北师大版初一数学下册期末考试试卷1及答案

合集下载

【最新】北师大版数学七年级下册《期末检测试卷》附答案

【最新】北师大版数学七年级下册《期末检测试卷》附答案

北师大版七年级下学期期末考试数学试题时间:120分钟 总分:120分一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果正确的是( )A. 326a a a ⋅=B. 2323a a a +=C. ()236a a =D. ()222x y x y -=- 2.计算()()2222a bab ÷的结果是( ) A. 34a B. 4ab C. 3a D. 24a 3.等腰三角形中有两条边的长度分别是8,4cm cm ,那么这个三角形的周长是( )A. 20cmB. 16cmC. 20cm 或16cmD. 无法确定4.2018-2019学年度七星关区区级配套“教育精准扶贫”资金约1410000元,1410000用科学计数法表示为( )A. 61.4110⨯B. 71.4110⨯C. 51.4110⨯D. 41.4110⨯ 5.下列图形中不是轴对称图形的是( ) A. B. C. D.6.若750),(a m a n a ==≠,那么2a 用含m 和n 的代数式表示为( ) A. m n ⋅ B. m nC. n mD. m n -7.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球( ) A. 4个 B. 12个 C. 8个 D. 不确定 8.如图,已知两条直线//m n ,直线AB 与m 交于点A 与n 交于点B ,145,∠=︒那么2∠度数是( )A . 125oB. 135oC. 120oD. 145o9.如图,在ABC V 中,50A B C ∠=︒∠=∠,,点D E F 、、分别在各边上,BE CF BD CE ==,, 则DEF ∠的度数是( )A. 75︒B. 70︒C. 65︒D. 50︒10.若29x kx ++是完全平方式,则k 的值是( )A. 6B. 6-C. 6或6-D. 2 11.已知4,2,x y xy +==那么()2x y -的值是( )A. 4B. 8C. 2 D 1.12.已知关于,x y 的代数式2632m x y +与261n x y +-是同类项,那么m n 的值是( )A. 9B. 9-C. 19D. 19- 13.如图,若直线//,AB CD 那么1,2∠∠与3∠之间的数量关系是( )A. 123∠+∠=∠B. 1223∠+∠=∠C. 321∠+∠=∠D. 11232∠+∠=∠ 14.如图,四边形ABCD 中,//AD BC ,下列条件能使ADC CBA △≌△的有( )AD BC =①;D B ∠=∠②;//AB CD ③A. ①B. ②C. ③D. 以上都可以15.某人从家出发,步行去图书馆看书.下面的图像反映了他离家的距离()s 与时间()t 的关系.下列说法中正确的有( ) ①出发时的速度是每分钟60米;②在图书馆看了80分钟的书;③家到图书馆1200米;④回家时速度是每分钟80米;A. ①③④B. ①②③④C. ②③④D. ①②④二、填空题(每题5分,满分25分,将答案填在答题纸上)16.02-=________________.17.某个三角形的边长均为整数,有两边长分别是14,cm cm 、那么第三边是____________. 18.已知:()2120x y ++-=,那么y x =_________________. 19.如图,在ABC V 中,54A ∠=︒,若BO CO 、分别是ABC ∠与ACB ∠的角平分线,交于点O ,那么BOC ∠的度数是________________.20.如图,在第一个1A BC V 中,30B ∠=︒,1A B CB =,在边1A B 上任取一D ,延长1CA 到2A ,使121A A A D =,得到第2个12A A D V ,在边2A D 上任取一点E ,延长12A A 到3A ,使232A A A E =,得到第三个23A A E △,…按此做法继续下去,第n 个等腰三角形的底角的度数是________________.三、解答题 (共80分.解答应写出文字说明、证明过程或演算步骤.)21.计算: 20182201911222828⎛⎫--⨯-+⨯ ⎪⎝⎭22.化简求值:()()()22222,x y x y x y y ⎡⎤⎣+⎦+--÷其中1,12x y ==- 23.如图,在ABC V 中,AB 的垂直平分线MN 交AB 于点D ,交AC 于点E ,且15AC =,BCE V 的周长等于25.求BC 的长.24.如图,在ABC V 中,M 为AC 中点,连接BM ,点D 为BM 上的一点,过点C 作CE BM ∥ ,过点D 作DE AB ∥,CE DE 、交于点E ,连接BE ,求证:BE AD =.25.在一个不透明的袋子中装有红、黑、白三种球共100个,他们除了颜色外其余完全一样. 已知黑球是白球的2倍少5个,将球充分搅匀后,随机摸出一球是红球的概率是310(1)这三种球各有多少个?(2)随机摸出一球是白球的概率是多少?(3)若从袋子中拿出10个球(没有红球)后,随机摸一次摸到红球的概率是多少?26.如图,ABC V 中,90BAC ∠=︒ ,AB AC = ,AE 是过A 点一条直线l(1)作BD l ⊥ 于点D ,CE l ⊥ E 点,若B 点和C 点在直线l 的同侧,求证:DE BD CE =+ ; (2)若直线l 绕点A 旋转到B 点和C 点在其两侧,其余条件不变,问:BD DE CE 、、的关系如何?请予以证明.27.某学校校长暑假期间将带领该校市级“三好学生”到北京旅游,到旅行社打听价格时,甲旅行社说:“如果校长买一张全票,其余学生可享受半价优惠.”乙旅行社说:“包括校长在内全部按6折优惠.”票价为240元.(1)设学生数为x ,用含x 的代数式表示两个旅行社的收费;(2)当学生是多少时,两家旅行社的收费一样?(3)当学生数不是(2)中的数,你将怎样选择旅行社?答案与解析一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果正确的是( )A. 326a a a ⋅=B. 2323a a a +=C. ()236a a =D. ()222x y x y -=- 【答案】C【解析】【分析】结合选项分别进行幂的乘方和积的乘方以及合并同类项等运算,然后选择正确选项.【详解】解:A 、325a a a ⋅=,原式计算错误,故本选项错误;B 、22a 与a 不能合并,故本选项错误;C 、()236a a =,原式计算正确,故本选项正确;D 、()2222x y x xy y -=-+,原式计算错误,故本选项错误.故选:C .【点睛】此题考查幂的乘方和积的乘方,解题的关键是幂的乘方和积的乘方以及合并同类项的运算法则. 2.计算()()2222a bab ÷的结果是( ) A. 34aB. 4abC. 3aD. 24a 【答案】D【解析】【分析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算即可.【详解】()()2222a bab ÷=()()42222=44a b a b a ÷,故选D.【点睛】此题考查整式除法,解题关键在于掌握运算法则.3.等腰三角形中有两条边的长度分别是8,4cm cm ,那么这个三角形的周长是( )A. 20cmB. 16cmC. 20cm 或16cmD. 无法确定 【答案】A根据三角形的任意两边之和大于第三边,来确定这个三角形的腰是多少,进而可求出它的周长,据此解答.【详解】解:4+4=8(厘米)8厘米=8厘米,两边之和等于第三边,所以腰不能为4厘米.8+4=12(厘米)12厘米>8厘米,两边之和大于第三边,所以腰是8厘米.8+8+4=20(厘米)答:这个三角形的周长是20厘米.故选:A.【点睛】此题考查三角形三边的应用,解题关键在于根据三角形的任意两边之和大于第三边,来确定腰是多少.4.2018-2019学年度七星关区区级配套“教育精准扶贫”资金约1410000元,1410000用科学计数法表示为()A. 61.4110⨯1.4110⨯ D. 41.4110⨯ B. 71.4110⨯ C. 5【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将1410000用科学记数法表示为6⨯,1.4110故选:A.【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列图形中不是轴对称图形的是()A. B.C. D.【答案】D根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项符合题意;故选:D .【点睛】此题考查轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 6.若750),(a m a n a ==≠,那么2a 用含m 和n 的代数式表示为( )A. m n ⋅B. m nC. n mD. m n - 【答案】B【解析】【分析】利用同底数幂的除法法则进行计算即可.【详解】∵750),(a m a n a ==≠,∴752a a a ÷=,∴2a =m n, 故选B.【点睛】此题考查同底数幂的除法,解题关键在于掌握运算法则.7.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球( ) A. 4个B. 12个C. 8个D. 不确定【答案】C【解析】【分析】 首先设黑球的个数为x 个,根据题意得:4143=x +,解此分式方程即可求得答案. 【详解】设黑球的个数为x 个,根据题意得:4143=x +, 解得:x=8, 经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.8.如图,已知两条直线//m n ,直线AB 与m 交于点A 与n 交于点B ,145,∠=︒那么2∠度数是( )A. 125oB. 135oC. 120oD. 145o【答案】B【解析】【分析】 根据平行线的性质进行解答即可.【详解】∵//m n ,∴∠1=∠3=45°,∠2=180°-∠1=135°,故选B.【点睛】此题考查平行线的性质,解题关键在于掌握其性质定义.9.如图,在ABC V 中,50A B C ∠=︒∠=∠,,点D E F 、、分别在各边上,BE CF BD CE ==,, 则DEF ∠的度数是( )A. 75︒B. 70︒C. 65︒D. 50︒【答案】C【解析】【分析】 首先证明△DBE ≌△ECF ,进而得到∠EFC=∠DEB ,再根据三角形内角和计算出∠CFE+∠FEC 的度数,进而得到∠DEB+∠FEC 的度数,然后可算出∠DEF 的度数.【详解】解:∵AB=AC ,∴∠B=∠C ,在△DBE 和△ECF 中,BD EC B C EB CF ⎧⎪∠∠⎨⎪⎩=== ,∴△DBE ≌△ECF (SAS ),∴∠EFC=∠DEB ,∵∠A=50°,∴∠C=(180°-50°)÷2=65°,∴∠CFE+∠FEC=180°-65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°-115°=65°.故选C.【点睛】此题考查全等三角形的判定及性质,三角形内角和定理的运用,解题关键在于证明三角形全等. 10.若29x kx ++是完全平方式,则k 的值是( )A. 6B. 6-C. 6或6-D. 2 【答案】C【解析】【分析】先根据两平方项项确定出这两个数是x 和3,再根据完全平方公式求解即可.【详解】∵x 2+kx+9=x 2+kx+32,∴kx=±2×x×3, 解得k=±6. 故选:C .【点睛】此题考查完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.解题的关键是利用平方项来确定这两个数.11.已知4,2,x y xy +==那么()2x y -的值是( )A. 4B. 8C. 2 D 1. 【答案】B【解析】【分析】根据(x-y )2=(x+y )2-4xy ,代入计算即可;【详解】∵x+y+4,xy=2,∴(x-y )2=(x+y )2-4xy=16-8=8.故选B.【点睛】此题考查完全平方公式,解题的关键是灵活运用公式解决问题.12.已知关于,x y 的代数式2632m x y +与261n x y +-是同类项,那么m n 的值是( )A. 9B. 9-C. 19D. 19- 【答案】A【解析】【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.根据同类项的定义中相同字母的指数也相同,可先列出关于x 和y 的二元一次方程组,再解方程组求出它们的值. 【详解】由同类项的定义,得26=23=61m n +⎧⎨+⎩,解得=21=3m n -⎧⎪⎨⎪⎩ . 则m n =-21=93⎛⎫ ⎪⎝⎭ 故选:A .【点睛】此题考查同类项的定义、方程思想.解题关键在于掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.13.如图,若直线//,AB CD 那么1,2∠∠与3∠之间的数量关系是( )A. 123∠+∠=∠B. 1223∠+∠=∠C. 321∠+∠=∠D. 11232∠+∠=∠【答案】A【解析】【分析】过点G 做FE ∥//,AB CD 再利用平行线的性质即可解答.【详解】如图过点G 做FE ∥//,AB CD∵FE ∥//,AB CD∴∠1=∠BGE,∠2=∠DGE,∵∠BGE+∠DGE=∠3,∴123∠+∠=∠,故选A.【点睛】此题考查平行线的性质,解题关键在于掌握其性质.14.如图,四边形ABCD 中,//AD BC ,下列条件能使ADC CBA △≌△的有()AD BC =①;D B ∠=∠②;//AB CD ③A. ①B. ②C. ③D. 以上都可以【答案】A【解析】【分析】 已知//AD BC ,可得∠DAC=∠BCA ,加上公共边AC ,所以根据“SAS”判断ADC CBA △≌△时,需要添加AD=BC .【详解】A .若添加AD=BC ,因为//AD BC 则∠DAC=∠BCA ,依据SAS 可得ADC CBA △≌△,故A 选项正确;B .若添加D B ∠=∠,因为//AD BC 则∠DAC=∠BCA ,不能判定ADC CBA △≌△,故B 选项错误; C .若添加//AB CD ,则不能判定ADC CBA △≌△,故C 选项错误;故D 错误;故选:A .【点睛】此题考查全等三角形的判定,解题关键在于掌握判定定理.15.某人从家出发,步行去图书馆看书.下面的图像反映了他离家的距离()s 与时间()t 的关系.下列说法中正确的有( ) ①出发时的速度是每分钟60米;②在图书馆看了80分钟的书;③家到图书馆1200米;④回家时速度是每分钟80米;A. ①③④B. ①②③④C. ②③④D. ①②④【答案】A【解析】【分析】根据图象可以得到某人家距离图书馆的距离;某人从家到图书馆用多少分钟;某人在图书馆的时间;某人步行去图书馆的平均速度;某人步行回家的平均速度,由此即可求解.【详解】解:如图,①根据图象可知出发时的速度是每分钟1200=6020米,故说法正确;②在图书馆看了80-20=60分钟的书,故说法错误;③家到图书馆1200米,故说法正确;④回家时速度是每分钟1200=8095-80米,故说法正确.在这四种说法中,正确有三个①③④.故选:A.【点睛】此题考查函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(每题5分,满分25分,将答案填在答题纸上)16.02-=________________.【答案】-1【解析】【分析】根据零指数幂进行计算即可.【详解】02-=-1,故答案为:-1.【点睛】此题考查零指数幂,解题关键在于掌握运算法则.17.某个三角形的边长均为整数,有两边长分别是14,cm cm 、那么第三边是____________. 【答案】4cm【解析】【分析】根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再根据第三边为整数即可得出答案.【详解】根据三角形的三边关系,得3cm <第三边<5cm ,故第三边为4,故答案为:4cm .【点睛】此题考查三角形的三边关系的应用,解题关键在于掌握任意两边之差<第三边.18.已知:()2120x y ++-=,那么y x =_________________.【答案】1.【解析】【分析】 先根据非负性求出x=-1,y=2,再代入x,y 即可得出结论.【详解】∵|x+1|+(y-2)2=0,∴x+1=0,y-2=0,∴x=-1,y=2,∴y x =()2-1 =1.故答案为:1. 【点睛】此题考查整式的非负性,求出x=-1,y=2是解题的关键.19.如图,在ABC V 中,54A ∠=︒,若BO CO 、分别是ABC ∠与ACB ∠的角平分线,交于点O ,那么BOC ∠的度数是________________.【答案】117°【解析】【分析】先根据三角形内角和定理求出∠ABC+∠ACB 的度数,再根据BO 、CO 分别平分∠ABC 与∠ACB 求出∠1+∠2的度数,由三角形内角和定理即可得出∠BOC 的度数.【详解】∵∠A=54°,∴∠ABC+∠ACB=180°-54°=126°.∵BO 、CO 分别是∠ABC 、∠ACB 的角平分线,∴∠1+∠2=12(∠ABC+∠ACB )=12×126°=63°, ∴∠BOC=180°-(∠1+∠2)=180°-63°=117°.故答案为:117°.【点睛】此题考查三角形内角和定理,解题关键在于掌握三角形内角和是180°.20.如图,在第一个1A BC V 中,30B ∠=︒,1A B CB =,在边1A B 上任取一D ,延长1CA 到2A ,使121A A A D =,得到第2个12A A D V ,在边2A D 上任取一点E ,延长12A A 到3A ,使232A A A E =,得到第三个23A A E △,…按此做法继续下去,第n 个等腰三角形的底角的度数是________________.【答案】1752n -︒ 【解析】【分析】 先根据等腰三角形的性质求出∠BA 1C 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角度数.【详解】解:∵在△CBA 1中,∠B=20°,A 1B=CB ,∴∠BA 1C =1802B ︒-∠ =75°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C=12×75°=37.5°; 同理可得,∠EA 3A 2=754° ,∠FA 4A 3=758° , ∴第n 个等腰三角形的底角的度数=1752n -︒. 故答案为1752n -︒. 【点睛】此题考查等腰三角形的性质及三角形外角的性质,根据题意得出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,进而找出规律是解题的关键.三、解答题 (共80分.解答应写出文字说明、证明过程或演算步骤.)21.计算: 20182201911222828⎛⎫--⨯-+⨯ ⎪⎝⎭【答案】3【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果. 【详解】原式=-4-2+1+20181888⎛⎫⨯⨯ ⎪⎝⎭=-5+8=3. 【点睛】此题考查有理数的混合运算,解题关键在于掌握运算法则.22.化简求值:()()()22222,x y x y x y y ⎡⎤⎣+⎦+--÷其中1,12x y ==- 【答案】2x+y ,0.【解析】【分析】根据完全平方公式和平方差公式展开后合并同类项,再根据多项式除以单项式法则进行计算即可.【详解】解:[(2x+y )2-(2x+y )(2x-y )]÷2y , =(4x 2+4xy+y 2-4x 2+y 2)÷2y ,=(4xy+2y 2)÷2y ,=2x+y ,当1,12x y ==-时, 原式=2×12+(-1)=0. 【点睛】此题考查整式的加减、除法,完全平方公式,平方差公式,能熟练地运用性质进行计算是解题的关键.23.如图,在ABC V 中,AB 的垂直平分线MN 交AB 于点D ,交AC 于点E ,且15AC =,BCE V 的周长等于25.求BC 的长.【答案】10【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE ,然后求出△BCE 的周长=AC+BC ,再求解即可;【详解】∵AB 的垂直平分线MN 交AB 于点D ,∴AE=BE ,∴△BCE 的周长=BE+CE+BC=AE+CE+BC=AC+BC , ∵AC=15,∴BC=25-15=10;【点睛】此题考查线段垂直平分线的性质,熟记其性质并准确识图是解题的关键.24.如图,在ABC V 中,M 为AC 中点,连接BM ,点D 为BM 上的一点,过点C 作CE BM ∥ ,过点D 作DE AB ∥,CE DE 、交于点E ,连接BE ,求证:BE AD =.【答案】见解析【解析】【分析】根据题干给出的条件可以证明△ABD ≌△DEF ,可以得四边形ABED 是平行四边形,可得BE=AD .【详解】如图,延长AD 交EC 于F ,∵M 是AC 的中点,BM ∥EC ,∴AD=DF ,∠ADB=∠DFE又∵AB ∥DE ,∴∠BAD=∠EDF ,在△ABD 和△DEF 中,===BAD EDF AD DFADB DFE ∠∠⎧⎪⎨⎪∠∠⎩, ∴△ABD ≌△DEF (ASA ),∴AB=DE∴四边形ABED 是平行四边形,∴BE=AD .【点睛】此题考查平行四边形的判定,掌握全等三角形对应边相等的性质,求证△ABD ≌△DEF 是解题的关键.25.在一个不透明的袋子中装有红、黑、白三种球共100个,他们除了颜色外其余完全一样. 已知黑球是白球的2倍少5个,将球充分搅匀后,随机摸出一球是红球的概率是310(1)这三种球各有多少个?(2)随机摸出一球是白球的概率是多少?(3)若从袋子中拿出10个球(没有红球)后,随机摸一次摸到红球的概率是多少?【答案】(1)红球有30,黑球45,白球有25;(2)14 ;(3)13; 【解析】【分析】 (1)根据红、黑、白三种颜色球共有的个数乘以红球的概率求出红球的数量,再设白球有x 个,得出黑球有(2x-5)个,根据题意列出方程,求出白球的个数,即可解答;(2)由(1)可知白球的数量,再除以总的球数即可;(3)先求出取走10个球后,还剩的球数,再根据红球的个数,除以还剩的球数即可.【详解】解:(1)根据题意得:红球有100×310=30, 设白球有x 个,则黑球有(2x-5)个,根据题意得x+2x-5=100-30解得x=25.∴黑球2×25-5=45, 答:红球有30,黑球45,白球有25.(2)有(1)可知白球有25个,所以摸出一个球是白球的概率P=251=1004; (3)因为取走10个球后,还剩90个球,其中红球的个数没有变化,所以从剩余的球中摸出一个球是红球的概率301903= ; 【点睛】此题考查了概率公式,解题关键在于掌握如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 26.如图,ABC V 中,90BAC ∠=︒ ,AB AC = ,AE 是过A 点的一条直线l(1)作BD l ⊥ 于点D ,CE l ⊥ E 点,若B 点和C 点在直线l 的同侧,求证:DE BD CE =+ ; (2)若直线l 绕点A 旋转到B 点和C 点在其两侧,其余条件不变,问:BD DE CE 、、的关系如何?请予以证明.【答案】(1)证明见解析;(2)CE=BD+DE ,理由见解析;【解析】【分析】(1)由AAS 证明△ABD ≌△CAE ,得到BD=AE ,AD=CE ,即可解决问题.(2)由AAS 证明证明△ABD ≌△CAE ,得出BD=AE ,AD=CE ,即可得出结论.【详解】(1)证明:∵∠BAC=90°,BD ⊥DE ,CE ⊥DE ,∴∠DAB+∠DBA=∠DAB+∠EAC ,∴∠DBA=∠EAC ;在△ABD 与△CAE 中,===DBA EAC BDA AEC AB AC ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∴DE=BD+CE .(2)解:CE=BD+DE ;理由如下:同(1)得:∠ABD=∠CAE ,在△ABD 和△CAE 中,===ABD CAE ADB CEA AB AC ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∵AD=AE+DE ,∴CE=BD+DE .【点睛】此题考查全等三角形的判定及其性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.27.某学校校长暑假期间将带领该校市级“三好学生”到北京旅游,到旅行社打听价格时,甲旅行社说:“如果校长买一张全票,其余学生可享受半价优惠.”乙旅行社说:“包括校长在内全部按6折优惠.”票价为240元.(1)设学生数为x ,用含x 的代数式表示两个旅行社的收费;(2)当学生是多少时,两家旅行社的收费一样?(3)当学生数不是(2)中的数,你将怎样选择旅行社?【答案】(1)y甲=240+240×0.5x=(240+120x)元,y乙=240×0.6(x+1)=(144x+144)元;(2)学生数为4人时,两家旅行社的收费一样;(3)当学生数少于4人时,选择乙旅行社,当学生数等于4人时,选择两家旅行社中的任何一家均可;当学生数多于4人时,选择甲旅行社.【解析】【分析】(1)设甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,根据总价=单价×数量就可以表示出结论;(2)当y甲=y乙时,建立关于x的方程求出其解即可;(3)分类讨论,当y甲>y乙时,当y甲=y乙时或当y甲<y乙时求出x的值就可以得出结论.【详解】(1)设甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,由题意,得y甲=240+240×0.5x=(240+120x)元,y乙=240×0.6(x+1)=(144x+144)元;(2)当y甲=y乙时,240+120x=144x+144,解得:x=4.∴当学生数为4人时,两家旅行社的收费一样;(3)当y甲>y乙时240+120x>144x+144,解得:x<4,当y甲=y乙时,240+120x=144x+144,解得:x=4;当y甲<y乙时,240+120x<144x+144解得:x>4∴当学生数少于4人时,选择乙旅行社,当学生数等于4人时,选择两家旅行社中的任何一家均可;当学生数多于4人时,选择甲旅行社.【点睛】此题考查一元一次方程的应用,一元一次不等式的应用,解题关键在于求出两家的收费的表达式.。

2022年最新北师大版七年级数学下册期末定向测评 卷(Ⅰ)(含答案及解析)

2022年最新北师大版七年级数学下册期末定向测评 卷(Ⅰ)(含答案及解析)

北师大版七年级数学下册期末定向测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如图,∠AOC 和∠BOD 都是直角,如果∠DOC =38°,那么∠AOB 的度数是( ) A .128°B .142°C .38°D .152°2、小红到文具店买彩笔,每打彩笔是12支,售价18元,那么买彩笔所需的钱数y (元)与购买彩笔的支数x (支)之间的关系式为( ) A .23y x = B .32y x = C .12y x = D .18=y x3、如图,在Rt△ABC 中,C ∠=90°,沿着过点B 的一条直线BE 折叠△ABC ,使点C 恰好落在AB 的中点D 处,则A ∠的度数为( ) ·线○封○密○外A .30°B .45°C .60°D .75°4、如图,点C 在∠AOB 的OB 边上,用尺规作出了∠NCE =∠AOD ,作图痕迹中,弧FG 是( )A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧C .以点E 为圆心,OD 为半径的弧D .以点E 为圆心,DM 为半径的弧5、若α∠的补角是150°,则α∠的余角是( )A .30°B .60°C .120°D .150°6、在平面直角坐标系中,点P (﹣2,3)关于x 轴对称的点是( )A .(﹣2,﹣3)B .(2,3)C .(﹣3,﹣2)D .(2,﹣3)7、如图,点C 在∠AOB 的OB 边上,用尺规作出了∠NCE =∠AOD ,作图痕迹中,弧FG 是( )A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧C .以点E 为圆心,OD 为半径的弧D .以点E 为圆心,DM 为半径的弧8、如图,为了估计一池塘岸边两点A ,B 之间的距离,小颖同学在池塘一侧选取了一点P ,测得100m,90m PA PB ==,那么点A 与点B 之间的距离不可能是( ) A .20m B .120m C .180m D .200m 9、下列计算中,结果正确的是( ) A .3515x x ⋅=B .248x x x ⋅=C .()236x x =D .623x x x ÷= 10、下列各情景分别可以用哪一幅图来近似的刻画?正确的顺序是( ) ①汽车紧急刹车(速度与时间的关系) ②人的身高变化(身高与年龄的关系) ③跳过运动员跳跃横杆(高度与时间的关系)④一面冉冉上升的红旗(高度与时间的关系) A .abcd B .dabc C .dbca D .cabd 第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分) 1、如图,将ABC 沿DE 、EF 翻折,顶点,A B 均落在点O 处,且EA 与EB 重合于线段EO ,若86CDO CFO ∠+∠=︒,则C ∠的度数=_____ . ·线○封○密○外2、如图所示,其中与甲成轴对称的图形是___________.3、如图,把一张长方形纸片ABCD沿EF折叠,点D与点C分别落在点'D和点'C的位置上,'ED与BC的交点为G,若55∠为______度.EFG∠=︒,则14、长方形的长为x,宽为8,周长为y,则y与x的关系式为__________.(不必写出自变量的取值范围)5、判断正误:(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角()(2)如果两个角相等,那么这两个角是对顶角()(3)有一条公共边的两个角是邻补角()(4)如果两个角是邻补角,那么它们一定互补()(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角()6、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.若AD=3cm,BE=1cm,则DE=_________.7、如图,把四边形ABCD 纸条沿MN 对折,若AD ∥BC ,∠α=52°,则∠AMN =_______. 8、如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC 为格点三角形.在图中最多能画出 ___个格点三角形与△ABC 成轴对称. 9、(1)23m m ⋅=______ ;(2)()23x =______;(3)()23a b ⋅=______;(4)63a a ÷=______. 10、如图,过直线AB 上一点O 作射线OC ,∠BOC =29°38′,OD 平分∠AOC ,则∠DOC 的度数为 _____.三、解答题(5小题,每小题8分,共计40分)1、在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图1中,若C 是∠MON 的平分线OP 上一点,点A 在OM 上,此时,在ON 上截取OB =OA ,连接BC ,根据三角形全等判定(SAS ),容易构造出全等三角形OBC 和OAC ,参考上面的方法,解答下列问题,如图2,在非等边ABC 中,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,且AD 、CE ·线○封○密○外交于点F.(1)求∠AFC的度数;(2)求证:AC=AE+CD.2、小明同学遇到这样一个问题:如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.求证:∠BED=∠B+∠D.小亮帮助小明给出了该问的证明.证明:过点E作EF∥AB则有∠BEF=∠B∵AB∥CD∴EF∥CD∴∠FED=∠D∴∠BED=∠BEF+∠FED=∠B+∠D请你参考小亮的思考问题的方法,解决问题:(1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.(2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD 之间的数量关系.3、某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月利润(利润=收入费用-支出费用)y (元)的变化关系如下表所示(每位乘客的公交票价是固定不变的); (1)在这个变化过程中, 是自变量, 是因变量;(填中文) (2)观察表中数据可知,每月乘客量达到 人以上时,该公交车才不会亏损; (3)请你估计当每月乘车人数为3500人时,每月利润为 元? (4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达 人.4、已知一个纸箱中装有除颜色外完全相同的红球、黄球、黑球共80个,从中任意摸出一个球,摸到红球、黄球的概率分别为0.2和0.3. (1)求黑球的数量; (2)若从纸箱中取走若干个黑球,并放入相同数量的红球,要使从纸箱中任意摸出一个球是红球的概率为12,求放入红球的数量.5、阅读下列材料: 利用完全平方公式,可以把多项式2x bx c ++变形为2()x m n ++的形式.例如,243x x -+=24443x x -+-+=2(2)1x --. 观察上式可以发现,当2x -取任意一对互为相反数的值时,多项式243x x -+的值是相等的.例如,当2x -=±1,即x =3或1时,243x x -+的值均为0;当2x -=±2,即x =4或0时,243x x -+的值均为3. ·线○封○密○外我们给出如下定义:对于关于x 的多项式,若当x m +取任意一对互为相反数的值时,该多项式的值相等,则称该多项式关于x =m -对称,称x =m -是它的对称轴.例如,243x x -+关于x =2对称,x =2是它的对称轴.请根据上述材料解决下列问题:(1)将多项式265x x -+变形为2()x m n ++的形式,并求出它的对称轴;(2)若关于x 的多项式221+-x ax 关于x =-5对称,则a = ;(3)代数式22(21)(816)++-+x x x x 的对称轴是x = .-参考答案-一、单选题1、B【分析】首先根据题意求出52AOD ∠=︒,然后根据AOB AOD BOD ∠=∠+∠求解即可.【详解】解:∵∠AOC 和∠BOD 都是直角,∠DOC =38°,∴903852AOD AOC DOC ∠=∠-∠=︒-︒=︒,∴5290142AOB AOD BOD ∠=∠+∠=︒+︒=︒.故选:B .【点睛】此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出AOD ∠的度数.2、B【分析】由题意可知,y 与x 成正比例函数,设函数关系式为y=kx(k≠0),根据每打彩笔是12支,售价18元,可确定k 的值求出函数关系式. 【详解】 解:设函数关系式为y=kx(k≠0),由题意,得当x=12时,y=18,∴18=12k解得k=1812=32 ∴32y x故选B. 【点睛】本题考查了根据实际问题列函数式.关键是确定函数形式,以及用待定系数法求函数的解析式.3、A【分析】根据题意可知∠CBE =∠DBE ,DE ⊥AB ,点D 为AB 的中点,∠EAD =∠DBE ,根据三角形内角和定理列出算式,计算得到答案. 【详解】 解:由题意可知∠CBE =∠DBE , ∵DE ⊥AB ,点D 为AB 的中点,∴EA =EB ,∴∠EAD =∠DBE ,∴∠CBE =∠DBE =∠EAD ,·线○封○密○外∴∠CBE+∠DBE+∠EAD=90°,∴∠A=30°,故选:A.【点睛】本题考查的是翻折变换的知识,理解翻折后的图形与原图形全等是解题的关键,注意三角形内角和等于180°.4、D【分析】根据作一个角等于已知角的步骤即可得.【详解】解:作图痕迹中,弧FG是以点E为圆心,DM为半径的弧,故选:D.【点睛】本题主要考查作图-尺规作图,解题的关键是熟练掌握作一个角等于已知角的尺规作图步骤.5、B【分析】根据补角、余角的定义即可求解.【详解】∠的补角是150°∵α∠=180°-150°=30°∴α∠的余角是90°-30°=60°∴α故选B.【点睛】此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角 6、A 【分析】 根据关于x 轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论. 【详解】解:点P (﹣2,3)关于x 轴对称的点的坐标为(﹣2,﹣3) 故选A . 【点睛】 本题考查的是求一个点关于x 轴对称点的坐标,掌握关于x 轴对称的两点坐标关系是解题的关键. 7、D 【分析】 根据作一个角等于已知角的步骤即可得. 【详解】 解:作图痕迹中,弧FG 是以点E 为圆心,DM 为半径的弧, 故选:D . 【点睛】 本题主要考查作图-尺规作图,解题的关键是熟练掌握作一个角等于已知角的尺规作图步骤. 8、D 【分析】 首先根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,求出AB 的取值范围,然后再判断各选项是否正确. ·线○封○密○外【详解】解:∵PA=100m,PB=90m,∴根据三角形的三边关系得到:PA PB AB PA PB-<<+,∴10m190m<<,AB∴点A与点B之间的距离不可能是20m,故选A.【点睛】本题主要考查了三角形的三边关系,掌握三角形两边只差小于第三边、两边之和大于第三边是解题的关键.9、C【分析】根据整式乘法的法则及幂的乘方法则、同底数幂除法法则依次判断.【详解】解:A、3515x x⋅=x2,故该项不符合题意,B、246⋅=,故该项不符合题意,x x xC、()236=,故该项符合题意,x xD、624x x x÷=,故该项不符合题意,故选:C.【点睛】此题考查了整式的计算法则,正确掌握整式乘法的法则及幂的乘方法则、同底数幂除法法则是解题的关键.10、C【详解】试题分析:A 、根据人的身高变化关系;B 、根据红旗高度与时间的关系;C 、跳过运动员跳跃横杆时高度与时间的关系;D 、汽车紧急刹车时速度与时间的关系.解:A 、人的身高随着年龄的增加而增大,到一定年龄不变,故与②符合;B 、红旗升高随着时间的增加而增大,到一定时间不变,故与④符合;C 、运动员跳跃横杆时高度在上升到最大高度然后上升到最大高度之后高度减小,与③符合;D 、汽车紧急刹车时速度随时间的增大而减小,与①符合.故选C . 二、填空题 1、47°【分析】 由翻折的性质可得∠A =∠DOE ,∠B =∠EOF ,可得∠DOF =∠A +∠B ,由三角形内角和定理可得∠A +B =180°−∠C ,即可求∠C 的度数. 【详解】 解:∵将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处, ∴∠A =∠DOE ,∠B =∠EOF ,∴∠DOF =∠A +∠B∵∠A +∠B +∠C =180°∴∠A +B =180°−∠C∵∠DOF =∠C +∠CDO +∠COF =180°−∠C∴∠C +86°=180°−∠C∴∠C =47°·线○封○密○外故答案为:47°【点睛】本题考查了翻折的性质,三角形内角和定理,熟练运用三角形内角和定理是本题的关键.2、丁【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行判断即可.【详解】解:观察图形可知与甲成轴对称的图形是丁,故答案为:丁.【点睛】本题主要考查了轴对称图形的定义,解题的关键在于能够熟练掌握轴对称图形的定义.3、70【分析】由折叠的性质可以得=EFC EFC '∠∠,从而求出==70C FG EFC EFG ''-∠∠∠,再由平行线的性质得到170EGF GFC '∠=∠=∠=.【详解】解:由折叠的性质可知,=EFC EFC '∠∠ ,∵∠EFG =55°,∴==180125EFC EFC EFG '-=∠∠∠, ∴==70C FG EFC EFG ''-∠∠∠, ∵四边形ABCD 是长方形∴AD ∥BC ,DE ∥FC ',·线∴170EGF GFC '∠=∠=∠=,故答案为:70.【点睛】本题主要考查了折叠的性质,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.4、y =2x +16【分析】根据周长公式计算即可得出答案.【详解】由周长公式可得:()28216y x x =+=+故答案为216y x =+.【点睛】本题考查了由实际问题列函数关系式,掌握长方形的周长公式是解决本题的关键.5、(1)×;(2)×;(3)×;(4)√;(5)×【分析】根据对顶角与邻补角的定义与性质分析判断即可求解.【详解】(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;(2)如果两个角相等,那么这两个角不一定是对顶角,错误;(3)有一条公共边的两个角不一定是邻补角,错误;(4)如果两个角是邻补角,那么它们一定互补,正确;(5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.【点睛】本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.6、2cm【分析】易证∠CAD =∠BCE ,即可证明BEC ≌△DAC ,可得CD =BE ,CE =AD ,根据DE =CE -CD ,即可解题.【详解】解:∵∠ACB =90°,∴∠BCE +∠DCA =90°.∵AD ⊥CE ,∴∠DAC +∠DCA =90°.∴∠BCE =∠DAC ,在△BEC 和△DAC 中,∵∠BCE =∠DAC ,∠BEC =∠CDA =90°.BC =AC , ∴△BEC ≌△DAC (AAS ), ∴CE =AD =3cm ,CD =BE =1cm ,DE =CE -CD =3-1=2 cm .·线故答案是:2cm .【点睛】此题是三角形综合题,主要考查了全等三角形的判定,全等三角形对应边相等的性质,本题中求证△CDA ≌△BEC 是解题的关键.7、116︒【分析】如图,设B 点对应点为P ,则根据折叠的性质求得PNM BNM ∠=∠,根据平行的性质可得180AMN BNM ∠+∠=︒,进而求得AMN ∠.【详解】如图,设B 点对应点为P ,根据折叠的性质可得,PNM BNM ∠=∠,∠α=52°,1(18052)642BNM ∴∠=︒-︒=︒, //AD BC ,∴180AMN BNM ∠+∠=︒,180********AMN BNM ∴∠=︒-∠=︒-︒=︒.故答案为:116︒.【点睛】本题考查了折叠的性质,平行线的性质,掌握以上性质是解题的关键.8、6根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解【详解】解:如图,以AB 的中垂线为对称轴如图1,以BC 边所在直线为对称轴如图2,以AB 边所在三网格中间网格的垂直平分线为对称轴如图3,以BC 边中垂线为对称轴,以3×3网格的对角线所在直线为对称轴如图5,图6,最多能画出6个格点三角形与△ABC 成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.9、5m 6x 62a b 3a【分析】(1)根据同底数幂相乘法则,即可求解; (2)根据幂的乘方法则,即可求解; (3)根据积的乘方法则,即可求解;(4)根据同底数幂相除法则,即可求解.·线解:(1)235m m m ⋅=;(2)()236x x =; (3)()2362a b a b ⋅=; (4)633a a a ÷=故答案为:(1)5m ;(2)6x ;(3)62a b ;(4)3a【点睛】本题主要考查了同底数幂相乘、幂的乘方、积的乘方、同底数幂相除,熟练掌握同底数幂相乘、幂的乘方、积的乘方、同底数幂相除法则是解题的关键.10、7511'︒【分析】先根据邻补角互补求出∠AOC =150°22′,再由角平分线的定义求解即可.【详解】解:∵∠BOC =29°38′,∠AOC +∠BOC =180°,∴∠AOC =150°22′,∵OD 平分∠AOC , ∴1=75112DOC AOC '=︒∠∠, 故答案为:7511'︒.【点睛】本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.三、解答题1、(1)120°;(2)见详解.【分析】(1)根据题意在AC上截取AG=AE,连接FG,进而根据角平分线的性质和三角形内角和180°进行分析计算即可;(2)由题意在(1)基础上根据平角等于180°推出∠CFG=60°,然后利用“角边角”证明△CFG和△CFD全等,进而根据全等三角形对应边相等可得FG=FD,从而得证.【详解】解:(1)如图,在AC上截取AG=AE,连接FG.∵AD是∠BAC的平分线,CE是∠BCA的平分线,∴∠1=∠2,∠3=∠4∵∠B=60°∴∠BAC+∠ACB=120°,∴∠2+∠3=12(∠BAC +∠ACB )=60°,∴∠AFC =180°-60°=120°;(2)∵∠AFE =∠CFD =∠AFG =60°,∴∠CFG =180°-∠CFD -∠AFG =60°, ∴∠CFD =∠CFG , 在△CFG 和△CFD 中, 34CFG CFD FC FC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CFG ≌△CFD (ASA ), ∴CG =CD , ∴AC =AG +CG =AE +CD .【点睛】本题考查全等三角形的判定与性质,角平分线的定义,三角形的内角和定理,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,根据所求角度正好等于60°得到角相等是解题的关键. 2、(1)55°;(2)当P 在线段CD 上时,∠APB =∠PAC +∠PBD ;当P 在DC 延长线上时,∠APB =∠PBD -∠PAC ;当P 在CD 延长线上时,∠APB =∠PAC -∠PBD ; 【分析】 (1)过点P 作PG∥l 1,可得∠APG =∠PAC =15°,由l 1∥l 2,可得PG∥l 2,则∠BPG =∠PBD =40°,即可得到∠APB =∠APG +∠BPG =55°; (2)分当P 在线段CD 上时;当P 在DC 延长线上时;当P 在CD 延长线上时,三种情况讨论求解即可. 【详解】 解:(1)如图所示,过点P 作PG∥l 1, ·线○封○密·○外∴∠APG=∠PAC=15°,∵l1∥l2,∴PG∥l2,∴∠BPG=∠PBD=40°,∴∠APB=∠APG+∠BPG=55°;(2)由(1)可得当P在线段CD上时,∠APB=∠PAC+∠PBD;如图1所示,当P在DC延长线上时,过点P作PG∥l1,∴∠APG=∠PAC,∵l1∥l2,∴PG∥l2,∴∠BPG=∠PBD=40°,∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;如图2所示,当P在CD延长线上时,过点P作PG∥l1,∴∠APG=∠PAC,∵l 1∥l 2,∴PG∥l 2,∴∠BPG =∠PBD =40°,∴∠APB =∠APG -∠BPG =∠PAC -∠PBD ;∴综上所述,当P 在线段CD 上时,∠APB =∠PAC +∠PBD ;当P 在DC 延长线上时,∠APB =∠PBD -∠PAC ;当P 在CD 延长线上时,∠APB =∠PAC -∠PBD . 【点睛】 本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质. 3、 (1)每月的乘车人数,每月利润;(2)2000;(3)3000;(4)4500. 【解析】 【分析】 (1)直接利用常量与变量的定义分析得出答案; (2)直接利用表中数据分析得出答案; (3)利用由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,进而得出答案; (4)由(3)得出当利润为5000元时乘客人数,即可得出答案. 【详解】 解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量; (2) ∵观察表中数据可知,当每月乘客量达到2000人以上时,每月利润为0,·线○封○密○外∴每月乘客量达到2000人以上时,该公交车才不会亏损;(3) ∵每月乘客量增加500人时,每月利润增加1000元,∴当每月乘车人数为3500人时,每月利润为3000元;(4) ∵每月乘客量增加500人时,每月利润增加1000元,∴若5月份想获得利润5000元,5月份的乘客量需达4500人.【点睛】本题主要考查了常量与变量以及函数的表示方法,正确把握函数的定义是解题关键.4、(1)40;(2)24.【分析】(1)用所有的球减去红球和黄球的数量即可得出答案;(2)设放进x个红球,根据摸出红球的概率为12列出方程800.2+x1802⨯=,解方程即可得出答案.【详解】解:(1)80800.2800.340-⨯-⨯=(个)故答案为:40.(2)设放进x个红球由题意得800.2+x1802⨯=解得:24x=∴放进24个红球.故答案为24.【点睛】本题考查的概率,找到相应的关系式是解决本题的关键,用到的知识点为:概率=所求情况数与总情况数之比.5、(1)2(3)4x --,对称轴为x =3;(2)5;(3)32 【分析】(1)加上2(3)-,同时再减去2(3)-,配方,整理,根据定义回答即可; (2)将221+-x ax 配成22(a)1x a +--,根据对称轴的定义,对称轴为x =-a , 根据对称轴的一致性,求a 即可;(3)将代数式22(21)(816)++-+x x x x 配方成222(1)(4)[(1)(4)]x x x x +-=+- =2222325(34)[()]24x x x --=--,根据定义计算即可. 【详解】 (1)265x x -+ =26995x x -+-+ =2(3)4x --. ∴该多项式的对称轴为x =3; (2)∵221+-x ax =22(a)1x a +--, ∴对称轴为x =-a , ∵多项式221+-x ax 关于x =-5对称, ∴-a =-5, 即a =5, 故答案为:5; (3)∵22(21)(816)++-+x x x x ·线○封○密○外=222(1)(4)[(1)(4)]x x x x +-=+-=22(34)x x -- =22325[()]24x --, ∴对称轴为x =32, 故答案为:32. 【点睛】本题考查了配方法,熟练进行配方是解题的关键.。

(完整版)北师大版七年级下册数学期末考试试卷及答案,推荐文档

(完整版)北师大版七年级下册数学期末考试试卷及答案,推荐文档

5、汽车司机在观后镜中看到后面一辆汽车的车牌号为三I 二,则这辆车的实际牌照14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,6、 如图,/ 1 = / 2,若△ ABC^A DCB 则添加的条件可以是 ____________ 。

7、 将一个正△的纸片剪成 4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的 正△,…如此下去,结果如下表:时间: 七年级数学(下)期末考试卷120分钟 2 5 7 6I 5总分: 120 分、填空题(把你认为正确的答案填入横线上,每小题 3分,共30分) 1、 __________________________________________ 计算(x 1)( x 1) = 。

2、 如图,互相平行的直线是_____________________________ 。

3、 如图,把△ ABC 的一角折叠,若/ 1 + Z 2 =120 °,则/ A = ________ 4、 如图,转动的转盘停止转动后,指针指向黑色区域的概率是 _______________第四题图B 1 ---------第六题图12、在“妙手推推推”游戏中,主持人出示了一个 9位数者猜商品价格,被猜的价格是一个4位数,也就是这个 如果参与者不知道商品的价格,从这些连在一起的所有 品的价格的概率是A.B.C.,让9位数从左到右连在一起的某 4个数4位数中,猜中任猜一个,他猜中该商 ( D.-13、一列火车由甲市驶往相距 600畑的乙市,火车的速度是 200 km /时,火车离乙市的距离 s0 1 2 3 tt (单位:小时)变化的关系用图表示正确的是ABC所剪次数 1 2 3 4n正三角形个数 4 7 1013a n则 an __________________ 。

2 1 &已知 x 2kx 是一个完全平方式,那么 k 的值为 ________________ 。

北师大版初中数学七年级下册期末试卷及答案(强烈推荐)

北师大版初中数学七年级下册期末试卷及答案(强烈推荐)

第2题图nm ba70°70°110°第3题图C B A2112第六题图DCB A 七年级数学(下)期末考试卷一、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)1、计算)1)(1(+-x x = 。

2、如图,互相平行的直线是 。

3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = 。

4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是 。

5、汽车司机在观后镜中看到后面一辆汽车的车牌号为 ,则这辆车的实际牌照是 。

6、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是 。

7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如此下去,结果如下表:所 剪 次 数 1 2 3 4 … n正三角形个数471013…an则=na 。

8、已知412+-kx x 是一个完全平方式,那么k 的值为 。

9、近似数25.08万精确到 位,有 位有效数字,用科学计数法表示为 。

10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是 。

二、选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)11、下列各式计算正确的是 ( ) A . a 2+ a 2=a 4B. 211a a a =÷- C. 226)3(x x = D. 222)(y x y x +=+12、在“妙手推推推”游戏中,主持人出示了一个9位数 ,让参加者学校 姓名 班级 考号--------------------密---------------封---------------线---------------内---------------答---------------题---------------无---------------效--------------------876954521第1页 共4页DCBA DC B A FED CBA ED CBA 猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )A. 91B. 61 C. 51 D. 3113、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s (单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是 ( )14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是 ( )15、教室的面积约为60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小C. 课桌面的大小D. 手掌心的大小16、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° C.125° D. 130° 17、平面上4条直线两两相交,交点的个数是 ( ) A. 1个或4个 B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个 18、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论: ① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD ,四个结论中成立的是 ( )A. ① ② ④B. ① ② ③C. ② ③ ④D. ① ③ ④第2页 共4页乙甲BA OEDCBA三、解答题(共66分)19、计算(每小题4分,共12分) (1)201220112)23()32()31(-⨯--- (2)的值求22,10,3b a ab b a +==-(3)〔225)2)(()2(y y x y x y x -+--+〕÷()2y20、(6分) 某地区现有果树24000棵, 计划今后每年栽果树3000棵。

北师大版七年级下册数学期末测试卷及含答案(综合题)

北师大版七年级下册数学期末测试卷及含答案(综合题)

北师大版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D,E为BC边上的两点,且∠DAE=45°,连接EF,BF,则下列结论:①△AFB≌△ADC;②△ABD为等腰三角形;③∠ADC=120°;④BE2+DC2=DE2,其中正确的有( )个A.4B.3C.2D.12、已知x m=6,x n=3,则x2m―n的值为()A.9B.C.12D.3、下列运算正确的是()A.(﹣ab)2=﹣a 2b 2B.(a+b)(a﹣b)=a 2﹣b 2C.3a 2+2b=6a 2bD.(a﹣b)2=a 2+b 24、如图,平分,于,于,与的交点为,则图中全等三角形共有()A.2对B.3对C.4对D.5对5、下列运算,结果正确的是()A.m 2+m 2=m 4B.(m+ )2=m 2+C.(3mn 2)2=6m 2n4 D.2m 2n÷=2mn 26、将用科学记数法表示为()A. B. C. D.7、下列运算结果正确的是()A.(a 2)3=a 6B.3x 2÷2x=xC.(x+y 2)2=x 2+y 4D.(3a)3=3a 38、下列计算正确的是()A. B. C. D.9、计算(﹣x)6÷x2的结果是()A.﹣x3B. x3C.﹣x4D. x410、有A,B两只不透明口袋,每只品袋里装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是 ( )A. B. C. D.11、如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为()A.30°B.60°C.90°D.45°12、用科学记数法表示0.000000567是()A.56.7×10 ﹣5B.56.7×10 ﹣6C.5.67×10 ﹣7&nbsp;D.5.67×10 ﹣813、下列命题中,属于真命题的是()A.同位角相等B.任意三角形的外角一定大于内角C.多边形的内角和等于180°D.同角或等角的余角相等14、一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是( )A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的不一一定是红球C.第一次摸出的球是红球的概率是D.两次摸出的球都是红球的概率是15、如图,在△ABC中,点D为△ABC的内心,∠A=60°,BD:CD=2:1,BD=4,则△DBC的面积为( )A.3B.2C.2D.3二、填空题(共10题,共计30分)16、如图,从以下给出的四个条件中选取一个:①;②;③;④.恰能判断∥的概率是________.17、一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是________.18、计算:(-x2y)2÷y=________.19、在一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球,记下颜色后,再放回暗箱,通过大量的重复试验后发现,摸到红球的频率稳定在25%.那么估计a大约有________ 个.20、如图,BD平分∠ABC,DE∥BC.若∠AED=50°,则∠EDB=________.21、如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由是________.22、如图,点依次在的图像上,点依次在轴的正半轴上.若,均为等边三角形,则点的坐标为________.23、一个角的余角的3倍比它的补角的2倍少120°,则这个角的度数为________.24、如图,在中,,,,点F在边AC 上,点E为边BC上的动点,将沿直线EF翻折,点C落在点P处.若,则点P到AB距离的最小值为________.25、如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为________.三、解答题(共5题,共计25分)26、计算:tan45°﹣sin30°+(2﹣)0.27、如图,在△ABC中,∠ABC=∠ACB,过A作AD⊥AB交BC的延长线于点D,过点C作CE⊥AC,使AE=BD.求证:∠E=∠D.28、如图,中,AD是BC边上的高,AE、BF分别是、的平分线,,,试求的度数.29、按要求画图:(1)作BE∥AD交DC于E;(2)连接AC,作BF∥AC交DC的延长线于F;(3)作AG⊥DC于G.30、已知:如图,∠1与∠2互余,∠3与∠2互余.求证:a∥b.(要求写出每一步的理由,已知除外)参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、C5、D6、B8、C9、D10、B11、D12、C13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下学期期末试卷 数 学 注意事项: 1.本卷共三大题,23小题。全卷满分为120分,考试时间为100分钟。 2.答题前将密封线内的项目填写清楚

一、选择题(给出的四个选项只有一个是正确的,把你认为正确的答案代号填写题后括号中,每题共18分)

1、下列运算正确的是( )。

A、1055aaa B、2446aaa C、aaa10 D、044aaa 2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( ) A、1个 B、2个 C、3个 D、4个 3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A、154 B、31 C、51 D 152 4、1纳米相当于1根头发丝直径的六万分之一。则利用科学记数法来表示,头发丝的半径..

是( ) A、6万纳米 B、6×104纳米 C、3×10-6米 D、3×10-5米 5、下列条件中,能判定两个直角三角形全等的是( ) A、一锐角对应相等 B、两锐角对应相等 C、一条边对应相等 D、两条直角边对应相等

6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的

………………………………密……………………封…………………………线………… …………

班级: ____________姓名:_____________ 考号:_____________ 个数为( ) (1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶; (3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了. A、1个 B、2个 C、3个 D、4个

二、填空题(每空3分,共27分) 7、单项式313xy的次数是 . 8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形. 9、温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元. 10、如图AOB=1250,AOOC,B00D则COD= . 11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 . 12、若229aka是一个完全平方式,则k等于 . 13、 如图,平面镜A与B之间夹角为ll00,光线经平面镜A反射到平面镜B上,再反射出去,若1=2,则l的度数为 . 14、已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心, AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为 .

AB

CD204080

60

510152025303540

速度

时间

ODCB

A 15、观察下列运算并填空: 1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3 ×4×5×6+1=361=192;…… 根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。 三、计算题 16、(8分)计算:302112(20053)()33

17、化简求值:(8分) 22(2)()(3)5xyxyxyy,其中2x,12y 18、(9分)已知:如图,ABC中,AB=AC,BD和CE为ABC的高,BD和CE相交于点O。求证:OB=OC.

EDCB

A

19、(9分)在我校举行九年的级季篮球赛上,九年级(1)班的啦啦队队员,为了在明天的比赛中给本班同学加油助威,提前每人制作了一面同一规格的直角三角形彩旗.队员小明放学回家后,发现自己的彩旗破损了一角,他想用如下图所示的长方形彩纸重新制作一面彩旗.请你帮助小明,用直尺与圆规.....在彩纸上作出一个与破损前完全一样的三角形(保留..

作.图痕迹,不写作法........). 20、(9分)在班上组织的“元旦迎新晚会”中,小丽和小芳都想当节目主持人,但现在只有一个名额.小芳想出了一个用游戏来选人的办法,她将一个转盘(均质的)平均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到偶数,则小丽去;反之,则小芳去.你认为这个游戏公平吗?为什么?如果不公平,请你修改转盘中的数字,使这个游戏变得公平.

21、(11分)一水果贩子在批发市场按每千克1.8元批发了若干千克的西瓜进城出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图像回答下列问题: (1)农民自带的零钱是多少? (2)降价前他每千克西瓜出售的价格是多少? (3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜? (4)请问这个水果贩子一共赚了多少钱? 22、(10分)某文具店出售书包与文具盒,书包每个定价50元,文具盒每个定价10元.该店制定了两种优惠方案:①买一个书包赠送一个文具盒;②按总价的8.5折(总价的85%)付款.某班学生需购买l2个书包、文具盒如干(不少于12个)。如果设文具盒数x个,付款数为y元。根据条件解决下列问题: (1)分别求出两种优惠方案中y与x之间的关系; (2)试分析哪一种方案更省钱.

23、(11分)如图,AP∥BC,PAB的平分线与CBA的平分线相交于E,CE的延长线交AP于D, 求证:(1)AB=AD+BC; (2)若BE=3,AE=4,求四边形ABCD的面积?

PE

D

C

BA 参考答案 一、选择题 题号 1 2 3 4 5 6 答案 C B D D D C 二、填空题

序号 7 8 9 10 11

答案 4 锐角 3.397×107 550 14

序号 12 13 14 15

答案 ±3 350 1 22(55)nn 三、计算题 21.计算:302112(20053)()33 解:原式 = 1893= 1173= 2163 17.化简求值:22(2)()(3)5xyxyxyy,其中2x,12y 解:原式= 2222244(32)5xxyyxxyyy = 2222244325xxyyxxyyy = 222xxy 当2x,12y时 原式:= 212(2)2(2)2 …4分 = 82 = 10 …5分 18.证明: AB=AB ABC=ACB …2分 BD、CE分别为ABC的高

0BEC=BDC=90

…2分 在BEC和CDB中

0BEC=BDC=90ABC=ACBBC=BC





BECCDB …6分

1=2 …8分

OB=OC …9分

19. 解:2163P小丽 …2分 4263P小芳 …4分

又1233 …5分 ∴此游戏不公平 …7分 修改如下:将转盘中的奇数任改一个为偶数即可 …9分

20.(略) 21.解:(1)农民自带的零钱为50元. …1分 (2)(33050)÷80 …3分 =280÷80 =3.5 …4分 答:略 (3)(450330)÷(3.50.5) = 120÷3 = 40 …6分 80+40 = 120 …7分 (4)4501201.8=234 …9分 (注:本题中,答给l分,如果全未答总共扣l分)

…9分

22.解:(1)方案①:1501210(12)yx = 600+100x120 …3分 方案②:2(501210)0.85yx 5108.5x …5分 (2)令12yy,则480105108.5xx 20x 12<2020>20xxx当时,方案①划算 当时,两种一样 当时,方案②划算 …l0分

23.延长AE交BC延长线于M AE平分PAB,BE平分CBA 1=2, 3=4

AD//BC 1=M=2, 01+2+3+4=180 BM=BA, 032=90

BEAM AE 在ADE和MCE中 1=MAE=ME5=6





ADEMCE AD=CM AB=BM=BC+AD ②由①知:ADEMCE

ABMABCDS=S四边形

又AE=ME=4, BE=3

ABM1S=83=122

ABCDS=12四边形

相关文档
最新文档