以及前n 项和n S ,利用二项式展开式化简[]n n b a =,求得2212211n n n n b b a a --+=+-,利用分组求和法求得数列{}n b 的前2n 项和2n T ,由此求得使22000n T >成立的最小正整数n 的值. 【详解】令1n =,得2123a a =+,又122a a +=,解得123a =,243a =,又123n n a S +=+,123n n a S -=+,所以12(2)n n a a n +=…,又212a a =,可求得23nn a =,()2213n n S =-.所以01111333(1)(1)2(31)333n n n n n n n n n n n C C C b ---⎡⎤⎡⎤⎡⎤⋅-⋅++⋅⋅-+--===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L , 即011211(1)C 3C 3C (1)3n n n n n n nnnb ----⎡⎤-=⋅-⋅++-+⎢⎥⎣⎦L ,所以2(1)(1)33n n n n b ⎡⎤---=+⎢⎥⎣⎦,即22,321,3n n n n b n ⎧-⎪⎪=⎨-⎪⎪⎩为奇数为偶数,所以2212211n n n n b b a a --+=+-,因此()2222213nn n T S n n =-=--,当5n =时,1067T =;当6n =时,1227242000T =>.使22000n T >成立的最小正整数n 是6.故选B.【点睛】本题考查等比数列通项公式及前n 项和公式,考查分组求和法,考查推理论证能力和创新意识,属于难题.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.912x ⎫⎪⎭展开式中的常数项为______.【答案】212- 【解析】 【分析】利用二项展开式的通项公式即可求出. 【详解】因为993rr 22+19911=()()22r rr r r r T C x x C x----=-, 令9302r-=,解得3r =, 所以展开式中常数项为3349121=()22T C -=-. 【点睛】本题主要考查了二项展开式的通项公式,属于中档题.14.设n S 是公差不为0的等差数列{}n a 的前n 项和,且712a a =-,则1197S Sa =+______.【答案】32【解析】 【分析】由712a a =-可得12a d =-,利用前n 项和公式及通项公式即可求解. 【详解】因为712a a =-, 所以120a d =-≠,111111011332S a d d ⨯=+=,91989182S a d d ⨯=+=,7164a a d d =+=, 所以11973331842S d S a d d ==++.【点睛】本题主要考查了等差数列的通项公式与前n 项和公式,属于中档题.15.如图所示是一几何体的三视图,正视图是一等腰直角三角形,且斜边BD 长为2,侧视图是一直角三角形,俯视图为一直角梯形,且1AB BC ==,则异面直线PB 与CD 所成角的正切值是______.2 【解析】 【分析】根据三视图画出空间图形的直观图,取AD 中点E ,连接BE ,PE ,CE ,将CD 平移到BE ,根据异面直线所成角的定义可知PBE ∠为异面直线PB 与CD 所成角,在直角三角形PBE ∆中,求出其正切值即可.【详解】作出直观图如图:取AD 中点E ,连接BE ,PE ,CE , 因为CD //BE ,根据异面直线所成角的定义可知PBE ∠为异面直线PB 与CD 所成角, 由条件知,1,2,PE BE PE BE ==⊥,2tan 22PBE ∴∠==. 【点睛】本题主要考查了异面直线所成的角,空间图形的三视图,考查了空间想象能力、运算能力,属于中档题.16.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点A 是双曲线左支上的一点,若直线1AF 与直线by x a=平行且12AF F ∆的周长为9a ,则双曲线的离心率为______. 【答案】2 【解析】 【分析】根据双曲线的定义及三角形的周长可求出2111272||,||22a c a cAF AF --==,利用直线1AF 与直线by x a =平行知12cos a AF F c∠=,结合余弦定理即可求解. 【详解】由双曲线定义知21||||2AF AF a -=,又21||||92AF AF a c +=-解得2111272||,||22a c a cAF AF --==, 因为直线1AF 与直线by x a=平行, 所以12tan b AF F a ∠=,故12cos a AF F c∠=, 由余弦定理得:12cos a AF F c∠=222121||4||2||2AF c AF AF c +-=⋅即2211844144e e e e e-++=-,化简得2280e e +-=, 解得2e =或4e =-(舍去).【点睛】本题主要考查了双曲线的定义,余弦定理,双曲线的离心率,属于难题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17—21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.ABC ∆的内角A 、B 、C 所对的边长分别为a 、b 、c ,已知()cos 4cos a B c b A =-. (1)求cos A 的值;(2)若4b =,点M 在线段BC 上,2AB AC AM +=u u u r u u u r u u u u r,AM =uuu r ABC ∆的面积.【答案】(1)1cos 4A =;(2)【解析】 【分析】(1)由正弦定理将条件统一为三角函数,化简即可求解(2)2AB AC AM +=u u u r u u u r u u u u r,两边平方可转化为关于c 的方程,求解代入三角形面积公式即可. 【详解】(1)∵()cos 4cos a B c b A =-,由正弦定理得:()sin cos 4sin sin cos A B C B A =-,即sin cos cos sin 4sin cos A B A B C A +=,即sin 4cos sin C A C =, 在ABC ∆中,sin 0C ≠,所以1cos 4A =.(2)2AB AC AM +=u u u r u u u r u u u u r ,两边平方得:22224AB AC AB AC AM ++⋅=u u u r u u u r u u u r u u u r u u u r ,由4b =,10AM =uuu r ,1cos 4A =,15sin A =得22124104c b c b ++⨯⨯⨯=⨯,可得216240c c ++=, 解得:4c =或6c =-(舍), 所以ABC ∆的面积1sin 2152S bc A ==. 【点睛】本题主要考查了正弦定理,三角恒等变换,向量数量积的性质,三角形面积公式,属于中档题.18.如图,在三棱锥P ABC -中,平面PAB ⊥平面ABC ,6AB =,23BC =,26AC =,,D E 分别为线段,AB BC 上的点,且2AD DB =,2CE EB =,PD AC ⊥.(1)求证:PD ⊥平面ABC ;(2)若PA 与平面ABC 所成的角为4π,求平面PAC 与平面PDE 所成的锐二面角.【答案】(1)证明见解析;(2)30°. 【解析】 试题分析:(1)由条件可得ABC ∆为直角三角形,且3cos ABC ∠=故由余弦定理可得22CD =所以222CD AD AC +=,从而CD AB ⊥,又由条件可得CD PD ⊥,故PD ⊥平面ABC .(2)由,,PD CD AB 两两互相垂直可建立空间直角坐标系,结合条件可求得平面PAC 的法向量和平面DEP 的法向量,根据两法向量夹角的余弦值可得锐二面角的大小. 试题解析:(1)证明:连DE ,由题意知4,2AD BD ==. 222,AC BC AB +=Q90.ACB ∴∠=o∴cos 63BC ABC AB ∠=== 在BCD ∆中,由余弦定理得2222?· cos CD BC BD BC BD DBC ∴=+-∠412228.3=+-⨯⨯=CD ∴=222CD AD AC ∴+=,∴90CDA ∠=o , ∴CD AB ⊥,又因为PAB ABC ⊥平面平面, ∴,CD PAB ⊥平面 又PD ⊂PAB 平面,,CD PD ∴⊥又PD AC ⊥,=AC CD C ⋂, ∴PD ⊥平面ABC .(2)由(1)知,,PD CD AB 两两互相垂直,建立如图所示的空间直角坐标系D xyz -,由PA 与平面ABC 所成的角为4π,知4PD =, 则()()()()0,4,0,22,0,0,0,2,0,0,0,4A C B P -∴()()()22,2,0,22,4,0,0,4,4CB AC PA =-==--u u u v u u u v u u u v因为2,2,AD DB CE EB ==//,DE AC ∴由(1)知,AC BC ⊥ PD ⊥平面ABC , ∴ CB ⊥平面DEP∴()22,2,0CB =-u u u v为平面DEP 的一个法向量.设平面PAC 的法向量为(),,n x y z v=,则,,n AC n PA ⎧⊥⎨⊥⎩u u u u v v u u u v v ∴2240440x y y z ⎧+=⎪⎨--=⎪⎩,令1z =,则2,1x y ==-,∴)2,1,1n =-v为平面PAC 的一个法向量.∴3cos ,2412||n CB n CB n CB ⋅===-⋅u u u v v u u u v vu u v u u u u v 故平面PAC 与平面PDE 3所以平面PAC 与平面PDE 的锐二面角为30o . 点睛:(1)在建立空间直角坐标系后求平面的法向量时,首先要判断一下条件中是否有垂直于面的直线.若有,则可将直线的方向向量直接作为平面的法向量,以减少运算量.(2)求二面角的余弦值时,在求得两平面法向量夹角的余弦值后,要根据图形判断出二面角是锐角还是钝角,然后再求出二面角的余弦值.19.已知椭圆()222210x y a b a b +=>>的离心率2,一个长轴顶点在直线2y x =+上,若直线l 与椭圆交于P ,Q 两点,O 为坐标原点,直线OP 的斜率为1k ,直线OQ 的斜率为2k . (1)求该椭圆的方程. (2)若1214k k ⋅=-,试问OPQ ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)2214x y +=;(2)OPQ ∆的面积为定值1. 【解析】 【分析】(1)根据离心率及长轴即可写出椭圆标准方程(2)设()11,P x y ,()22,Q x y ,当直线PQ 的斜率存在时,设其方程为y kx m =+,求PQ ,点O 到直线y kx m =+的距离21md k =+,写出三角形面积,化简即可求证.【详解】由c e a ==,又由于0a b >>,一个长轴顶点在直线2y x =+上,可得:2a =,c =,1b =.(1)故此椭圆的方程为2214x y +=.(2)设()11,P x y ,()22,Q x y ,当直线PQ 的斜率存在时,设其方程为y kx m =+, 联立椭圆的方程得:()222418440k x kmx m +++-=, 由()()222264441440k m k m ∆=-+->,可得2241m k <+, 则122841km x x k +=-+,21224441m x x k -⋅=+,12PQ x x=-=,又点O到直线y kx m=+的距离d=,122OPQS d PQ m∆=⋅⋅=,由于2121212121214y y x x mk kx x x x++⋅===-,可得:22421k m=-,故2212OPQS mm∆=⋅=,当直线PQ的斜率不存在时,可算得:1OPQS∆=,故OPQ∆的面积为定值1.【点睛】本题主要考查了椭圆的标准方程,直线与椭圆的位置关系,三角形的面积公式,考查了学生的运算能力及推理能力,属于难题.20.抚州不仅有着深厚的历史积淀与丰富的民俗文化,更有着许多旅游景点.每年来抚州参观旅游的人数不胜数.其中,名人园与梦岛被称为抚州的两张名片,为合理配置旅游资源,现对已游览名人园景点的游客进行随机问卷调查.若不去梦岛记1分,若继续去梦岛记2分.每位游客去梦岛的概率均为23,且游客之间的选择意愿相互独立.(1)从游客中随机抽取3人,记总得分为随机变量X,求X的分布列与数学期望;(2)若从游客中随机抽取m人,记总分恰为m分的概率为m A,求数列{}m A的前6项和;(3)在对所有游客进行随机问卷调查的过程中,记已调查过的累计得分恰为n分的概率为n B,探讨n B与1n B-之间的关系,并求数列{}n B的通项公式.【答案】(1)详见解析;(2)364729;(3)1213n nB B-=-+;322553nnB⎛⎫=+⋅-⎪⎝⎭.【解析】【分析】(1)根据n 次独立重复试验模型可求解(2)总分恰为m 的概率13mm A ⎛⎫= ⎪⎝⎭,求前6项和即可(3)已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为123n B -,可得递推关系1213n n B B -=-+,构造等比数列求解即可. 【详解】(1)X 可能取值为3,4,5,6()3113327P X ⎛⎫=== ⎪⎝⎭, ()21321643327P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()223211253327P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,()3286327P X ⎛⎫===⎪⎝⎭, 故其分布列为()5E X =.(2)总分恰为m 的概率13mm A ⎛⎫= ⎪⎝⎭, 故6611(1)36433172913S -==-.(3)已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为123n B -,而113B =, 故1213n n B B --=,即1213n n B B -=-+,可得1323535n n B B -⎛⎫-=-- ⎪⎝⎭,134515B -=-, 所以13425153n n B -⎛⎫-=-- ⎪⎝⎭可得322553nn B ⎛⎫=+⋅- ⎪⎝⎭.【点睛】本题主要考查了n 次独立重复试验,分布列、期望,等比数列求和,由递推关系式求通项公式,属于难题.21.已知函数()()()22112ln 1ln 242f x x x ax x x =----. (1)讨论()f x 的单调性.(2)试问是否存在(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立?若存在,求a 的取值范围;若不存在,请说明理由.【答案】(1)见解析;(2) 存在;a 的取值范围为(]2,e . 【解析】 【分析】(1)()()()ln ln ln 1f x x x a x a x x a x =-+-=--',()0,x ∈+∞,所以()0f x '=得12,x a x e ==,所以通过对a 与0,e 的大小关系进行分类讨论得()f x 的单调性;(2)假设存在满足题意的a 的值,由题意需()min 13sin 44a f x π>+,所以由(1)的单调性求()min f x 即可;又因为()13sin 44a f x π>+对[)1,x ∈+∞恒成立,所以可以考虑从区间[)1,+∞内任取一个x 值代入,解出a 的取值范围,从而将(],a e ∈-∞的范围缩小减少讨论.【详解】解:(1)()()()ln ln ln 1f x x x a x a x x a x =-+-=--',()0,x ∈+∞. 当a e =时,()()()ln 10f x x e x '=--≥,()f x 在()0,∞+上单调递增当0a ≤时,0x a ->,()f x 在()0,e 上单调递减,在(),e +∞上单调递增 当0a e <<时,()f x 在(),a e 上单调递减,在()0,a ,(),e +∞上单调递增; 当a e >时,()f x 在(),e a 上单调递减,在()0,e ,(),a +∞上单调递增.(2)假设存在(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立. 则()31123sin 444a f a π=->+,即8sin1504a a π-->, 设()8sin 154xg x x π=--,则存在(],x e ∈-∞,使得()0g x >, 因为()8cos044xg x ππ='->,所以()g x 在(],x e ∈-∞上单调递增, 因为()20g =,所以()0g x >时2x >即2a >. 又因为()13sin 44a f x π>+对[)1,x ∈+∞恒成立时,需()min 13sin 44a f x π>+, 所以由(1)得:当a e =时,()f x 在[)1,+∞上单调递增,所以()()min 331=2=244f x f a e =--, 且3123sin 444e e π->+成立,从而a e =满足题意. 当2e a <<时,()f x 在(),a e 上单调递减,在[)1,a ,(),e +∞上单调递增,所以()()2113sin ,4413sin ,444a f e a f e ea ππ⎧>+⎪⎪⎨⎪=->+⎪⎩所以22,4sin 1204a a ea e π>⎧⎪⎨--->⎪⎩(*) 设()()24sin 1242xh x ex e x e π=---<<,()4cos044xh x e ππ=-'>,则()h x 在()2,e 上单调递增,因为()228130h e e =-->,所以()h x 的零点小于2,从而不等式组(*)的解集为()2,+∞, 所以2x e <<即2e a <<.综上,存在(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立,且a 的取值范围为(]2,e .【点睛】求可导函数()f x 的单调区间的一般步骤是:(1)求定义域;(2)求()f x ';(3)讨论()f x '的零点是否存在;若()f x '的零点有多个,需讨论它们的大小关系及是否在定义域内;(4)判断()f x '在每个区间内的正负号,得()f x 的单调区间.当()f x a >在区间D 上恒成立时,需()min f x a >.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.在直角坐标系xOy 中,曲线C 的参数方程为2cos ,2sin x y αα=⎧⎨=⎩([0,2),απα∈为参数),在同一平面直角坐标系中,经过伸缩变换'2,'x x y y=⎧⎨=⎩得到曲线1C ,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系(ρ为极径,θ为极角).(Ⅰ)求曲线C 的直角坐标方程和曲线1C 的极坐标方程;(Ⅱ)若射线():0OA θβρ=>与曲线1C 交于点A ,射线():02OB πθβρ=+>与曲线1C 交于点B ,求2211OAOB +的值. 【答案】(Ⅰ)224x y +=,2222416cos sin ρθρθ+=;(Ⅱ)516. 【解析】【分析】 (Ⅰ)消去参数,求得曲线C 的直角方程为224x y +=,再根据图象的变换公式,即可求解曲线1C 的方程,进而得到其极坐标方程;(Ⅱ)将()0θβρ=>代入2222416cos sin ρθρθ+=,根据极坐标中极经的几何意义,即可求解。

江西省抚州市临川第一中学等2020届高三数学上学期第一次联考试题理(含解析)

江西省抚州市临川第一中学等2020届高三数学上学期第一次联考试题理(含解析)

江西省抚州市临川第一中学等2020届高三数学上学期第一次联考试题 理(含解析)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若21iz i-=+,则z z ⋅=( ) A. -2 B. 2C.52D. 52-【答案】C 【解析】 【分析】根据共轭复数的性质可知2||z z z ⋅=,直接利用复数模的性质即可求解. 【详解】因为21iz i-=+,所以|2||||1|i z i -===+ 2105||42z z z ⋅===,故选C. 【点睛】本题主要考查了复数模的性质,共轭复数的性质,属于中档题.2.设集合{}2A x x a =>,{}32B x x a =<-,若A B =∅I,则a 的取值范围为( )A. ()1,2B. ()(),12,-∞⋃+∞C. []1,2D. (][),12,-∞+∞U【答案】D 【解析】 【分析】集合的交集运算即求两个集合的公共元素,A B =∅I 说明集合,A B 没有公共元素,借助于数轴列式计算.【详解】因为A B φ⋂=,所以232a a ≥-,解得1a ≤或2a ≥.【点睛】本题考查集合的交集运算,考查运算求解能力与推理论证能力.3.设,a b ∈R ,则“()20a b a ->”是“a b >”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A 【解析】 【分析】利用充分、必要条件的定义即可判断。

【详解】()20a b a ->,因为0a ≠,可推出a b >;a b >时,若0a =,则无法推出()20a b a ->,所以“()20a b a ->”是“a b >”的充分不必要条件,故选A 。

【点睛】本题主要考查分、必要条件的定义的应用。

4.若函数()ln f x ax x =-的图象上存在与直线240x y +-=垂直的切线,则实数a 的取值范围是( ) A. ()2,-+∞ B. 1,2⎛⎫+∞⎪⎝⎭C. 1,2⎛⎫-+∞ ⎪⎝⎭D. ()2,+∞【答案】D 【解析】 【分析】函数()ln f x ax x =-的图象上存在与直线240x y +-=垂直的切线,即()2f x '=有解,转化为12,0a x x=+>有解即可求出. 【详解】因为函数()ln f x ax x =-的图象上存在与直线240x y +-=垂直的切线, 所以函数()ln f x ax x =-的图象上存在斜率为2的切线, 故()12k f x a x'==-=有解, 所以12,0a x x=+>有解,因为12,0y x x=+>的值域为(2,)+∞ 所以(2,)a ∈+∞.【点睛】本题主要考查了函数导数的几何意义,方程有根的问题,转化思想,属于中档题.5.若0x >,0y <,则下列不等式一定成立的是( ) A. 222x y x -> B. ()1222log 1xyx ->+C. 221x y x ->+D. 221x y x ->-【答案】B 【解析】 【分析】利用指数函数与对数函数的性质结合特殊值可得正确答案. 【详解】A 选项,取2,1x y ==-,不等式不成立; B 选项,0,0x y ><Q22,220x y x y ∴>->0,x >Q∴()12log 10x +<∴()1222log 1x yx ->+故B 正确;C 选项,取1,1x y ==-,不等式不成立,D 选项,当0x →, 21x →,11x -→,当0y <且0y →,21y →,所以220x y -→,而11x -→,所以不等式不成立.【点睛】本题主要考查了指数、对数函数性质,以及与不等式的交汇,属于中档题.6.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36︒的等腰三角形(另一种是顶角为108︒的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC ∆中,51BC AC -=.根据这些信息,可得sin 234︒=( )A.154- B. 358+-C. 514-D.45+ 【答案】C 【解析】 【分析】要求sin 234︒的值,需将角234︒用已知角表示出来,从而考虑用三角恒等变换公式解题.已知角有36︒,正五边形内角108︒,72ACB ∠=︒,已知三角函数值有1512cos724BCAC ︒==,所以234=272+90=144+90︒⨯︒︒︒︒,从而sin 234=cos144︒︒. 【详解】由题可知72ACB ∠=︒,且1512cos724BCAC ︒==,251cos1442cos 721+︒=︒-=, 则()51sin 234sin 14490cos144+︒=︒+︒=︒=. 【点睛】本题考查三角恒等变换,考查解读信息与应用信息的能力.7.若函数()()222,1log 1,1x x f x x x ⎧+≤⎪=⎨->⎪⎩,在(],a -∞上的最大值为4,则a 的取值范围为( )A. (]1,17B. (]1,9C. []1,17D. []1,9【答案】C 【解析】 【分析】利用分段函数的单调性,结合已知条件求解即可.【详解】因为函数()()222,1log 1,1xx f x x x ⎧+≤⎪=⎨->⎪⎩,(,1]x ∈-∞时,函数为增函数,(1,)x ∈+∞时,函数为增函数,且(1)4,(17)4f f == 所以[1,17]a ∈.【点睛】本题主要考查了分段函数的应用,函数的单调性以及函数的最值求法,属于中档题.8.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法种数是( ) A. 40 B. 60 C. 80 D. 100【答案】A 【解析】解:三个小球放入盒子是不对号入座的方法有2 种,由排列组合的知识可得,不同的放法总数是:36240C = 种.本题选择A 选项.9.执行如图所示的程序框图,若输出的结果是7,则判断框内m 的取值范围是( )A. (3042],B. (30,42)C. (42,56]D. (42,56)【答案】A 【解析】依次运行程序框图中的程序可得:第一次,0212,2S k =+⨯==,满足条件,继续运行; 第二次,2226,3S k =+⨯==,满足条件,继续运行; 第三次,62312,4S k =+⨯==,满足条件,继续运行; 第四次,122420,5S k =+⨯==,满足条件,继续运行; 第五次,202530,6S k =+⨯==,满足条件,继续运行;第六次,302642,7S k =+⨯==,不满足条件,停止运行,输出7. 故判断框内m 的取值范围为3042m <≤.选A .10.已知1F ,2F 为椭圆()222210x y a b a b +=>>的两个焦点,B 为椭圆短轴的一个端点,2121214BF BF F F ⋅≥uuu r uuu r uuu u r ,则椭圆的离心率的取值范围为( )A. 1(0,]2B. 2(0,2C. 3(0,]3D. 1(,1)2【答案】C【解析】 【分析】用,,a b c 表示出21212,BF BF F F ⋅uuu r uuu r uuu u r ,解出不等式得出e 的范围. 【详解】由椭圆定义可知:12BF BF a ==,12OF OF c ==,则1sin cOBF e a∠==, 所以22121cos 12sin 12F BF OBF e ∠=-∠=-,因为2121214BF BF F F ⋅≥uuu r uuu r uuu u r ,即222(12)e a c -≥,22(12)e e -≥,即213e ≤.303e ∴<≤. 【点睛】本题主要考查了椭圆的几何性质,平面向量的数量积运算,属于中档题.11.设曲线cos y x =与x 轴、y 轴、直线6x π=围成的封闭图形的面积为b ,若()22ln 2g x x bx kx =--在[]1,+∞上的单调递减,则实数k 的取值范围是( )A. [)0,+∞B. ()0,∞+C. [)1,+∞ D. ()1,+∞【答案】A 【解析】 【分析】由定积分可以求出b , ()22ln 2g x x bx kx =--在[]1,+∞上单调递减可转化为()0g x '≤在[]1,+∞上恒成立即可求解.【详解】由题意,6601cos sin 2|b xdx x ππ===⎰, 所以()22ln g x x x kx =--,因为()22ln g x x x kx =--在[]1,+∞上的单调递减,所以222()0x kx g x x--+'=≤在[]1,+∞上恒成立,即2()220h x x kx =--+≤在[]1,+∞上恒成立,只需14(1)0k h ⎧-≤⎪⎨⎪≤⎩,解得0k ≥.【点睛】本题主要考查了利用定积分求面积,函数的单调性与导数的关系,不等式的恒成立问题,属于中档题.12.设数列{}n a 的前n 项和为n S ,且满足122a a +=,123n n a S +=+,用[]x 表示不超过x 的最大整数,设[]n n b a =,数列{}n b 的前2n 项和为2n T ,则使22000n T >成立的最小正整数n 是() A. 5 B. 6C. 7D. 8【答案】B 【解析】 【分析】利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得数列{}n a 通项公式以及前n 项和n S ,利用二项式展开式化简[]n n b a =,求得2212211n n n n b b a a --+=+-,利用分组求和法求得数列{}n b 的前2n 项和2n T ,由此求得使22000n T >成立的最小正整数n 的值. 【详解】令1n =,得2123a a =+,又122a a +=,解得123a =,243a =,又123n n a S +=+,123n n a S -=+,所以12(2)n n a a n +=…,又212a a =,可求得23nn a =,()2213n n S =-.所以01111333(1)(1)2(31)333n n n n n n n n n n n C C C b ---⎡⎤⎡⎤⎡⎤⋅-⋅++⋅⋅-+--===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L , 即011211(1)C 3C 3C (1)3n n n n n n nnnb ----⎡⎤-=⋅-⋅++-+⎢⎥⎣⎦L ,所以2(1)(1)33n n n n b ⎡⎤---=+⎢⎥⎣⎦,即22,321,3n n n n b n ⎧-⎪⎪=⎨-⎪⎪⎩为奇数为偶数,所以2212211n n n n b b a a --+=+-,因此()2222213nn n T S n n =-=--,当5n =时,1067T =;当6n =时,1227242000T =>.使22000n T >成立的最小正整数n 是6.故选B.【点睛】本题考查等比数列通项公式及前n 项和公式,考查分组求和法,考查推理论证能力和创新意识,属于难题.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.912x ⎫⎪⎭展开式中的常数项为______.【答案】212- 【解析】 【分析】利用二项展开式的通项公式即可求出. 【详解】因为993rr 22+19911=()()22r rr r r r T C x x C x----=-, 令9302r-=,解得3r =, 所以展开式中常数项为3349121=()22T C -=-. 【点睛】本题主要考查了二项展开式的通项公式,属于中档题.14.设n S 是公差不为0的等差数列{}n a 的前n 项和,且712a a =-,则1197S Sa =+______.【答案】32【解析】 【分析】由712a a =-可得12a d =-,利用前n 项和公式及通项公式即可求解. 【详解】因为712a a =-, 所以120a d =-≠,111111011332S a d d ⨯=+=,91989182S a d d ⨯=+=,7164a a d d =+=, 所以11973331842S d S a d d ==++.【点睛】本题主要考查了等差数列的通项公式与前n 项和公式,属于中档题.15.如图所示是一几何体的三视图,正视图是一等腰直角三角形,且斜边BD 长为2,侧视图是一直角三角形,俯视图为一直角梯形,且1AB BC ==,则异面直线PB 与CD 所成角的正切值是______.2 【解析】 【分析】根据三视图画出空间图形的直观图,取AD 中点E ,连接BE ,PE ,CE ,将CD 平移到BE ,根据异面直线所成角的定义可知PBE ∠为异面直线PB 与CD 所成角,在直角三角形PBE ∆中,求出其正切值即可.【详解】作出直观图如图:取AD 中点E ,连接BE ,PE ,CE , 因为CD //BE ,根据异面直线所成角的定义可知PBE ∠为异面直线PB 与CD 所成角, 由条件知,1,2,PE BE PE BE ==⊥,2tan 22PBE ∴∠==. 【点睛】本题主要考查了异面直线所成的角,空间图形的三视图,考查了空间想象能力、运算能力,属于中档题.16.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点A 是双曲线左支上的一点,若直线1AF 与直线by x a=平行且12AF F ∆的周长为9a ,则双曲线的离心率为______. 【答案】2 【解析】 【分析】根据双曲线的定义及三角形的周长可求出2111272||,||22a c a cAF AF --==,利用直线1AF 与直线by x a =平行知12cos a AF F c∠=,结合余弦定理即可求解. 【详解】由双曲线定义知21||||2AF AF a -=,又21||||92AF AF a c +=-解得2111272||,||22a c a cAF AF --==, 因为直线1AF 与直线by x a=平行, 所以12tan b AF F a ∠=,故12cos a AF F c∠=, 由余弦定理得:12cos a AF F c∠=222121||4||2||2AF c AF AF c +-=⋅即2211844144e e e e e-++=-,化简得2280e e +-=, 解得2e =或4e =-(舍去).【点睛】本题主要考查了双曲线的定义,余弦定理,双曲线的离心率,属于难题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17—21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.ABC ∆的内角A 、B 、C 所对的边长分别为a 、b 、c ,已知()cos 4cos a B c b A =-. (1)求cos A 的值;(2)若4b =,点M 在线段BC 上,2AB AC AM +=u u u r u u u r u u u u r,AM =uuu r ABC ∆的面积.【答案】(1)1cos 4A =;(2)【解析】 【分析】(1)由正弦定理将条件统一为三角函数,化简即可求解(2)2AB AC AM +=u u u r u u u r u u u u r,两边平方可转化为关于c 的方程,求解代入三角形面积公式即可. 【详解】(1)∵()cos 4cos a B c b A =-,由正弦定理得:()sin cos 4sin sin cos A B C B A =-,即sin cos cos sin 4sin cos A B A B C A +=,即sin 4cos sin C A C =, 在ABC ∆中,sin 0C ≠,所以1cos 4A =.(2)2AB AC AM +=u u u r u u u r u u u u r ,两边平方得:22224AB AC AB AC AM ++⋅=u u u r u u u r u u u r u u u r u u u r ,由4b =,10AM =uuu r ,1cos 4A =,15sin A =得22124104c b c b ++⨯⨯⨯=⨯,可得216240c c ++=, 解得:4c =或6c =-(舍), 所以ABC ∆的面积1sin 2152S bc A ==. 【点睛】本题主要考查了正弦定理,三角恒等变换,向量数量积的性质,三角形面积公式,属于中档题.18.如图,在三棱锥P ABC -中,平面PAB ⊥平面ABC ,6AB =,23BC =,26AC =,,D E 分别为线段,AB BC 上的点,且2AD DB =,2CE EB =,PD AC ⊥.(1)求证:PD ⊥平面ABC ;(2)若PA 与平面ABC 所成的角为4π,求平面PAC 与平面PDE 所成的锐二面角.【答案】(1)证明见解析;(2)30°. 【解析】 试题分析:(1)由条件可得ABC ∆为直角三角形,且3cos ABC ∠=故由余弦定理可得22CD =所以222CD AD AC +=,从而CD AB ⊥,又由条件可得CD PD ⊥,故PD ⊥平面ABC .(2)由,,PD CD AB 两两互相垂直可建立空间直角坐标系,结合条件可求得平面PAC 的法向量和平面DEP 的法向量,根据两法向量夹角的余弦值可得锐二面角的大小. 试题解析:(1)证明:连DE ,由题意知4,2AD BD ==. 222,AC BC AB +=Q90.ACB ∴∠=o∴cos 63BC ABC AB ∠=== 在BCD ∆中,由余弦定理得2222?· cos CD BC BD BC BD DBC ∴=+-∠412228.3=+-⨯⨯=CD ∴=222CD AD AC ∴+=,∴90CDA ∠=o , ∴CD AB ⊥,又因为PAB ABC ⊥平面平面, ∴,CD PAB ⊥平面 又PD ⊂PAB 平面,,CD PD ∴⊥又PD AC ⊥,=AC CD C ⋂, ∴PD ⊥平面ABC .(2)由(1)知,,PD CD AB 两两互相垂直,建立如图所示的空间直角坐标系D xyz -,由PA 与平面ABC 所成的角为4π,知4PD =, 则()()()()0,4,0,22,0,0,0,2,0,0,0,4A C B P -∴()()()22,2,0,22,4,0,0,4,4CB AC PA =-==--u u u v u u u v u u u v因为2,2,AD DB CE EB ==//,DE AC ∴由(1)知,AC BC ⊥ PD ⊥平面ABC , ∴ CB ⊥平面DEP∴()22,2,0CB =-u u u v为平面DEP 的一个法向量.设平面PAC 的法向量为(),,n x y z v=,则,,n AC n PA ⎧⊥⎨⊥⎩u u u u v v u u u v v ∴2240440x y y z ⎧+=⎪⎨--=⎪⎩,令1z =,则2,1x y ==-,∴)2,1,1n =-v为平面PAC 的一个法向量.∴3cos ,2412||n CB n CB n CB ⋅===-⋅u u u v v u u u v vu u v u u u u v 故平面PAC 与平面PDE 3所以平面PAC 与平面PDE 的锐二面角为30o . 点睛:(1)在建立空间直角坐标系后求平面的法向量时,首先要判断一下条件中是否有垂直于面的直线.若有,则可将直线的方向向量直接作为平面的法向量,以减少运算量.(2)求二面角的余弦值时,在求得两平面法向量夹角的余弦值后,要根据图形判断出二面角是锐角还是钝角,然后再求出二面角的余弦值.19.已知椭圆()222210x y a b a b +=>>的离心率2,一个长轴顶点在直线2y x =+上,若直线l 与椭圆交于P ,Q 两点,O 为坐标原点,直线OP 的斜率为1k ,直线OQ 的斜率为2k . (1)求该椭圆的方程. (2)若1214k k ⋅=-,试问OPQ ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)2214x y +=;(2)OPQ ∆的面积为定值1. 【解析】 【分析】(1)根据离心率及长轴即可写出椭圆标准方程(2)设()11,P x y ,()22,Q x y ,当直线PQ 的斜率存在时,设其方程为y kx m =+,求PQ ,点O 到直线y kx m =+的距离21md k =+,写出三角形面积,化简即可求证.【详解】由c e a ==,又由于0a b >>,一个长轴顶点在直线2y x =+上,可得:2a =,c =,1b =.(1)故此椭圆的方程为2214x y +=.(2)设()11,P x y ,()22,Q x y ,当直线PQ 的斜率存在时,设其方程为y kx m =+, 联立椭圆的方程得:()222418440k x kmx m +++-=, 由()()222264441440k m k m ∆=-+->,可得2241m k <+, 则122841km x x k +=-+,21224441m x x k -⋅=+,12PQ x x=-=,又点O到直线y kx m=+的距离d=,122OPQS d PQ m∆=⋅⋅=,由于2121212121214y y x x mk kx x x x++⋅===-,可得:22421k m=-,故2212OPQS mm∆=⋅=,当直线PQ的斜率不存在时,可算得:1OPQS∆=,故OPQ∆的面积为定值1.【点睛】本题主要考查了椭圆的标准方程,直线与椭圆的位置关系,三角形的面积公式,考查了学生的运算能力及推理能力,属于难题.20.抚州不仅有着深厚的历史积淀与丰富的民俗文化,更有着许多旅游景点.每年来抚州参观旅游的人数不胜数.其中,名人园与梦岛被称为抚州的两张名片,为合理配置旅游资源,现对已游览名人园景点的游客进行随机问卷调查.若不去梦岛记1分,若继续去梦岛记2分.每位游客去梦岛的概率均为23,且游客之间的选择意愿相互独立.(1)从游客中随机抽取3人,记总得分为随机变量X,求X的分布列与数学期望;(2)若从游客中随机抽取m人,记总分恰为m分的概率为m A,求数列{}m A的前6项和;(3)在对所有游客进行随机问卷调查的过程中,记已调查过的累计得分恰为n分的概率为n B,探讨n B与1n B-之间的关系,并求数列{}n B的通项公式.【答案】(1)详见解析;(2)364729;(3)1213n nB B-=-+;322553nnB⎛⎫=+⋅-⎪⎝⎭.【解析】【分析】(1)根据n 次独立重复试验模型可求解(2)总分恰为m 的概率13mm A ⎛⎫= ⎪⎝⎭,求前6项和即可(3)已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为123n B -,可得递推关系1213n n B B -=-+,构造等比数列求解即可. 【详解】(1)X 可能取值为3,4,5,6()3113327P X ⎛⎫=== ⎪⎝⎭, ()21321643327P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()223211253327P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,()3286327P X ⎛⎫===⎪⎝⎭, 故其分布列为()5E X =.(2)总分恰为m 的概率13mm A ⎛⎫= ⎪⎝⎭, 故6611(1)36433172913S -==-.(3)已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为123n B -,而113B =, 故1213n n B B --=,即1213n n B B -=-+,可得1323535n n B B -⎛⎫-=-- ⎪⎝⎭,134515B -=-, 所以13425153n n B -⎛⎫-=-- ⎪⎝⎭可得322553nn B ⎛⎫=+⋅- ⎪⎝⎭.【点睛】本题主要考查了n 次独立重复试验,分布列、期望,等比数列求和,由递推关系式求通项公式,属于难题.21.已知函数()()()22112ln 1ln 242f x x x ax x x =----. (1)讨论()f x 的单调性.(2)试问是否存在(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立?若存在,求a 的取值范围;若不存在,请说明理由.【答案】(1)见解析;(2) 存在;a 的取值范围为(]2,e . 【解析】 【分析】(1)()()()ln ln ln 1f x x x a x a x x a x =-+-=--',()0,x ∈+∞,所以()0f x '=得12,x a x e ==,所以通过对a 与0,e 的大小关系进行分类讨论得()f x 的单调性;(2)假设存在满足题意的a 的值,由题意需()min 13sin 44a f x π>+,所以由(1)的单调性求()min f x 即可;又因为()13sin 44a f x π>+对[)1,x ∈+∞恒成立,所以可以考虑从区间[)1,+∞内任取一个x 值代入,解出a 的取值范围,从而将(],a e ∈-∞的范围缩小减少讨论.【详解】解:(1)()()()ln ln ln 1f x x x a x a x x a x =-+-=--',()0,x ∈+∞. 当a e =时,()()()ln 10f x x e x '=--≥,()f x 在()0,∞+上单调递增当0a ≤时,0x a ->,()f x 在()0,e 上单调递减,在(),e +∞上单调递增 当0a e <<时,()f x 在(),a e 上单调递减,在()0,a ,(),e +∞上单调递增; 当a e >时,()f x 在(),e a 上单调递减,在()0,e ,(),a +∞上单调递增.(2)假设存在(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立. 则()31123sin 444a f a π=->+,即8sin1504a a π-->, 设()8sin 154xg x x π=--,则存在(],x e ∈-∞,使得()0g x >, 因为()8cos044xg x ππ='->,所以()g x 在(],x e ∈-∞上单调递增, 因为()20g =,所以()0g x >时2x >即2a >. 又因为()13sin 44a f x π>+对[)1,x ∈+∞恒成立时,需()min 13sin 44a f x π>+, 所以由(1)得:当a e =时,()f x 在[)1,+∞上单调递增,所以()()min 331=2=244f x f a e =--, 且3123sin 444e e π->+成立,从而a e =满足题意. 当2e a <<时,()f x 在(),a e 上单调递减,在[)1,a ,(),e +∞上单调递增,所以()()2113sin ,4413sin ,444a f e a f e ea ππ⎧>+⎪⎪⎨⎪=->+⎪⎩所以22,4sin 1204a a ea e π>⎧⎪⎨--->⎪⎩(*) 设()()24sin 1242xh x ex e x e π=---<<,()4cos044xh x e ππ=-'>,则()h x 在()2,e 上单调递增,因为()228130h e e =-->,所以()h x 的零点小于2,从而不等式组(*)的解集为()2,+∞, 所以2x e <<即2e a <<.综上,存在(],a e ∈-∞,使得()13sin 44a f x π>+对[)1,x ∈+∞恒成立,且a 的取值范围为(]2,e .【点睛】求可导函数()f x 的单调区间的一般步骤是:(1)求定义域;(2)求()f x ';(3)讨论()f x '的零点是否存在;若()f x '的零点有多个,需讨论它们的大小关系及是否在定义域内;(4)判断()f x '在每个区间内的正负号,得()f x 的单调区间.当()f x a >在区间D 上恒成立时,需()min f x a >.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.在直角坐标系xOy 中,曲线C 的参数方程为2cos ,2sin x y αα=⎧⎨=⎩([0,2),απα∈为参数),在同一平面直角坐标系中,经过伸缩变换'2,'x x y y=⎧⎨=⎩得到曲线1C ,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系(ρ为极径,θ为极角).(Ⅰ)求曲线C 的直角坐标方程和曲线1C 的极坐标方程;(Ⅱ)若射线():0OA θβρ=>与曲线1C 交于点A ,射线():02OB πθβρ=+>与曲线1C 交于点B ,求2211OAOB +的值. 【答案】(Ⅰ)224x y +=,2222416cos sin ρθρθ+=;(Ⅱ)516. 【解析】【分析】 (Ⅰ)消去参数,求得曲线C 的直角方程为224x y +=,再根据图象的变换公式,即可求解曲线1C 的方程,进而得到其极坐标方程;(Ⅱ)将()0θβρ=>代入2222416cos sin ρθρθ+=,根据极坐标中极经的几何意义,即可求解。

临川区高三数学第一次模拟考试试题 理(扫描版)(2021学年)

临川区高三数学第一次模拟考试试题 理(扫描版)(2021学年)

江西省抚州市临川区2017届高三数学第一次模拟考试试题理(扫描版) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江西省抚州市临川区2017届高三数学第一次模拟考试试题理(扫描版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江西省抚州市临川区2017届高三数学第一次模拟考试试题理(扫描版)的全部内容。

江西省抚州市临川区2017届高三数学第一次模拟考试试题理(扫描版)以上就是本文的全部内容,可以编辑修改。

高尔基说过:“书是人类进步的阶梯。

”我希望各位朋友能借助这个阶梯不断进步。

物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。

很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。

用学习来激活我们的想象力和思维,建立我们的信仰,从而保有我们纯粹的精神世界,抵御外部世界的袭扰。

Theabove is the whole content of this article, Gorky said: "the b ookis theladder of humanprogress." Ihopeyoucan make progress with the help of thisladder. Material life is extremely rich, science andtechnology are developingrapidly, all of whichgraduallychangethe wayof people's study and leisure.Many peoplearenolonger eager topursue a document, but as long asyoustillhavesuch asmall persistence, youwillcontinue togrow and progress. Whenthe complexworld leads ustochase out, reading anarticle or doing aproblem makesuscalm downand return to ourselves.Withlearning,wecanactivate our imagination and thinking, establish our belief, keep ourpure spiritualworldand resist the attack of theexternal world.。

临川区高三数学第一次模拟考试试题 理(扫描版)(2021年整理)

临川区高三数学第一次模拟考试试题 理(扫描版)(2021年整理)

江西省抚州市临川区2017届高三数学第一次模拟考试试题理(扫描版)编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江西省抚州市临川区2017届高三数学第一次模拟考试试题理(扫描版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江西省抚州市临川区2017届高三数学第一次模拟考试试题理(扫描版)的全部内容。

江西省抚州市临川区2017届高三数学第一次模拟考试试题理(扫描版)。

江西省抚州市第一中学2020届高三下学期3月综合模拟考试 数学(理)试题(PDF版缺答案)


的体积是
A. 36
B. 45
C. 54
D. 63
10.
已知双曲线⺁2 2
2
2 ꅘ 1
䀀 0 䀀 0 的离心率为 2, 1, 2分别是双曲线的左、右焦点,点
0,
0 ,点 P 为线段 MN 上的动点,当 1 2取得最小值和最大值时, 1 2的面积分别为 1, 2,
则 1ꅘ 2
A. 4
B. 8
11. 设函数 ⺁ 在定义域 0
B. 1
C. 0
D. 2
二、填空题(本大题共 4 小题,共 20.0 分)
13.

1 ⺁
2 4的展开式中⺁2的系数为____________.
14. 设 x, ,向量 ꅘ ⺁ 1 , ꅘ 2 ,ܿ ꅘ 2 2 ,且 ܿ, ܿ,则
15. 在三棱锥
鳸ᛏ 中,已知 鳸 ꅘ 鳸ᛏ ꅘ ᛏ ꅘ 2 ꅘ 2 ᛏ ꅘ 6,且平面
1ᛏ. 如图,在四面体 ABCD 中, ᛏ
,平面 ᛏ 平面 ABC, ꅘ 鳸 ꅘ 2 鳸,且 ᛏ 鳸 ꅘ 4.
2
1 证明: 鳸 平面 ABD;
2 设 E 为棱 AC 的中点,当四面体 ABCD 的体积取得最大值时,求二面角 鳸 ᛏ 的余弦值.
2
20. 已知顶点为原点的抛物线 C 的焦点与椭圆 2
⺁2 ꅘ 1 a>1 的上焦点重合,且过点 2 2 1 .
ꅘ1
2
3
,则 6 ꅘ
A. 6
B. 16
C. 32
D. 64
ᛏ. 榫卯是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部位相结合的一种连接方式.广泛
用于建筑,同时也广泛用于家具.我国的北京紫禁城,山西悬空寺,福建宁德的廊桥等建筑都用到了
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省抚州市临川区第一中学 2018届高三高考仿真模拟 数学(理)试题 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知复数满足,则的虚部是( ) A.-1 B. 1 C.-2 D.2 2.已知集合{|05}AxRx,2{|log2}BxRx,则( ) A. B. C. D. 3.已知公差不为0的等差数列满足成等比数列,Sn为数列的前n项和,则的值为( ) A.2 B.-2 C.3 D.-3 4. 阅读程序框图,该算法的功能是输出( )

A.数列 的前 项的和 B.数列的第项 C. 数列的前项的和 D.数列的第项 5.已知向量,则“”是“与夹角为锐角”的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件

) 图象大致为(1)(.6的函数xexxf A. B. C. D. 7.已知函数()3cos(2)cos22fxxx,若要得到一个奇函数的图象,则可以将函数的图象( ) A.向左平移个单位长度 B.向右平移个单位长度 C. 向左平移个单位长度 D.向右平移个单位长度

8.在满足条件21031070xyxyxy的区域内任取一点,则点满足不等式的概率为( ) A. B. C. D. 9.《红海行动》是一部现代化海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撒侨任务的故事.撒侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A必须排在前三位,且任务E、F必须排在一起,则这六项任务的不同安排方案共有( ) A.240种 B.188种 C.156种 D.120种

2222CO10:1AxyCabA已知双曲线的右顶.原点,以为圆心的圆与点为,为标双曲线坐

的某一

条渐近线交于两点P,Q,若∠PAQ=且,则双曲线C的离心率为( ) A.2 B. C. D.3

11.已知动点在直线上,动点在圆22:2220Cxyxy上,若,则的最大值为( ) A.2 B.4 C.5 D.6 12.对于任意的实数,总存在三个不同的实数,使得成立,则实数的取值范围是( ) A. B. C. D.

第Ⅱ卷(共90分) 二、填空题:本题共4小题,每题5分,满分20分,将答案填在答题卡上. 13. 已知向量与的夹角为,且,,则 . 14.若321(1)()()nyxnNxy的展开式中存在常数项,则常数项为 . 15.如下图,现有一个为圆心角、湖岸与为半径的扇形湖面,现欲在弧上取不同于的点,用渔网沿着弧(弧在扇形的弧上),半径和线段(其中),在该扇形湖面内隔出两个养殖区域——养殖区域Ⅰ和养殖区域Ⅱ,若, , ,求所需渔网长度(即图中弧,半径和线段长度之和)的最大值为__________.

16.某多面体的三视图如上图所示,则该多面体外接球的体积为 . 三、解答题 (共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 若函数13sincoscos2fxxxx,其中,函数的图象与直线相切,切点的横坐标依次组成公差为的等差数列,且为偶函数. (1)试确定函数的解析式与的值; (2)在中,三边的对角分别为,且满足,的面积为,试求的最小值. 18.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.据统计,该基地的西红柿增加量(百斤)与使用某种液体肥料(千克)之间对应数据为如图所示的折线图.

(1)依据数据的折线图,是否可用线性回归模型拟合与的关系?请计算相关系数并加以说明(精确 到0.01);(若,则线性相关程度很高,可用线性回归模型拟合) (2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量限制,并有如表关系:

若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?

附:相关系数公式12211()()()()niiinniiiixxyyrxxyy,参考数据,.

19.如图,在长方形中,,,现将沿折起,使折到的位置且在面的射影恰好在线段上. (Ⅰ)证明:; (Ⅱ)求锐二面角的余弦值.

20.已知椭圆01:2222babyaxE的焦距为,,圆)0(:222rryxO与轴交于点为椭圆上的动点,PMNaPNPM,2面积最大值为. (1)求圆与椭圆的方程; (2)圆的切线交椭圆于点,求的取值范围.

21.已知函数,. (1)讨论函数的单调性; (2)设函数,若在上存在极值,求的取值范围,并判断极值的正负. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程

平面直角坐标系中,直线的参数方程为131xtyt(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)写出直线的极坐标方程与曲线的直角坐标方程; (2)已知与直线平行的直线过点,且与曲线交于两点,试求.

23.选修4-5:不等式选讲 已知不等式. (1)若,求不等式的解集; (2)若不等式的解集不是空集,且,求满足条件的最小整数的值. 临川一中2018届高三年级全真模拟考试 数学(理科)答案 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B D A D A C C B D B C A 二、填空题 13. 2 14.-84 15. 三、解答题

17.解析:( 1)2133sincoscossin2222fxxxxx 1cos2131sin2cos22sin2222226xxxx





由函数

的图象与直线相切可得....................3分 ∵为偶函数,∴262kkZ,∴, ∵, ∴,由题意可得, ∴,

∴函数的解析式为sin2cos22fxxx....................6分 (2)由(1)知函数, ∵, ∴,又, ∴,

∵1123sinsin22312ABCSabCabc, ∴,...................9分 根据余弦定理可得222232cos3ababab, ∴222292ababababab, ∴,当且仅当时,取等号,故的最小值为....................12分 18.解:(1)由已知数据可得2456855x,3444545y,....2分

因为51()()(3)(1)000316iiixxyy, 5222222

1()(3)(1)01325iixx

, 5222222

1()(1)00012ijyy

所以相关系数12211()()()()niiinniiijxxyyrxxyy690.9510252, 因为,所以可用线性回归模型拟合与的关系...................6分 (2)记商家周总利润为元,由条件可知至少需要安装1台,最多安装3台光照控制仪. ①安装1台光照控制仪可获得周总利润3000元; ②安装2台光照控制仪的情形: 当时,只有1台光照控制仪运行,此时周总利润300010002000Y元, 当时,2台光照控制仪都运行,此时周总利润元, 故的分布列为: 2000 6000 0.2 0.8 所以()20000.260000.85200EY ③安装3台光照控制仪的情形: ()10000.250000.790000.14600EY元.

综上可知,为使商家周利润的均值达到最大应该安装2台光照控制仪............12分 19.(Ⅰ)由题知平面,又平面,∴; 又且,∴平面; 又平面,∴; 又且,∴平面; 又平面,所以..................5分

(Ⅱ)在中,,由射影定理知,. 以为原点,建立如图所示空间直角坐标系. 则,,,,,, 设是平面的一个法向量,

则mPCmEP,∴00mPCmEP,即(,,)(2,3,3)0(,,)(0,0,3)0xyzxyz,

即23300xyzz,取320xyz,所以; 设是平面的一个法向量, 则nPCnPB,∴00nPCnPB,即(,,)(2,3,3)0(,,)(0,3,3)0abcabc,

即2330330abcbc,取013abc,所以; 设锐二面角的大小为, 则213coscos,13134mnmnmn 所以锐二面角余弦值为....................12分 20.解:(1)因为,所以.① 因为,所以点为椭圆的焦点,所以. 设,则,所以0021yayrSPMN. 当时,321maxabSPMN,② 由①,②解得,所以,. 所以圆的方程为,椭圆的方程为...............5分 (2)①当直线的斜率不存在时,不妨取直线的方程为,解得3),23,1(),23,1(ABBA. ②当直线的斜率存在时,设直线的方程为),(),,(,2211mkxxBmkxxAmkxy. 因为直线与圆相切,所以,即,.............6分

联立mkxyyx13422,消去可得01248)34(222mkmxxk,

相关文档
最新文档