杂散电流防护系统介绍

合集下载

浅析地铁杂散电流及其防护

浅析地铁杂散电流及其防护

浅析地铁杂散电流及其防护摘要:本文介绍了地铁杂散电流腐蚀的危害及防护措施,明确了杂散电流腐蚀防护的层次划分,阐述了杂散电流的测量和监测的构成及原理。

关键词:杂散电流,层次划分,监测系统Abstract: this paper introduces the subway stray current corrosion harm and protective measures, has been clear about the stray current corrosion protection level classification, this paper expounds the stray current measurement and monitoring the composition and principle.Keywords: stray current, level classification, monitoring system1杂散电流的概念及危害1.1 杂散电流的概念地铁杂散电流也称迷流,是指采用直流牵引方式的地铁列车在运行时泄露到道床及周围土壤介质中的非正常渠道回流电流。

在直流供电方式中,列车直流牵引系统采用正极连接触网,负极连走行轨,走行轨兼做回流线的形式。

在地铁建成并投入运营初期,走行轨与道床之间的绝缘程度较高,轨地过渡电阻较大,由走形轨泄露到道床的迷流也较少。

但随着地铁运营时间的推移,由于受到不可避免的污染、潮湿、渗水、及钢轨磨损产生的金属粉尘堆积等因素影响,使钢轨对地绝缘性能降低,轨地过渡电阻减小。

根据分流原理,这种非正常回流的杂散电流就会随着过渡电阻的不断减小而逐渐增大。

1.2 杂散电流的危害地铁迷流的存在对地铁周围的埋地金属管线、通讯电缆外皮以及车站和区间隧道主体结构中的钢筋发生电化学腐蚀,这种电化学腐蚀不仅能缩短金属管线的使用寿命,而且还会降低地铁钢筋混凝土主体结构的强度和耐久性,甚至酿成灾难性事故。

地铁杂散电流危害及防护

地铁杂散电流危害及防护

地铁杂散电流危害及防护地铁是现代城市交通的重要组成部分,它不仅提供了便捷的出行方式,还减少了交通拥堵,改善了城市环境。

然而,地铁运行过程中会产生杂散电流,若不加以合理的防护措施,可能对乘客和设备造成危害。

本文将详细介绍地铁杂散电流的危害及防护方法。

首先,地铁杂散电流的危害主要表现在以下几个方面:1. 电击危害:地铁杂散电流可能导致触电事故发生。

当乘客接触到带电的金属结构(如扶手、栏杆等)时,可能会发生电击事故,造成人身伤害甚至生命危险。

2. 电磁干扰:地铁杂散电流还可能对周围电子设备产生电磁干扰,影响其正常工作。

例如,手机、电脑等电子设备可能会受到干扰,导致通信中断、系统崩溃等问题。

3. 地下管线腐蚀:地铁杂散电流会在行驶的轨道和输电装置上产生电流,而这些电流会在接触点处引起腐蚀。

长期以来,这种腐蚀可能对地下管道和其他设施造成损坏,进而影响城市的基础设施稳定性。

为了防止地铁杂散电流带来的危害,需要采取相应的防护措施。

以下是一些防护方法:1. 地铁车体接地:地铁车厢与轨道之间的接地是减少杂散电流的关键步骤。

通过确保地铁车厢和轨道之间良好的接地连接,可以将杂散电流有效地引入地下,从而减少对乘客和设备的危害。

2. 绝缘保护:地铁车厢内的金属结构应进行绝缘处理,以避免与乘客直接接触。

此外,地铁设备和设施的金属构件也应进行绝缘处理,以减少对周围管道和设备的腐蚀。

3. 等电位连接:通过建立良好的等电位连接系统,可以将地铁车厢内的各个金属结构保持在相同的电位上,减少杂散电流的产生和传播。

4. 电磁屏蔽:对于设备和设施中的敏感电子设备,可以采用电磁屏蔽技术来减少电磁干扰。

通过在设备周围设置屏蔽层,可以阻隔外界电磁场的干扰。

5. 定期检测和维护:地铁系统应定期进行杂散电流检测和维护工作,及时发现问题并采取措施解决。

在实施防护措施的同时,还需要加强对公众的安全意识教育。

地铁乘客应了解杂散电流的危害,并能够正确应对。

地铁杂散电流危害及防护(三篇)

地铁杂散电流危害及防护(三篇)

地铁杂散电流危害及防护地铁杂散电流指地铁线路中由于信号系统、电力供应系统、牵引系统等原因产生的电流异常现象。

这些电流不仅会对乘客和工作人员的安全构成威胁,还可能对地铁系统的设备和设施造成损害。

因此,了解地铁杂散电流的危害,并采取相应的防护措施非常重要。

地铁杂散电流的危害主要包括以下几个方面:1. 人身安全风险:地铁杂散电流可能会通过人体造成电击伤害。

当人体接触到带电的金属部件时,电流会通过人体传导,造成电击。

严重情况下,可能导致人员伤亡。

特别是在湿润的环境中,电流传导的速度更快,导致伤害的风险更高。

2. 设备损坏:地铁杂散电流会对地铁的设备和设施造成损害。

例如,电流通过地铁的导轨、信号线等金属部件时,会产生电化学腐蚀,导致设备的损坏和寿命缩短。

此外,地铁内的电子设备如手机、电脑等也可能受到电流冲击而受损。

3. 信号干扰:地铁杂散电流可能会对地铁的通信和信号系统造成干扰。

电流干扰信号线路和设备,可能导致信号失真、误码等问题,进而影响地铁的运行安全。

为了预防和减少地铁杂散电流带来的危害,需要采取相应的防护措施:1. 设备维护和保养:定期对地铁设备进行检修和维护,确保其正常运行。

包括检查电力供应系统、牵引系统等设备,及时修复出现的问题。

2. 接地保护:对于地铁的金属部件,特别是导轨和信号线等,需要进行良好的接地保护。

接地系统能够将地铁杂散电流从金属部件中引导到地下,避免对人身和设备的伤害。

3. 人员培训和警示标识:对于地铁的乘客和工作人员,需要进行电流安全和预防的培训,提高他们的安全意识。

同时,在地铁站和车厢内应设置相关警示标识,提醒人们注意地铁杂散电流带来的危险。

4. 监测和报警系统:安装地铁杂散电流监测和报警系统,实时监测地铁线路中的电流情况,并通过报警系统及时向工作人员发出警报,以便及时采取应对措施。

5. 泄漏电流保护装置:在地铁的电力供应系统中,安装泄漏电流保护装置,能够在电流泄漏时快速切断电源,防止电流流入人体造成伤害。

杂散电流设备

杂散电流设备

杂散电流防护设备简介及运行情况一、概述在城市轨道交通等直流电气化轨道运输系统中以轨道作为回流导体,由于钢轨不可能对地完全绝缘,而且回流钢轨存在电压降,因而导致一部分负荷电流,从钢轨流到轨枕和道床及地下钢轨等金属设施中去,这部分电流,就是杂散电流。

由于杂散电流的产生以及它对地下金属的电腐蚀效应,使对线路以及周围设施的金属构件构成了一定的威胁。

这种电腐蚀总是发生在离子导电电流流出金属结构的地方,既发生在金属与电解质存在的阳极区,杂散电流的阳极电腐蚀对金属的破坏相当严重。

能引起水管穿孔漏水、锈蚀、电缆挂钩打火、道钉生锈断裂等,导致地铁设施的使用寿命降低,造成严重的经济损失。

地铁杂散电流防护措施主要是以堵为主、以排为辅、加强监测、防止外泄。

增加钢轨与轨枕间的绝缘,加接均回流电缆,减小回流时的钢轨电阻,铺设排流网安装排流柜,采用极性排流措施,加强监测,及时发现和预判腐蚀区域的产生。

二、杂散电流防护设备设施上海地铁杂散电流防护设备设施基本有二种,一是以较早运行线路为主的。

如上海地铁1号线、2号线、4号线等,通过站台参比电极对站台结构钢筋、区间参比电极对区间轨壁结构钢筋、钢轨对结构钢筋、排流等引出端子电缆线,分别连接到站台四个杂散电流测量箱中,用移动数据采集器来测量杂散电流数据,把收集来的杂散电流数据进行分析。

排流柜作为杂散电流主要设备之一,安装于牵引变电所内,排流柜的一端接负极柜内的负回流母排上,另一端通过排流电缆、排流二级管连接到隧道区间道床排流网引出端子。

使排流网内的电流通过排流柜单向回流到牵引变电所内的负极柜内负回流母排上,把泄漏的杂散电流通过区间道床排流网、排流柜流回到牵引变电所的负极柜内,以减少杂散电流对结构钢筋的腐蚀。

二是以新运行线路为主的,如9号线、10号线等,它采用的是站台参比电极对站台结构钢筋、区间参比电极对区间轨壁结构钢筋、参比电极对道床结构钢筋、钢轨对结构钢筋、排流等引出线。

通过区间隧道传感器、信号转接器、站内杂散电流监测装置、上位机PC电脑等一些设备来监测杂散电流泄漏情况。

浅析城市轨道交通杂散电流防护

浅析城市轨道交通杂散电流防护

浅析城市轨道交通杂散电流防护摘要:城市轨道交通牵引供电系统在长时间运行过程中会产生杂散电流,这就需依据城市轨道交通牵引供电系统运行模式确定杂散电流防护方案,降低杂散电流的危害。

结合佛山城市轨道交通2号线杂散电流防护系统,从其形成机理出发,分析研究杂散电流防护措施。

关键词:城市轨道交通;杂散电流防护引言受到运营环境、经济、技术等各方面实际情况的制约,走行轨无法完全与道床结构绝缘,因此钢轨无可免除地会向道床、车站、桥梁结构及区间隧道泄漏电流,即形成杂散电流。

杂散电流会对土建结构钢筋、设备金属外壳及地铁其它地下金属管线产生电化学腐蚀,从而影响土建结构、设备的使用寿命,在轨道交通设计施工中需采取完善的杂散电流腐蚀防护措施[1],以保证轨道交通长期、平稳运行。

1杂散电流腐蚀防护技术方案1.1 牵引回流系统1)牵引回流系统由走行轨、负回流电缆、均流电缆、排流柜、单向导通装置等构成。

2)负回流电缆采用直流电缆与走行轨可靠连接后引至牵引变电所负极柜母排,负回流电缆的数量应根据牵引供电计算结果确定,且应保证当其中一根电缆故障时,其余电缆也能满足导电截面的要求[2]。

以佛山城市轨道交通2号线为例,各牵引变电所的负回流回路数和每回路需用截面为400mm2的直流电缆根数如下:南庄-广州南站正线付汇流回路数都为2回,每回路电缆根数为6根,其中林岳车辆段负回流回路数为7回,每回路电缆根数为5根,湖涌停车场负回流回路数为4回,每回路电缆根数为5根。

3)为平衡上、下行钢轨中的电流,降低回流回路电阻和钢轨对地电位,在车站两端、地下区间联络通道及高架区间每隔200m左右设置上、下行均流电缆。

4)由于正线信号系统采用移动闭塞方式,无轨道电路,为确保牵引回流通路的畅通,所有钢轨纵向应电气连通,如有断开(例如正线道岔等),应在断开处可靠连接两根截面为150mm2的直流电缆作为连接电缆。

5)场段内的钢轨线路根据现场实际位置安装均流电缆,均流电缆采用两根截面为150mm2的直流电缆。

杂散电流介绍

杂散电流介绍

排流柜的防护作用---双刃剑
排流柜工作时的钢轨电位 排流柜不工作时的钢轨电位
杂散电流防护设计的方法
关于杂散电流收集网截面的大小计算-类似于供电计算 1. EU标准 2. 供电模拟 列出运行模拟-牵引计算 运行图模拟 全线列车运行扫描 钢轨、道床钢筋收集网、隧道钢筋收集网电位计算 校验钢筋收集网电位
全线接地系统图
接触网架空地线 接触网
牵引所
V
PE
绝缘法安装 电缆外铠
杂散电流收集网
降压所 PE
钢轨电位限制装置
电缆支架上的接地扁钢 通信或信号箱
V
PE
节点法数学模型及原理介绍
V1k-1
K-1 i1k
K V1k
i1k+1
K+1 V1k+1
1
V2k-1
i2k
V2k
i2k+1
V2k+1
2
Vmk-1
imk
Vmk
Gmk
imk+1
Vmk+1
m
参考电极的类型
? 硫酸铜(液态)
优点:精确 缺点:使用寿命短(10年)、漏液
? 锌(固体)
平方成正比。
杂散电流防护的基本措施
杂散电流防护系统对地铁设施采取的措施从其作用上来讲是有主次 分的,一方面是主要措施,是从根本上减少从钢轨上泄漏电流、直 接减少对钢轨及结构钢筋腐蚀的措施,另一方面是辅助、备用措施 ,是从腐蚀程度上缓解、在主要措施作用降低时备用措施起到缓解 用的措施。 主要措施包括: ? 加大钢轨对的泄漏电阻的措施
杂散电流的概念
OH L
钢轨电位分布
RAIL
阴极区
阳极区
阴极区

杂散电流防护系统施工方案

杂散电流防护系统施工方案

杂散电流防护系统施工方案武汉市轨道交通二号线一期工程杂散电流防护主要方案为“以堵为主、以排为辅、堵排结合、回流畅通、加强监测”的综合防护措施。

从施工角度来看,杂散电流系统主要包括防护排流和自动监测两大部分。

其中防护排流系统包括测防端子连接、排流电缆敷设、单向导通装置安装及排流柜安装、调试等内容;自动监测系统包括参比电极及接线盒安装、数据采集及统计处理装置安装及监测信号电缆敷设等。

1.1.1.1工序流程杂散电流防护工程主要施工工序如下:杂散电流防护工程施工工序流程图1.1.1.2施工方法(1)排流网测试测防端子连接前对排流网进行全面测试。

内容包括:检查测防端子预留情况,如连接端子有无遗漏、设置位置、规格型号是否满足设计要求、连接端子是否适于测防端子连接等;主排流网和辅助排流网电气导通情况。

排流网测试方法如下图:1)质量控制点测防端子的检查及排流网在测防端子连接前的测试是工序交接验收的重要内容,此项工作应由测防端子及排流网施工单位、杂散电流防护施工单位、施工双方监理共同参加。

a 测试前测防端子及排流网施工单位应将其经过其监理批准的质量保证资料交付杂散电流防护施工单位,杂散电流防护施工监理认为资料合格后,组织以上四方单位共同到现场测试;b 测试合格后,由杂散电流防护施工单位作好测试记录,四方签字后办理工序交接手续,否则,由双方施工监理单位责成测防端子及排流网施工单位限期改正;c 测试用仪表应在计量检定有效期内,测试方法正确。

2)安全控制点该项工作在线路上进行,应设专职安全防护员进行防护。

(2)测防端子连接测防端子连接按以下工序进行:1)测量测量所连接的测防端子间距,在测量位置处用油漆或防水笔作好标记(编号),并记录下测量区段名称、标记编号及测量间距长度。

根据测防端子连接后的电缆弯曲度,接线端子长度等数据及结构伸缩情况计算出所需连接电缆长度,然后将测量区段名称、标记编号及实际电缆长度数据列表整理交给测防端子连接电缆终端制作人员。

地铁牵引供电工程中的杂散电流防护系统

地铁牵引供电工程中的杂散电流防护系统

地铁牵引供电工程中的杂散电流防护系统摘要:地铁直流牵引供电系统中杂散电流对主体结构钢筋及其它金属结构的电化学腐蚀问题一直是影响地铁工程安全性的一大隐患。

本文讨论了杂散电流产生及对结构钢筋和金属管线的腐蚀机理,提出了影响杂散电流的各参数与杂散电流大小及分布的关系和具体防护措施,并提出了杂散电流防护措施实施的具体方案。

关键词:城市轨道交通;直流牵引供电系统;杂散电流;腐蚀一、绪论目前国内外的城市轨道交通直流牵引供电系统中,普遍采用走行轨回流的供电方式。

在这种供电方式当中,列车直流牵引供电系统采用正极接触网(轨),走行轨兼作负回流线。

由于走行轨不可能与大地完全绝缘,且走行轨存在电压降,因此有少量电流不会沿着走行回流轨回到牵引变电所的负极,而是沿着大地回到牵引变电所或不回到牵引变电所,形成杂散电流。

只要主体结构钢筋、金属管线流过杂散电流,在电流流过的地方就会造成腐蚀,如果防护不当,它还可能泄漏到线路外部,危害城市其它金属结构和管网设施。

如香港曾因地铁杂散电流引起煤气管道的腐蚀穿孔,而造成煤气泄漏的事故。

二、框架泄露保护原理及作用框架泄露保护主要监测直流设备接地部分与带电部分的泄露电流及电压,当绝缘降低,存在泄露电流或电压,甚至是短路电流产生时,电流电压达到一定动作值,启动框架泄露保护,联跳相关直流及交流断路器,防止故障范围进一步扩大。

框架泄露保护属于较严重的直流系统故障,发生后人员应在第一时间内赶赴现场进行处理。

框架泄露保护主要是为了防止当直流系统设备内部绝缘降低时,设备正极与柜体发生漏电所造成的危害。

框架泄露保护是直流供电系统中特有的保护。

三、框架泄露保护的组成与配合3.1电流元件框架泄露保护装置内设定有一个电流元件,电流元件主要包括分流器和电流检测元件,一端接设备外壳,另一端接地。

主要监测设备外壳对地的泄露电流。

正常运行情况下,电流检测回路没有电流流过。

当有设备对设备外壳放电,泄露电流经过检测回路流过地网,并达到整定值后,电流元件动作,联跳相应断路器,切断故障回路,框架泄露保护动作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢在轨道附近的新建结构要仔细选择位置 ➢避免电缆与管线和其它结构接触 ➢管线和电缆的金属铠装要绝缘 ➢对结构使用绝缘涂层 ➢使受腐蚀影响的结构相互连接并与地铁的回流
➢ 腐蚀强度大,危害大。范围广,随机性强。腐蚀激烈,腐蚀集 中于局部位置,当有防腐层时,往往集中于防腐层的缺陷部位。
➢ 根据法拉第电解定律,每1安培的杂散电流,每年可腐蚀钢铁金 属9.11kg。
➢ 排流网是杂散电流的良好通道,在回电点附近,杂散 电流从排流网的结构钢中流出。排流网的结构钢因失 去电子,而带正电,铁离子与水蒸气中的硫酸根离子 作用而变成硫酸盐,因而被腐蚀。
2-4杂散电流造成人身触电
➢ 地铁轨道为长轨,是由多节轨道焊接而成,因此轨道 接缝电阻值较大,而使轨道与结构钢之间的电位差增 加,如果轨道接缝处开焊,轨道接缝电阻更大,这使 轨道与结构钢之间的电位差更高。
➢ 如图4所示,在站台上,地铁乘客手脚之间的电位差 为ΔV,当这个电位差很高时,人就有死亡的危险。 德国标准VDE0115规定:这个电位差不得超过92V。
➢ 地铁隧道或轻轨基础为混凝土结构,排流网总的钢筋 有杂散电流流出时,钢筋的电位将发生正向偏移(阳 极极化)。阳极电流(流出的杂散电流)和阳极电位 变化的规律,阳极极化曲线如图2所示。
阳极极化曲线
V 0.5
0
0.6 1.0
2.0 mA/dm2
➢ 我国的CJJ49-92行业标准:《地铁杂散电流腐蚀防护 技术规程》第3.0.5条中规定:对于主体混凝土结构的 钢筋极化电压的正向偏移值不得大于0.5V,这一条作 为防腐蚀的标准。
➢ 在杂散电流由混凝土进入钢筋之处,钢筋呈阴极。如果阴极析 氢且氢气不能从混凝土逸出,就会形成等静压力,使钢筋与混 凝土脱开。
➢ 在电流离开钢筋的部位,钢筋呈阳极发生腐蚀并形成腐蚀产物 Fe(OH)2、Fe2O3.2xH2O(红锈)、Fe3O4(黑锈)等。腐蚀产物 在阳极处的堆积会以机械作用排挤混凝土而使之开裂。
➢ 根据研究,红锈的体积可大到原来钢筋体积的4倍,黑锈体积可 大到原来的2倍。铁锈的形成,使钢筋体积膨胀,进而对周围混 凝土产生压力,使混凝土内部形成拉应力。由于混凝土的抗拉 强度很低,一般只有0.88MPa~1.5MPa,使混凝土沿钢筋方向 开裂。
2-3杂散电流腐蚀埋地管线
➢ 地铁系统附近的埋地管线主要有自来水、石油、供暖、 燃气等公共事业管线以及各种电缆等。
2 危害
➢在地铁(或轻轨)等直流电气化轨道运输 系统中以轨道作为回流导体,由于钢轨不 可能对地完全绝缘,而且回流轨存在电压 降,因而导致一部分负荷电流,从轨道流 到轨枕和道床及地下钢轨金属设施中去, 这部分电流,就是杂散电流(迷流)。
杂散电流示意图


F
A
E D 阳极区
排流网
B 阴极区 C
杂散电流所经过的路径可概括为两个串联的腐蚀电池,即 电池Ⅰ:A钢轨(阳极区)→B道床→C排流网(阴极区) 电池Ⅱ:D排流网(阳极区)→E道床→F钢轨(阴极区)
杂散电流防护系统介绍
1 引言
➢ 在城市地铁和轻轨等轨道交通运输系统中,一般采用 直流牵引,走行轨回流,因此,不可避免会有电流从 走行轨泄入大地,对地下或地面的金属构件如结构钢 筋、地下管线等产生严重的腐蚀。
➢ 腐蚀不仅造成大量的金属损失,更为严重的是,可能 造成结构的破坏和其他系统的损害,由于腐蚀的隐蔽 性和突发性,一旦发生事故,往往会造成灾难性的后 果,因此,对杂散电流防护必须给予足够的重视。
➢ 排流网结构钢筋的极化电位时可以测试出来的,如 图3所示。
参比电极的本体电位 结构钢极化电位测量原理图
在排流网与轨道之间的水泥基础上装设参比电极, 则可测出V1与V2,ΔV= V1-V2即为排流网结构钢筋 与水泥基础间的电位差(极化电位)。
2-2杂散电流破坏混凝土结构
➢ 杂散电流通过混凝土时对混凝土本身并不产生影响。但如果有 钢筋存在,则钢筋起汇集电流的作用并把电流引导到排流点。
➢ 埋地管线容易集积杂散电流,故易受腐蚀,在设计和 建造地铁时不考虑此问题会产生极其严重的后果。
➢ 我国东北石油管道系统,穿越某直流电气化铁路,埋 地三年就发生了腐蚀穿孔,腐蚀速度达到2.0~2.5mm/ 年。
➢ 2009年3月,深圳燃气公司投诉深圳地铁,由于杂散 电流的影响,造成燃气管道腐蚀穿孔多处,索赔2100 万。
2-1杂散电流腐蚀金属
➢ 杂散电流对地铁或轻轨隧道结构钢筋及地下钢铁金属设施,产 生严重的腐蚀。
➢ 杂散电流引起的腐蚀比自然腐蚀要剧烈得多。杂散电流引起的 腐蚀与钢铁在电解质中发生的自然腐蚀不同,杂散电流腐蚀是 由于外部电源泄漏的电流作用而引起的结果,而自然腐蚀的电 流是自发进行的,且杂散电流在数值上要比自然腐蚀的电流大 几十倍,甚至上千倍。
➢ 对杂散电流防护的原则,应该: “以防为主,以排为 辅,加强监测,防止外泄” 。
3-1改进轨道交通系统
➢ 减小回流轨的电阻
➢增加回流轨的截面积 ➢为回流提供一个连续的电气通路 ➢减小变电所之间的距离
➢ 增加泄漏路径对地电阻
➢增加轨道对地电阻 ➢正线轨道的分段处理 ➢车辆段的轨道的绝缘隔离
3-2改进轨道交通系统附近的 地下金属结构
➢ 如果排流柜设置熔断器保护,会造成排流支路的中断, 在最需要排流的时候,排流柜起不到应有的作用。
2-6杂散电流对通信的影响
➢ 杂散电流除腐蚀地下管线外,杂散电流使通信导线与 附近大地形成电位差,会在接地的通信设备机架上形 成高电位,影响通信,甚至危及设备和人员的安全。
3杂散电流危害防护的方法
➢ 地铁(或轻轨)工程是大型的重点工程,必须贯彻 “百年大计、质量第一”的方针,所以做好地铁杂散 电流防护是保证地铁工程质量相当重要的一环。
➢ 监测轨道对结构钢筋的电位变化,就可以监测轨道纵 向电阻值的变化,也就可以监测走行轨回流的情况。Βιβλιοθήκη 2-5杂散电流烧毁排流设备
➢ 轨道与轨枕之间有绝缘相隔,如果由于某种原因,绝 缘物损坏,轨道与排流网短路,这时将有非常大的杂 散电流,通过排流网、排流柜,流回牵引变流所,排 流柜中的核心元件排流二极管的容量有限,一般通流 能力不超过200A,因此过大的杂散电流可能烧毁排流 柜。
相关文档
最新文档