九年级数学-圆-单元测试题(含答案)
九年级上学期数学《圆》单元检测题含答案

A.5B. C.5 D.5
[答案]D
[解析]
试题解析:连接OA、OB、OP,
∵∠C=30°,∴∠APB=∠C=30°,∵PB=A B,∴∠PA B=∠APB=30°
A.π+1B.π+2C.2π+2D.4π+1
8.如图,△A B C是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△A BP中,PB=A B,则PA的长为()
A. 5B. C. 5 D. 5
9.如图是某公园的一角,∠AOB=90°,弧A B的半径OA长是6米,C是OA的中点,点D在弧A B上,C D∥OB,则图中休闲区(阴影部分)的面积是()
23.如图,点I是△A B C的内心,AI的延长线和△A B C的外接圆相交于点D,与B C相交于点E.
(1)求证:DI=D B;
(2)若AE=6Cm,ED=4Cm,求线段DI的长.
24.如图,已知扇形AOB的圆心角为直角,正方形OC DE内接于扇形AOB.点C、E、D分别在OA、OB、弧A B上,过点A作AF⊥DE交ED的延长线于F,如果正方形的边长为1,求阴影部分M、N的面积和.
点睛:本题考查了圆周角定理,圆周角的度数等于它所对的弧所对的圆心角度数的一半,圆的弦所对的圆周角分两种,一种是优弧所对的圆周角,一种是劣弧所对的圆周角,它们是互补的关系.
4.⊙O的半径r=5Cm,直线l到圆心O的距离D=4,则l与⊙O的位置关系是( )
A.相离B.相切C.相交D.重合
[答案]C
[解析]
3.正六边形内接于圆,它的边所对的圆周角是( )
(好题)初中数学九年级数学下册第三单元《圆》测试卷(包含答案解析)(1)

一、选择题1.如图,点A 、B 、C 在⊙O 上,点D 是AB 延长线上一点,若∠CBD =65°,则∠AOC 的度数为( )A .115°B .125°C .130°D .135° 2.以坐标原点O 为圆心,1为半径作圆,直线y x b =-+与O 相交,则b 的取值范围是( )A .11b -<<B .22b -<<C .20b -<<D .02b << 3.若一个圆锥的底面半径为3cm ,高为62cm ,则圆锥的侧面展开图中圆心角的度数为( )A .120︒B .100︒C .80︒D .150︒ 4.如图,O 的半径为5,3OP =,则经过点P 的弦长可能是( )A .3B .5C .9D .125.探究性学习小组的同学接受了测量同样型号圆柱工件直径的任务.他们使用的工具是有一个角是60°的直角三角板和刻度尺.小明的测量方法如图甲所示.测得PC=12cm .小亮的测量方法如图乙所示.则与QA 的值最接近的是( )A .8cmB .7 cmC .6 cmD .5 cm6.如图,已知,ABC O △为AC 上一点,以OB 为半径的圆经过点A ,且与BC OC 、交于点E D 、,设,C a A β∠=∠=,则( )A .若70αβ+=︒,则弧DE 的度数为20︒B .若70αβ+=︒,则弧DE 的度数为40︒C .若70αβ-=︒,则弧DE 的度数为20︒D .若70αβ-=︒,则弧DE 的度数为40︒ 7.如图,两个正六边形ABCDEF 、EDGHIJ 的顶点A 、B 、H 、I 在同一个圆上,点P 在ABI 上,则tan ∠API 的值是( )A .3B .2C .2D .18.如图,P 是⊙O 外一点,射线PA 、PB 分别切⊙O 于点A 、点B ,CD 切⊙O 于点E ,分别交PA 、PB 于点D 、点C ,若PB =4,则△PCD 的周长( )A .4B .6C .8D .109.如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,8AB =,BD 与半圆O 相切于点B .点P 为AM 上一动点(不与点A ,M 重合),直线PC 交BD 于点D ,BE OC ⊥于点E ,延长BE 交PC 于点F ,则下列结论正确的个数有( )①PB PD =;②BC 的长为43π;③45DBE ∠=︒;④BCF PCB ∽△△;⑤CF CP ⋅为定值A .2个B .3个C .4个D .5个 10.下列事件是随机事件的是( )A .一个图形平移后所得的图形与原来的图形全等B .直径是圆中最长的弦C .方程2210ax x ++=是一元二次方程D .任意画一个三角形,其内角和是360︒11.如图,AB 是O 的直径,C 、D 分别是O 上的两点.若33BAC ∠=︒,则D∠的度数等于( )A .57︒B .60︒C .66︒D .67︒ 12.如图,△ABC 中,AB=AC ,∠ABC=70°,点O 是△ABC 的内心,则∠BOC 的度数为( )A .120°B .110°C .115°D .130°二、填空题13.如图,一次函数3233y x =-+的图象与x 轴交于点A ,与y 轴交于点B ,若向ABO 的外接圆C 内随机抛掷一枚小针,则针尖落在阴影部分的概率是_____________.14.如图,点M 为O 的半径OA 的中点,弦BC 过点M 且垂直于AO ,若4AO =,则弦BC 的长为______.15.如图,PA ,PB 是圆O 的切线,切点为A 、B ,∠P =50°,点C 是圆O 上异于A ,B 的点,则∠ACB 等于_____.16.如图,已知AB 为O 直径,若CD 是O 内接正n 边形的一边,AD 是O 内接正()4n +边形的一边,BD AC =,则n =_____.17.如图,菱形ABCD 中,已知2AB =,60DAB ∠=︒将它绕着点A 逆时针旋转得到菱形ADEF ,使AB 与AD 重合,则点C 运动的路线CE 的长为________.18.如图,点A 、B 的坐标分别为()3,0A ,()0,4B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则的最大值为________.19.如图,AB 是O 的直径,C 为半圆上一点,且30ABC ︒∠=,点P 为O 上的动点,D 为弦AP 的中点,若2AB =,则线段CD 的最大值为__________.20.在ABC 中,∠BAC =100°,AB =AC ,D 为ABC 形外一点,且AD =AC ,则∠BDC =________°.三、解答题21.如图,ABC 的外角BAD ∠的平分线与它的外接圆相交于点E ,连接BE ,CE .求证:(1)BE CE =;(2)若4BC =,6tan EAB ∠=,求O 的半径.22.如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 相交于点D ,且DE ⊥AC ,垂足为E .(1)求证:DE 是⊙O 的切线;(2)∠A=45º,⊙O 的半径为5,求图中阴影部分的面积.23.定义:把经过三角形的一个顶点并与其对边所在直线相切的圆叫做三角形的“切接圆”.根据上述定义解决下列问题,在△ABC 中,AB=AC=5, BC=6,设△ABC 的“切接圆”的半径为r .(1)如图1,△ABC 的“切接圆”的圆心D 在边AB 上,求r ;(2)如图2,请确定r 的最小值,并说明理由;(3)如图3,把△ABC 放在平面直角坐标系中,使点B 与原点O 重合,点C 落在x 轴正半轴上. 求证:以抛物线21(3)28y x =-+上任意一点为圆心都可以作△ABC 的“切接圆”. 24.已知:在O 中,四边形ABCD 的边AD 与O 相切于点A ,点B ,C 在O 上,//AD BC .(1)如图1,求证:AB AC =;(2)如图2,延长DC 交O 于点E ,连接AE 交BC 于点F ,若AD BC =,求证:AF BF =;(3)如图3,在(2)的条件下,连接BO 并延长交O 于点G ,交CD 于点H ,若724GH AD =,求tan ABG ∠的值.25.如图,在ABC 中,点O 是BC 中点,以O 为圆心,BC 为直径作圆刚好经过A 点,延长BC 于点D ,连接AD .已知CAD B ∠=∠.(1)求证:①AD 是⊙O 的切线;②ACD BAD △△;(2)若8BD =,1tan 2B =,求⊙O 的半径. 26.在学了“过任意三角形的三个顶点都可以作一个外接圆”之后,张华同学对“过任意四边形的四个顶点能否作一个外接圆?”进行了探究,下面是他的探究过程,请帮他补充完整. (1)动手实践:张华先画出了3个不同的四边形,如图所示.接着,他在所画出的图①,图②中,分别任选三个顶点用尺规各作了一个圆.请仿照张华的作法在图③中任选三个顶点作一个圆(要求尺规作图,保留作图痕迹,不写作法)(2)观察、发现:观察所作的图形,你发现:过任意四边形的四个顶点 能作一个外接圆;(选填“一定”或“不一定”)(3)测量、猜想:分别测量(1)中3个不同四边形的各个内角,猜想:如果过一个四边形的四个顶点能作一个圆,那么它相对的两个内角之间存在怎样的数量关系?请写出你的猜想.(4)证明你的猜想.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出∠ABC ,再求出它所对的弧对的圆心角,即可求∠AOC .【详解】解:∵∠CBD =65°,∴∠ABC=180°-65°=115°,优弧AC 所对的圆心角的度数为:115°×2=230°,∠AOC=360°-230°=130°,故选:C .【点睛】本题考查了圆周角的性质,解题关键是求出圆周角,根据同弧所对的圆周角和圆心角的关系求角.2.B解析:B【分析】求出直线y x b =-+与圆相切时,函数经过一、二、四象限和当直线y x b =-+与圆相切时,函数经过二、三、四象限b 的值,则b 的值在相交时与相切时两个b 之间;【详解】当直线y x b =-+与圆相切时,函数经过一、二、四象限,如图所示:在y x b =-+中,令x=0,y=b ,则与y 轴的交点为B(0,b),令x=b ,y=0,则与x 轴的交点为A(b ,0),则OA=OB ,即△AOB 是等腰直角三角形,连接圆心O 与切点C ,则OC=1,∴ △BOC 也是等腰直角三角形,∴ BC=OC=1,∴ 22112BO =+= ,同理当直线y x b =-+与圆相切时且函数经过二、三、四象限,b=2- ,∴ 当直线y x b =-+与圆相交时,b 的取值范围是22b -<< ;故选:B .【点睛】本题主要考查了直线与圆的关系的综合,解题的关键是根据题意找到直线与圆相切时b 的值.3.A解析:A【分析】根据勾股定理求出圆锥的母线长,根据弧长公式计算,得到答案.【详解】解:设圆锥的侧面展开图的圆心角为n °,()22362+9(cm ),∴圆锥的侧面展开图扇形的半径为9cm ,扇形弧长为2×3π=6π(cm),∴9180n π⨯=6π, 解得,n =120,故选:A .【点睛】 本题考查的是圆锥的计算,掌握圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键.4.C解析:C【分析】当经过点O、P的弦是直径时,弦最长为10;当弦与OP是垂直时,弦最短为8;判断即可.【详解】当经过点O、P的弦是直径时,弦最长为10;当弦与OP垂直时,根据垂径定理,得半弦长= 2253=4,所以最短弦为8;所以符合题意的弦长为8到10,故选C.【点睛】本题考查了直径是最长的弦,垂径定理,熟练运用分类思想,垂径定理,勾股定理是解题的关键.5.B解析:B【分析】先计算出QA的长,由于图甲测得PC=12cm,即圆的半径等于12cm,在图乙中直角三角形OAQ中利用30度角的三角函数可求得tan30°=33=12AQ,解得AQ的值为43.先估计3的近似值,再求解.【详解】解:如图甲,连结OP,并设⊙O与x轴相切于点D,图乙,连结OQ、OA,并设⊙O与x 轴相切于点E,∴由切线定义及圆性质可得四边形OPCD是正方形,∴OQ=OP=PC=12cm,由题意可知:∠QAO=(180°-∠BAC)÷2=60°,∴∠QOA=90°-∠QAO=30°,∴tan ∠QOA=AQ÷OQ ,即tan30°=3=12AQ , 解得AQ=43.∵1.5<3<2,∴6<43<8.故选B .【点睛】本题考查的是切线的性质,解直角三角形和无理数的估算.估算无理数的近似值在实际生活中有着广泛的应用,我们应熟练掌握.6.B解析:B【分析】连接BD ,根据直径所对的圆周角是直角,可求得∠ABD =90°,又由A β∠=,可求得∠ADB =90β︒-,再根据∠ADB =∠DBC +∠C ,可得∠DBC =90βα︒--,从而求出弧DE 的度数.【详解】解:连接BD ,∵AD 是直径,∴90ABD ∠=︒,∴90A ADB ∠+∠=︒,∴90ADB β∠=︒-,又∵∠ADB =∠DBC +∠C ,∴()90DBC αβ∠=︒-+,若70αβ+=︒,则()90907020DBC αβ∠=︒-+=︒-︒=︒,∴弧DE 的度数20240=︒⨯=︒,故选B .【点睛】此题主要考查了圆周角定理及推论、三角形外角的性质,熟练掌握圆周角定理、构造直径所对圆周角是解题的关键.7.A解析:A【分析】连接AE ,EI ,AH ,过点J 作JM ⊥EI 于M ,证明90AIH ∠=︒,设HI JI JE a ===,求出AI 即可.【详解】解:如图,连接AE ,EI ,AH ,过点J 作JM ⊥EI 于M .∵ABCDEF 是正六边形,∴∠DEF =∠F =120°,∵FA =FE ,∴∠FEA =∠FAE =30°,∴∠AED =90°,同法可证,∠DEI =∠EIH =90°,∴∠AED +∠DEI =180°,∴A ,E ,I 共线,设HI JI JE a ===,∵JM ⊥EI ,∴EM =MI 3, ∴AI =2EI =3a ,∵∠API =∠AHI ,∴tan ∠API =tan ∠AHI =AI HI 2323a = 故选:A .【点睛】本题考查了正多边形和圆,解直角三角形,圆周角定理等知识,解题关键是正确添加辅助线,构造直角三角形解决问题. 8.C解析:C【分析】由切线长定理可求得PA =PB ,BC =CE ,AD =ED ,则可求得答案.【详解】解:∵PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,∴PA=PB=4,BC=EC,AD=ED,∴PC+CD+PD=PC+CE+DE+PD=PC+BC+PD+AD=PB+PA=4+4=8,即△PCD的周长为8,故选:C.【点睛】本题考查了切线长定理以及三角形的周长,熟练掌握切线长定理是解题的关键;9.B解析:B【分析】①连接AC,并延长AC,与BD的延长线交于点H,若PD=PB,得出P为AM的中点,与实际不符,即可判定正误;②先求出∠BOC,再由弧长公式求得BC的长度,进而判断正误;③由∠BOC=60°,得△OBC为等边三角形,再根据三线合一性质得∠OBE,再由角的和差关系得∠DBE,便可判断正误;④证明∠CPB=∠CBF=30°,∠PCB=∠BCF,可得△BCF∽△PCB相似;⑤由等边△OBC得BC=OB=4,再由相似三角形得CF•CP=BC2,便可判断正误.【详解】解:①连接AC,并延长AC,与BD的延长线交于点H,如图1,∵M,C是半圆上的三等分点,∴∠BAH=30°,∵BD与半圆O相切于点B.∴∠ABD=90°,∴∠H=60°,∵∠ACP=∠ABP,∠ACP=∠DCH,∴∠PDB=∠H+∠DCH=∠ABP+60°,∵∠PBD=90°-∠ABP,若∠PDB=∠PBD,则∠ABP+60°=90°-∠ABP,∴∠ABP=15°,∴P点为AM的中点,这与P为AM上的一动点不完全吻合,∴∠PDB不一定等于∠ABD,∴PB不一定等于PD,故①错误;②∵M ,C 是半圆上的三等分点,∴∠BOC=13×180°=60°, ∵直径AB=8,∴OB=OC=4, ∴BC 的长度=41806043ππ⨯=, 故②正确;③∵∠BOC=60°,OB=OC ,∴∠ABC=60°,OB=OC=BC ,∵BE ⊥OC ,∴∠OBE=∠CBE=30°,∵∠ABD=90°,∴∠DBE=60°,故③错误;④∵M 、C 是AB 的三等分点,∴∠BPC=30°,∵∠CBF=30°,∠PCB=∠BCF ,∴△BCF ∽△PCB故④正确;⑤∵∠CBF=∠CPB=30°,∠BCF=∠PCB ,∴△BCF ∽△PCB , ∴CB CF CP CB=, ∴CF•CP=CB 2, ∵CB =OB =OC =12AB =4, ∴CF•CP=16,故⑤正确.故选:B .【点睛】本题主要考查了切线的性质,圆周角定理,直角三角形的性质,等边三角形的性质与判定,等腰三角形的性质,相似三角形的性质与判定,关键是熟练掌握这些性质,并能灵活应用. 10.C解析:C【分析】根据随机事件是可能发生也可能不发生的事件判断即可.解:A 、是必然事件,选项不符合题意;B 、是必然事件,选项不符合题意;C 、是随机事件,选项符合题意;D 、是不可能事件,选项不符合题意.故选:C .【点睛】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 11.A解析:A【分析】连接OC ,根据圆周角定理计算即可;【详解】连接OC ,∵33BAC ∠=︒,∴266BOC AOC ∠=∠=︒,又∵180DOC AOC ∠+∠=︒,∴180114AOC BOC ∠=︒-∠=︒, ∴1572D AOC ∠=∠=︒; 故答案选A .【点睛】本题主要考查了圆周角定理,准确计算是解题的关键.12.B解析:B【分析】根据内心的定义即可求得∠OBC+∠OCB ,然后根据三角形内角和定理即可求解.解:∵AB=AC ,∠ABC=70°,∴∠ACB=70°,∵点O 是△ABC 的内心,∴∠OBC=12∠ABC=35°,∠OCB=12∠ACB=35°, ∴∠OBC+∠OCB=70°,∴∠BOC=180°-(∠OBC+∠OCB )=110°.故选:B .【点睛】此题主要考查了三角形的内切圆与内心,正确理解∠OBC=12∠ABC=35°,∠OCB=12∠ACB=35°是关键. 二、填空题13.【分析】利用一次函数解析式求出点AB 的坐标即可得由勾股定理求出求出则可得是等边三角形可得根据圆周角定理求出扇形圆心角的度数并由三角形中线将三角形可分为面积相等的两个三角形得可求出阴影部分的面积及圆的 解析:13【分析】利用一次函数解析式求出点A 、B 的坐标,即可得6OA =,OB =AB =,求出BC OC AC ===OBC 是等边三角形,可得60OBA ∠=︒,根据圆周角定理求出扇形圆心角的度数,并由三角形中线将三角形可分为面积相等的两个三角形得OBC OAC SS =,可求出阴影部分的面积及圆的面积,利用面积比即可求出结论.【详解】解:∵一次函数y x =-+的图象与x 轴交于点A ,与y 轴交于点B , 令0y =,则6x =,∴()6,0A -,令0x =,则y =∴(0,B ,∴6OA =,OB =在Rt AOB 中,由勾股定理得:AB ==,∴23BC OC AC ===,∴BC OC OB ==,∴OBC 是等边三角形,∴60OBA ∠=︒, ∴120ACO ∠=︒,∵OC 是AB 边上的中线,∴OBC OAC S S =, ∴()2120=234360ACO S S ππ==阴影扇形,()22312C S ππ==,∴针尖落在阴影部分的概率41123P ππ==. 故答案为:13. 【点睛】 此题考查了几何概率,掌握几何概率的计算方法及求出阴影部分的面积是解题的关键. 14.【分析】连接BO 先求出OM=2再由勾股定理求出BM 的长即可得到结论【详解】解:连接BO 如图则∵M 是OA 的中点∴∵∴△是直角三角形BC=2BM ∴∴故答案为【点睛】本题考查的是垂径定理勾股定理掌握垂径定 解析:43【分析】连接BO ,先求出OM=2,再由勾股定理求出BM 的长即可得到结论.【详解】解:连接BO ,如图,则4BO OA ==∵M 是OA 的中点∴2OM =∵BC OA ⊥∴△OBM 是直角三角形,BC=2BM∴22224223BM OB OM =-=-=∴222343BC BM==⨯=故答案为43【点睛】本题考查的是垂径定理,勾股定理,掌握垂径定理是解题的关键.15.65°或115°【分析】连接OAOB进而求出∠AOB=130°再分两种情况:当C在劣弧AB上当C在劣弧AB上理由圆周角定理和圆内接四边形的性质即可得出结论【详解】解:如图连接OAOB∵PAPB分别切解析:65°或115°.【分析】连接OA,OB,进而求出∠AOB=130°,再分两种情况:当C在劣弧AB上,当C在劣弧AB 上,理由圆周角定理和圆内接四边形的性质,即可得出结论.【详解】解:如图,连接OA、OB,∵PA、PB分别切⊙O于点A、B,则∠OAP=∠OBP=90°;在四边形APBO中,∠P=50°,∴∠AOB=360°﹣∠OAP﹣∠P﹣∠OBP=360°﹣50°﹣90°﹣90°=130°①当点C在优弧AB上时,∠ACB=12∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠ACB=65°;当点C在劣弧AB上时,记作C',由①知,∠ACB=65°,∵四边形ACBC'是⊙O的内接四边形,∴∠AC'B=180°﹣∠ACB=180°﹣65°=115°,故答案为:65°或115°.【点睛】本题考查了切线的性质,圆周角定理,圆内接四边形的性质,求出∠AOB是解本题的关键.16.【分析】连接ODOCBC根据题意首先证明∠AOD=∠BOC再根据题意分别用含n的式子表示出∠AOD和∠COD建立关于n的方程求解即可【详解】如图连接ODOCBC∵AB为直径∴∠ADB=∠BCA=90解析:4【分析】连接OD ,OC ,BC ,根据题意首先证明∠AOD=∠BOC ,再根据题意,分别用含n 的式子表示出∠AOD 和∠COD ,建立关于n 的方程求解即可.【详解】如图,连接OD ,OC ,BC ,∵AB 为直径,∴∠ADB=∠BCA=90°,又∵BD AC =,∴Rt △ABD ≌Rt △BAC (HL ),∴AD=BC ,∠AOD=∠BOC ,∵CD 是O 内接正n 边形的一边, ∴360COD n ︒∠=, 同理:AD 是O 内接正()4n +边形的一边, ∴3604AOD BOC n ︒∠=∠=+, 由180AOD BOC COD ∠+∠+∠=︒, 得:36036021804n n︒︒⨯+=︒+, 解得:4n =,或2n =-(不符合题意,舍去) 经检验,4n =是原分式方程的解,故答案为:4.【点睛】本题主要考查了正多边形与圆,理解正多边形与圆的关系是解题关键.17.【分析】连接ACBD 交于点O 由菱形的性质得出AC 的长由旋转的性质∠EAC=60゜再根据弧长公式求解即可【详解】解:连接ACBD 交于点O 如图∵四边形ABCD 是菱形∴AC ⊥BDOA=OC ∠BAC=∠DA23 【分析】连接AC ,BD 交于点O ,由菱形的性质得出AC 的长,由旋转的性质∠EAC=60゜,再根据弧长公式求解即可.【详解】解:连接AC ,BD 交于点O ,如图,∵四边形ABCD 是菱形∴AC ⊥BD ,OA=OC ,∠BAC=12∠DAB=30゜ ∴ 112OB AB == 由勾股定理得,3OA =∴23AC =连接AE , 当AB 与AD 重合时,旋转了60゜,则∠EAC=60゜ ∴602323CE π== 23 【点睛】此题主要考查了旋转的性质、菱形的性质以及求弧长,运用菱形的性质求出AC 是解答此题的关键.18.3【分析】根据同圆的半径相等可知:点C 在半径为1的⊙B 上通过画图可知C 在BD 与圆B 的交点时OM 最小在DB 的延长线上时OM 最大根据三角形的中位线定理可得结论【详解】解:如图∵点C 为坐标平面内一点BC = 解析:3【分析】根据同圆的半径相等可知:点C 在半径为1的⊙B 上,通过画图可知,C 在BD 与圆B 的交点时,OM 最小,在DB 的延长线上时,OM 最大,根据三角形的中位线定理可得结论.【详解】解:如图,∵点C 为坐标平面内一点,BC =1,∴C 在⊙B 上,且半径为1,取OD =OA =3,连接CD ,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=12CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=4,OD=3,∠BOD=90°,∴BD=5,∴CD=6,∴OM=12CD=3,即OM的最大值为3;故答案为:3.【点睛】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是关键,也是难点.19.【分析】连结OCOP过C作CE⊥AB于E连接DEAC由B为直径可求AB=60°由OC=OA可得△ACO为等边三角形由CE⊥AB可知E为AO的中点AE=OE=在Rt△OCE中由勾股定理CE=由点D为A31+【分析】连结OC、OP,过C作CE⊥AB于E,连接DE,AC,由B为直径,可求AB=60°,由OC=OA,可得△ACO为等边三角形,由CE⊥AB,可知E为AO的中点,AE=OE=111 OA=AB= 242,在Rt△OCE中,由勾股定理223OC OE-=,由点D为AP的中点,ED为△AOP的中位线,可求ED=111OP=AB=242,根据三边关系在△CED中CD CE ED<+,可得C、D、E三点共线时,CD最大=CE +ED=313+1+=222即可.【详解】解:连结OC、OP,过C作CE⊥AB于E,连接DE,AC,∵AB为直径,∴∠ACB=90°,∴∠CAB=90°-∠CBA=90°-30°=60°,∵OC=OA,∴△ACO为等边三角形,∵CE⊥AB,∴E为AO的中点,AE=OE=111OA=AB=242,在Rt△OCE中,由勾股定理CE=22221312OC OE⎛⎫-=-=⎪⎝⎭,∵点D为AP的中点,ED为△AOP的中位线,∴ED=111OP=AB=242,在△CEP中CD CE ED<+,∴C、D、E三点共线时,CD最大=CE +ED=313+1+=2.故答案为:3+1 2.【点睛】本题考查圆周角性质,等边三角形判定与性质,等腰三角形三线合一性质,中位线性质,勾股定理,掌握圆周角性质,等边三角形判定与性质,等腰三角形三线合一性质,中位线性质,勾股定理,关键是通过引辅助线构造准确的图形.20.50°或130°【分析】以点A为圆心AB长为半径作圆由AB=AC=AD可知点DC 在圆A上由∠BAC=100°点D为ABC形外一点由点D在优弧上时∠BDC=∠BAC=50°由点D在劣弧上时∠BDC=(解析:50°或130°.【分析】以点A为圆心,AB长为半径作圆,由AB=AC=AD,可知点D、C在圆A上,由∠BAC=100°,点D为ABC形外一点,由点D在优弧上时,∠BDC=12∠BAC=50°,由点D在劣弧BC上时,∠BDC=12(360°-∠BAC)=130°.【详解】解:以点A为圆心,AB长为半径作圆,∵AB=AC=AD,∴点B、D、C在圆A上,∵∠BAC=100°,∵点D为ABC形外一点,当点D在优弧上∴∠BDC=12∠BAC=50°,当点D在劣弧BC上时∴∠BDC=12(360°-∠BAC)=130°,故答案为:50°或130°.【点睛】本题考查圆周角定理,点D在优弧与劣弧不同位置时圆周角,解题关键是引辅助元解决问题.三、解答题21.(1)见解析;(2)56 r=【分析】(1)根据圆内接四边形的性质得到DAE EBC∠=∠,根据角平分线的性质得到DAE EAB∠=∠,再根据同弧所对的圆周角相等得到EAB ECB∠=∠,则EBC ECB∠=∠,即可得到BE CE=(2)连接EO,并延长交BC于H,连接OB,OC,可知EH垂直平分BC,根据6tan EAB ∠=,EAB ECB ∠=∠,可求出EH 的长,再设圆O 的半径为r ,利用勾股定理即可求解 【详解】 (1)由题意可得DAE ∠为圆内接四边形AEBC 的外角∴DAE EBC ∠=∠AE 平分DAB ∠ ∴DAE EAB ∠=∠EAB ∠与ECB ∠是同弧所对的圆周角∴EAB ECB ∠=∠∴EBC ECB ∠=∠∴BE CE =(2)连接EO ,并延长交BC 于H ,连接OB ,OC,OB OC BE CE ==∴ EH 垂直平分BC , 4BC =122CH BC ∴== EAB ECB ∠=∠,6tan EAB ∠ ∴在Rt EHC 中,6tan EH ECB CH ∠==62EH ∴= 6EH ∴=设⊙O 的半径为r ,则6OH r =∴在Rt OHC △中,由勾股定理可得:222OC OH CH =+)22262r r ∴=+解得:56r =【点睛】本题考查了圆的内接四边形的性质,角平分线的性质,勾股定理,三角函数等知识,解题关键是正确作出辅助线,构造直角三角形.22.(1)见解析;(2)S 阴影【分析】(1)连接OD ,由题意可得∠B=∠C ,由半径OB 和OD 可得∠B=∠ODB ,从而∠C=∠ODB ,在Rt △DEC 中可知∠C +∠CDE=90º,则∠OBD +∠CDE=90º,从而得出∠ODE=90º,即可得证DE 是⊙O 的切线;(2)连接OD ,过点D 作DG ⊥AB ,垂足为G ,设AC 与⊙O 交于点H ,连接OH ,分别求解OAH S △,OAH S 扇形,OBD S △,OBD S 扇形,然后根据OAH OBD OAH OBD S S S S S ∆∆=+--阴影扇形扇形求解即可得到阴影部分的面积.【详解】(1)证明:连接OD .∵AB=AC ,∴∠B=∠C ,∵OB=OD ,∴∠B=∠ODB ,∴∠C=∠ODB ,∵DE ⊥AC ,∴∠C +∠CDE=90º,∴∠OBD +∠CDE=90º,∵∠BDC=180º,∴∠ODE=90º,∴OD ⊥DE ,∴DE 是⊙O 的切线.(2)连接OD ,过点D 作DG ⊥AB ,垂足为G .设AC 与⊙O 交于点H ,连接OH ,∵∠A=45º,∴∠OAH=∠BOH=90º,∵OH=OA=5, ∴112555222OAH S OA OH ∆=⋅=⨯⨯=, 2905253604OAH S ππ⨯==扇形, ∵OD ⊥DE ,DE ⊥AC ,∴OD ∥AC ,∴∠BOD=∠A=45º,又∵DG ⊥AB ,OD=5,∴DG=52cm , ∴115225252224OBD S OB DG ∆=⋅=⨯⨯=, 2455253608OBD S ππ⨯==扇形, ∴OAH OBD OAH OBD S S S S S ∆∆=+--阴影扇形扇形,=254π+258π-252-252, =751005028π--.【点睛】本题主要考查了圆的切线的判定,以及与扇形面积相关的不规则阴影部分面积求解问题,灵活添加辅助线将不规则图形转换为规则图形的面积表示是解题关键.23.(1)209r =;(2)最小值2r =;(3)证明过程见解析; 【分析】(1)作DE BC ⊥,AM BC ⊥,根据勾股定理和相似三角形的性质计算即可; (2)判断出r 的最小值范围,根据等面积法确定计算即可;(3)设抛物线21(3)28y x =-+上任意一点为()00,P x y ,证明P 到x 轴的距离与PA 的距离相等即可;【详解】(1)如图所示,作DE BC ⊥,AM BC ⊥,∵AM ∥DE ,DE r =,AB=AC ,∴3BM MC ==, ∴22534AM =-=,由题可知△△BDE BAM , ∴BD DE BA AM =, ∴554r r -=, ∴2045r r -=, ∴209r =. (2)由几何关系得,当这个图的直径是三角形的一条高时,最短;∵A 到BC 的距离为4,∴124r =,12r =;设C 到AB 的距离是m , 则1122S AM BC CD m =⨯⨯=⨯⨯, ∴24 4.85m ==, ∴22 4.8r =,2 2.4r =,∵2r >1r ,∴1r 为最小值,∴最小值2r =;(3)设抛物线21(3)28y x =-+上任意一点为()00,P x y ,因为抛物线的开口向上,顶点坐标为(3,2),所以对于抛物线上任意一点来说,纵坐标均为正数, 则P 到x 轴的距离为0h y =, ()()22220000003469816PA x y x x y y =-+-=-++-+,∵()2001328y x =-+, ∴220008625y x x =-+, ∴20006825x x y -=-,将上式代入①得,0PA y ==, ∴PA h =,即说明抛物线上任意一点P 均是△ABC 的切接圆圆心.【点睛】本题主要考查了与圆有关的计算,结合相似三角形的性质、勾股定理计算是解题的关键. 24.(1)见解析;(2)见解析;(3)3tan 4ABG ∠=【分析】(1)在O 中,连接AO 并延长交BC 于T ,由AD 与O 相切,可知AO AD ⊥,又因为//AD BC ,即可判断AT BC ⊥,故而即可证明;(2)由题意可知四边形ABCD 是平行四边形,再由=BE BE ,可推出BAE B ∠=∠,即可求证BF AF =;(3)令BH 与AE 的交点为M ,连接CG ,OA ,OC ,OE ,由题意可知AOC BOE ∠=∠,又因为=AB AC ,即可证得AOB BOE ∠=∠,再根据直径所对圆周角为直角可证90GCH BCE ∠+∠=︒,继而再利用锐角三角函数可令24BM m =,则7FM m =,根据BF =25718AM m m m =-=,即可求解;【详解】(1)证明:如图1 在O 中,连接AO 并延长交BC 于T , ∵AD 与O 相切于点A , ∴AO AD ⊥,∵//AD BC ,∴90OAD ATB ∠=∠=︒,∴AT BC ⊥,∴=AB AC ;(2)∵AD BC =,//AD BC ,∴四边形ABCD 是平行四边形,∴ABC D ∠=∠ ,∵//AD BC ,∴D BCE ∠=∠ ,∴ABC BCE ∠=∠,∵=BE BE ,∴BAE BCE ∠=∠,∴BAE B ∠=∠,∴BF AF =,(3)解:如图3 令BH 与AE 的交点为M ,连接CG ,OA ,OC ,OE∵2AOC ABC =∠∠ ,2BOE BAF ∠=∠, ABC BAF ∠=∠ ,∴AOC BOE ∠=∠,∵=AB AC ,∴AOB AOC ∠=∠ ,∴AOB BOE ∠=∠,∵180AOB AOH ∠+∠=︒ , 180BOE EOH ∠+∠=︒,∴AOH EOH ∠=∠,∵AO OE = ,∴OM AE ⊥,∴90EMH ∠=︒ ,∴90EHM MEH ∠+∠=︒,∵BG 为O 的直径,∴90BCG ∠=︒,∴90GCH BCE ∠+∠=︒,∵MEH ABC BCE ∠=∠=∠,∴EHM GCH ∠=∠,∴CG GH =, ∵724GH AD = ,AD BC =, ∴724CG GH BC ==, 在Rt BCG 中,7tan 24CG CBG BC ∠==, 在Rt BFM 中,7tan 24FM FBM BM ∠==, 令24BM m = , 则7FM m =,25BF m ===, ∴25AF BF ==m , ∴25718AM m m m =-=,在Rt ABM 中,183tan 244AM m ABG BM m ∠===;【点睛】本题考查了圆周角定理、切线的性质、锐角三角函数、勾股定理、平行四边形的性质,,正确掌握知识点是解题的关键;25.(1)①见解析;②见解析;(2)3r =【分析】(1)①直接用直径所对圆周角是90°进行解题即可;②找到∠CAD=∠ABD 和∠ADC=∠BDA ,两个角相等即可证明两个三角形相似;(2)利用锐角三角函数和相似三角形的性质即可求出半径的长度;【详解】(1)①如图所示,连接AO ,由BC 是直径得90BAC ∠=,∵ OB=OA ,∴∠B=∠OAB ,∵∠CAD=∠B ,∴∠OAD=∠OAC+∠CAD=∠OAC+∠OAB=90°,∴AD 为圆的切线;②在△ACD 和△BAD 中,∠CAD=∠ABD ,∠ADC=∠BDA ,∴△ACD ∽△BAD(2)由(1)知△ACD ∽△BAD ∴DA DC AC DB DA AB==, ∵1tan 2B = ,∴1tan 2AC B AB == , ∴12DA DC DB DA ==, 则2AD CD = , 即182AD AD BD == , 得AD=4, ∴ 122CD AD == , ∴ BC=BD-CD=8-2=6,∴半径3r =;【点睛】 本题考查了直径所对圆周角等于90°,相似三角形的判定以及锐角三角函数,正确掌握知识点是解题的关键;26.(1)见解析;(2)不一定;(3)猜想:如果过一个四边形的四个顶点能作一个圆,那么其相对的两个内角互补;(4)见解析【分析】(1)作两边的垂直平分线找到圆心,再以这点到其中一边任意一个端点的距离为半径,作圆即可;(2)通过作图可发现过任意四边形的四个顶点不一定能作一个外接圆;(3)根据度量的对角的度数,进行猜想即可;(4)先写出已知,求证,再根据圆周角的性质证明即可.【详解】解:(1)作图如下:图③(2)不一定(3)猜想:如果过一个四边形的四个顶点能作一个圆,那么其相对的两个内角互补 (4)如图,已知四边形ABCD 的顶点A 、B 、C 、D 均在O 上.求证:180A C ∠+∠=︒.证明:连接BO 、DO . 112A ∠=∠,122C ∠=∠1(12)2A C ∴∠+∠=∠+∠ 12360∠+∠=︒,180A C ∴∠+∠=︒.【点睛】本题考查了过不在同一直线上的三点作圆,圆周角的性质,解题关键是根据题意准确画图,合理猜想,并能够正确证明.。
北师大版九年级数学下册第三章-圆 单元测试题(含答案)

九年级数学圆单元测试题一、选择题1.若⊙O 所在平面内一点 P 到⊙O 上的点的最大距离为 a ,最小距离为 b (a>b ),则此圆的 半径为( )A .2a b + B .2a b- C .2a b +或2a b - D . a + b 或a - b 2.如图 24—A —1,⊙O 的直径为 10,圆心 O 到弦 AB 的距离 OM 的长为 3,则弦 AB 的 长是( ) A .4 B .6 C .7 D .8 3.已知点 O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( ) A .40° B .80° C .160° D .120° 4.如图 24—A —2,△ABC 内接于⊙O ,若∠A=40°,则∠OBC 的度数为( ) A .20° B .40° C .50° D .70°图 24—A —2图 24—A —3 图 24—A —4 图 24—A —55.如图 24—A —3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 OA 、OB 在 O 点钉在一起,并使它们保持垂直,在测直径时,把 O 点靠在圆周上,读得刻度 OE=8 个 单位,OF=6 个单位,则圆的直径为( ) A .12 个单位 B .10 个单位 C .1 个单位 D .15 个单位 6.如图 24—A —4,AB 为⊙O 的直径,点 C 在⊙O 上,若∠B=60°,则∠A 等于( ) A .80° B .50° C .40° D .30° 7.如图 24—A —5,P 为⊙O 外一点,PA 、PB 分别切⊙O 于 A 、B ,CD 切⊙O 于点 E ,分 别交 PA 、PB 于点 C 、D ,若 PA=5,则△PCD 的周长为( ) A .5 B .7 C .8 D .10 8.若粮仓顶部是圆锥形,且这个圆锥的底面直径为 4m ,母线长为 3m ,为防雨需在粮仓顶 部铺上油毡,则这块油毡的面积是( )A .6m 2B . 6πm 2C .12m 2D .12πm 29.如图 24—A —6,两个同心圆,大圆的弦 AB 与小圆相切于点 P ,大圆的弦 CD 经过点 P ,且 CD=13,PC=4,则两圆组成的圆环的面积是( ) A .16π B .36π C .52π D .81π10.已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( ) A .103 B .125C .2D .311.如图 24—A —7,两个半径都是 4cm 的圆外切于点 C ,一只蚂蚁由点 A 开 始依 A 、B 、C 、D 、E 、F 、C 、G 、A 的顺序沿着圆周上的 8 段长度相等的路径 绕行,蚂蚁在这 8 段路径上不断爬行,直到行走 2006π cm 后才停下来,则蚂蚁 停的那一个点为( )A .D 点B .E 点C .F 点D .G 点二、填空题12.如图 24—A —8,在⊙O 中,弦 AB 等于⊙O 的半径,OC ⊥AB 交⊙O 于点 C ,则∠ AOC= 。
人教版九年级上册数学《圆》单元测试卷(含答案)

人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、单选题OP ,则点P与O的位置关系是( ) 1.已知O的半径为5,同一平面内有一点P,且7A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2.已知正六边形的边长是2,则该正六边形的边心距是()A.1 B C.2 D.23.如图,已知在⊙O中,BC是直径,AB=DC,∠AOD=80°,则∠ABC等于( )A.40°B.65°C.100°D.105°4.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=( )A.85°B.95°C.105°D.115°5.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°6.如图,AB是⊙O的直径,C,D为⊙O上的点,AD CD,如果∠CAB=40°,那么∠CAD的度数为()A.25°B.50°C.40°D.80°7.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为() A.相离B.相切C.相交D.相切、相交均有可能8.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外9.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定10.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°11.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则P A+PB的最小值为()A.4 B.C.D.212.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为O的直径,弦AB CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )A.12寸B.13寸C.24寸D.26寸二、填空题13.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D =_____度.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为______.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.20.如图,矩形ABCD 中,3AB =,4AD =.作DE ⊥AC 于点E ,作AF ⊥BD 于点F .(1)求AF 、AE 的长;(2)若以点A 为圆心作圆, B 、C 、D 、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求A的半径 r 的取值范围.21.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?23.如图,P是⊙O外一点,P A是⊙O的切线,A是切点,B是⊙O上一点,且P A=PB,延长BO分别与⊙O、切线P A相交于C、Q两点.(1)求证:PB是⊙O的切线;(2)QD为PB边上的中线,若AQ=4,CQ=2,求QD的值.24.如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,8CD cm =,求直径AB 的长.25.如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为BD 的中点.若40A ∠=,求B ∠的度数.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)参考答案一、单选题12.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD 为的直径,弦,垂足为E ,CE=1寸,AB=10寸,求直径CD 的长”,依题意得CD 的长为( )A .12寸B .13寸C .24寸D .26寸【答案】D 【解析】【分析】连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE ,最后根据勾股定理进一步求解即可.【详解】如图,连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,∵CD 为的直径,弦,垂足为E ,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知, O AB CD⊥2xx 2x x O AB CD ⊥12在Rt △AOE 中,,∴,解得:,∴,即CD 长为26寸.【点评】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.二、填空题13.如图,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 切⊙O 于C ,连接AC ,若∠CAB =30°,则∠D =_____度.【答案】30【解析】【分析】连接OC ,如图,根据切线的性质得∠OCD =90°,再根据等腰三角形的性质和三角形外角性质得到∠COD =60°,然后利用互余计算∠D 的度数.【详解】连接OC ,如图,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD =90°.∵OA =OC ,∴∠ACO =∠CAB =30°,∴∠COD =∠ACO +∠CAB =60°,∴∠D =90°﹣∠COD =90°﹣60°=30°. 故答案为30.222AO AE OE =+()22251x x =+-13x =226x=【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质. 14.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.【答案】1【解析】【分析】根据同弧或等弧所对的圆周角相等可得∠A=∠CDB=30°,再根据AB 是⊙O 的直径,得出∠ACB=90°,则BC=AB ,从而得出结论. 【详解】解:∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=, 故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.12121212⨯=【答案】【解析】【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【详解】设扇形的半径为r.根据题意得:6π解得:r=故答案为【点评】本题考查了扇形的面积公式.熟练将公式变形是解题的关键.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.【答案】10cm【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•30=300π,然后解方程即可.【详解】解:根据题意得•2π•r•30=300π,解得r=10(cm).245360rπ=1212故答案为:10cm.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.【答案】证明见解析【解析】【分析】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【详解】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,∵OA=OB又∵M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,OM ONAOC BOCOC OC,=⎧⎪∠=∠⎨⎪=⎩∴△MOC≌△NOC(SAS),∴MC=NC.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点评】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.【答案】(1)见解析【解析】【分析】(1)由角平分线性质定理可得DE =DF ,由圆内接四边形性质可得∠A +∠BCD =180°,然后代换可得∠A =∠DCF ,又∠DEA =∠F =90°, 所以△AED ≌△CFD;(2)由三角形全等可得AE =CF ,BE =BF ,设AE =CF =x ,可得x =1;在Rt △BFD ,根据30°所对的直角边是斜边的一半,则BD =2DF ,利用勾股定理解得BD =【详解】(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠BCD =180°,又∵∠DCF +∠BCD =180°,∴∠A =∠DCF∵BD 是∠ABC 的角平分线,又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∠DEA =∠F =90°,∴△AED ≌△CFD.(2)∵△AED ≌△CFD ,∴AE =CF ,BE =BF ,设AE =CF =x ,则BE =10-x ,BF =8+x ,即10-x =8+x ,解得x =1,在Rt △BFD ,∠DBC =30°,设DF =y ,则BD =2y ,∵BF 2+DF 2=BD 2,∴y 2+92=(2y)2,y =BD =【点评】本题考查了全等三角形的性质和判定,勾股定理等知识,由条件灵活转移线段关系是解题关键. 20.如图,矩形中,,.作DE ⊥AC 于点E ,作AF ⊥BD 于点F . (1)求AF 、AE 的长;(2)若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求的半径 的取值范围.【答案】(1),;(2) 【解析】【分析】(1)先利用等面积法算出AF=,再根据勾股定理得出; (2)根据题意点F 只能在圆内,点C 、D 只能在圆外,所以⊙A 的半径r 的取值范围为.【详解】解:如图,ABCD 3AB =4AD =A B C D Ar 125AF =165AE = 2.44r <<125165AE = 2.44r <<(1)在矩形中,,.∴∵DE ⊥AC ,AF ⊥BD ,∴ ; ∴AF=, 同理,DE=, 在Rt △ADE 中,=, (2) 若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,则r>2.4,当至少有2个点在圆外,r<4,故⊙A 的半径r 的取值范围为:21.如图,已知.(1)用尺规作正六边形,使得是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.ABCD 3AB =4AD =11··22ABD S AB AD BD AF ==△125125165A B C D 2.44r <<O O【答案】(1)答案见解析;(2)答案见解析【解析】【分析】(1)利用正六边形的性质外接圆边长等于外接圆半径;(2)连接对角线以及利用正六边形性质.【详解】解:(1)如图所示:,(2)如图所示:【点评】此题主要考查了复杂作图以及全等三角形和正六边形的性质,根据正六边形性质得出作法是解题关键.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?【答案】5cm【解析】【分析】先根据垂径定理求出AD 的长,设OA=rcm ,则OD=(r-2)cm ,再根据勾股定理求出r 的值即可.【详解】解:作OD ⊥AB 于D ,如图所示:∵AB=8cm ,OD ⊥AB ,小坑的最大深度为2cm ,∴AD=AB=4cm . 设OA=rcm ,则OD=(r-2)cm在Rt △OAD 中,∵OA 2=OD 2+AD 2,即r 2=(r-2)2+42,解得r=5cm;即铅球的半径OA 的长为5cm .【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.如图,P 是⊙O 外一点,P A 是⊙O 的切线,A 是切点,B 是⊙O 上一点,且P A =PB ,延长BO 分别与⊙O 、切线P A 相交于C 、Q 两点.(1)求证:PB 是⊙O 的切线;(2)QD 为PB 边上的中线,若AQ =4,CQ =2,求QD 的值.12【答案】(1)详见解析;(2)QD【解析】【分析】(1)要证明PB 是⊙O 的切线,只要证明∠PBO=90°即可,根据题意可以证明△OBP ≌△OAP ,从而可以解答本题;(2)根据题意和勾股定理的知识,可以求得QD 的值.【详解】(1)证明:连接OA ,在△OBP 和△OAP 中,,∴△OBP ≌△OAP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,A 是切点,∴∠OAP =90°,∴∠OBP =90°,∵OB 是半径,∴PB 是⊙O 的切线;(2)连接OCPA PB OB OAOP OP ⎧⎪⎨⎪⎩===∵AQ=4,CQ=2,∠OAQ=90°,设OA=r,则r2+42=(r+2)2,解得,r=3,则OA=3,BC=6,设BP=x,则AP=x,∵PB是圆O的切线,∴∠PBQ=90°,∴x2+(6+2)2=(x+4)2,解得,x=6,∴BP=6,∴BD=3,∴QD,即QD【点评】本题考查切线的判定与性质,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.如图,的直径垂直弦于,且是半径的中点,,求直径的长.【解析】【分析】连接OC ,根据垂径定理可求CM =DM =4cm ,再运用勾股定理可求半径OC ,则直径AB 可求.【详解】连接OC .设圆的半径是r .∵直径AB ⊥CD,∴CM =DM =CD =4cm . ∵M 是OB 的中点,∴OM =r ,由勾股定理得:OC 2=OM 2+CM 2,∴r 2=(r )2+42,解得:r =,则直径AB =2r =(cm ).【点评】本题考查了垂径定理,解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.25.如图,四边形内接于,为的直径,点为的中点.若,求的度数. O AB CD M M OB 8CD cm =AB 1212123ABCD O AB O C BD 40A ∠=B ∠【答案】.【解析】【分析】连接AC ,根据圆周角定理可得∠ACB=90°,∠BAC=∠BAD ,然后根据∠B 与∠BAC 互余即可求解.【详解】解:连接,∵是直径,∴,∵点为的中点,,∴, ∴在中,.【点评】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)【答案】见解析70B ∠=12AC AB 90ACB ∠=C BD 40BAD ∠=11402022BAC BAD ∠=∠=⨯=Rt ABC 902070B ∠=-=【解析】【分析】根据圆的性质,弦的垂直平分线过圆心,所以只要找到两条弦的垂直平分线,交点即为圆心,有圆心就可以作出圆轮.【详解】如图:圆O为所求.【点评】本题考查了圆的基本性质,是一种求圆心的作法.作圆的方法有:①圆心半径;②三个圆上的点.。
第2章 对称图形——圆数学九年级上册-单元测试卷-苏科版(含答案)

第2章对称图形——圆数学九年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,E是△ABC的内心,若∠BEC=130°,则∠A的度数是()A.60°B.80°C.50°D.75°2、有下列四个命题,其中正确的有()①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A.4个B.3个C.2个D.1个3、如图所示,已知为的直径,直线为圆的一条切线,在圆周上有一点,且使得,连接,则的大小为()A. B. C. D.4、如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为( )A. B. C. D.5、如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB.C.2πD.3π6、如图,⊙O的半径为,BD是⊙O的切线,D为切点,过圆上一点C作BD的垂线,垂足为B,BC=3,点A是优弧CD的中点,则sin∠A的值是()A. B. C. D.7、如图,AB是⊙O的直径,弦CD与AB相交,连接CO,过点D作⊙O的切线,与AB的延长线交于点E,若DE∥AC,∠BAC=40°,则∠OCD的度数为()A.65°B.30°C.25°D.20°8、如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中FK1, K1K2, K2K3, K3K4, K5K6…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为l1, l2, l3, l4, l5, l6,….当AB=1时,l2014等于()A. B. C. D.9、如图,△ABC内接于⊙O,∠A=.若BC=,则的长为()A.πB.C.2πD.10、如图,PA、PB、AB都与⊙O相切,∠P=60°,则∠AOB等于()A.50°B.60°C.70° D.80°11、如图,用两根等长的金属丝,各自首尾相接,分别围成正方形ABCD和扇形A1D1C1,使A1D1=AD,D1C1=DC,正方形面积为P,扇形面积为Q,那么P和Q的关系是()A.P<QB.P=QC. P>QD. 无法确定12、如图,矩形ABCD中,AB=4,以顶点A为圆心,AD的长为半径作弧交AB于点E,以AB为直径作半圆恰好与DC相切,则图中阴影部分的面积为()A. B. C. D.13、如图,点C是⊙O的劣弧AB上一点,∠AOB=96°,则∠ACB的度数为()A.192°B.120°C.132°D.l5014、对于以下图形有下列结论,其中正确的是()A.如图①,是弦B.如图①,直径与组成半圆C.如图②,线段是边上的高 D.如图②,线段是边上的高15、已知的半径为5,若,则点与的位置关系是()A.点在内B.点在外C.点在上D.无法判断二、填空题(共10题,共计30分)16、如图,是锐角三角形的外接圆,,且,点是高线的交点,连接,则的度数为________,的长为________.17、如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为________.18、如图,己知等边的边长为8,以为直径的与边、分别交于、两点,则劣弧的长为________.19、如图,从一块直径为的圆形铁皮上剪出一个圆心角为的扇形,则此扇形的面积为________ .20、已知扇形的弧长为,圆心角为120°,则它的半径为________ 。
人教版数学九年级上册《圆》单元综合检测(附答案)

人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分)1.在同圆或等圆中,如果弧AB的长度=弧CD的长度,则下列说法正确的个数是()弧AB的度数等于弧CD的度数;所对的圆心角等于弧CD所对的圆心角;弧AB和弧CD是等弧;弧AB所对的弦的弦心距等于弧CD所对的弦的弦心距.A. 1个B. 2个C. 3个D. 4个2.、是直线上的两个不同的点,且,的半径为,下列叙述正确的是()A. 点在外B. 点在外C. 直线与一定相切D. 若,则直线与相交3. 如图,已知⊙O的半径为5,点O到弦AB的距离为2,则⊙O上到弦AB所在直线的距离为3的点有()A. 1个B. 2个C. 3个D. 4个4.如图,在中,已知,是圆周上的一点,则为()A. B. C. D.5.如图,正六边形内接于圆,圆的半径为,则这个正六边形的边心距和的长分别为()A. 、B. 、C. 、D. 、6.高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以为圆心的圆的一部分,路面米,净高米,则此圆的半径A. 米B. 米C. 米D. 米7.已知和三点、、,的半径为,,,,经过这三点中的一点任意作直线总是与相交,这个点是()A. B. C. D. 或8.如图,,是的直径,的半径为,,以为圆心,以为半径作,则与围成的新月形的面积为()平方单位.A. B. C. D.9.如图,已知:是的直径,、是上的三等分点,,则是()A. B. C. D.10.如图,点,,在上,点在圆外,则下列结论正确的是()A. ∠C>∠DB. ∠C<∠DC. ∠C=∠DD. ∠C=2∠D二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分)11.在,,,,点是的外心,现在以为圆心,分别以、、为半径作,则点与的位置关系分别是________.12.如下图,在以为圆心的两个同心圆中,大圆的弦交小圆于和两点,,,则长为________.13.已知:如图,为半的直径,、、为半圆弧上的点,,,则的度数为________度.14.如图,边长为的正方形的顶点、在一个半径为的圆上,顶点、在圆内,将正方形沿圆的内壁逆时针方向作无滑动的滚动.当点第一次落在圆上时,点运动的路径长为________.15.已知中,,,,直线过点且与平行,若以为轴将旋转一周,则所得的几何体的表面积为________.(不求近似值)16.如图,已知是的直径,为弦,度.过圆心作交于点,连接,则________度.17.如图,的边位于直线上,,,,若由现在的位置向右无滑动地旋转,当第次落在直线上时,点所经过的路线的长为________(结果用含有的式子表示)18.如图,圆柱底面半径为,高为,点、分别是圆柱两底面圆周上的点,且、在同一母线上,用一棉线从顺着圆柱侧面绕圈到,求棉线最短为________.19.以矩形的顶点为圆心作,要使、、三点中至少有一点在内,且至少有一点在外,如果,,则的半径的取值范围为________.20.如图,在中,是弦,,,那么圆心到的距离是________,弦的长是________.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分)21.一圆柱形排水管的截面如图所示,已知排水管的半径为,水面宽为.由于天气干燥,水管水面下降,此时排水管水面宽变为,求水面下降的高度.22.如图,在中,弦、于点,且.求证:.23.如图,在中,,,求分别以、、为圆心,以为半径画弧,三条弧与边所围成的阴影部分的面积.24.已知:如图,的外接圆,弦的长为,,求圆心到的距离.25.如图,已知为的直径,是弦,于,于,.求证:;求证:;若,,设,求值及阴影部分的面积.26.如图,内接于,,,.求的度数;将沿折叠为,将沿折叠为,延长和相交于点;求证:四边形是正方形;若,,求的长.参考答案一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分)1.在同圆或等圆中,如果弧AB的长度=弧CD的长度,则下列说法正确的个数是()弧AB的度数等于弧CD的度数;所对的圆心角等于弧CD所对的圆心角;弧AB和弧CD是等弧;弧AB所对的弦的弦心距等于弧CD所对的弦的弦心距.A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】由在同圆或等圆中,的长度=的长度,根据弧长公式得到它们所对的圆心角相等,再根据在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等,即可对选项进行判断.【详解】∵在同圆或等圆中,的长度=的长度,∴弧AB和弧CD所对的圆心角相等,∴的度数等于的度数;∴和是等弧;∴所对的弦的弦心距等于所对的弦的弦心距.故选D.【点睛】本题考查了在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.在圆中经常利用此结论把圆心角、弧、弦之间进行转化.2.、是直线上的两个不同的点,且,的半径为,下列叙述正确的是()A. 点在外B. 点在外C. 直线与一定相切D. 若,则直线与相交【答案】D【解析】【分析】由P、Q是直线l上的两个不同的点,且OP=5,⊙O的半径为5,可得点P在⊙O上,直线l与⊙O相切或相交;若OQ=5,则直线l与⊙O相交.【详解】∵OP=5,⊙O的半径为5,∴点P在⊙O上,故A错误;∵P是直线l上的点,∴直线l与⊙O相切或相交;∴若相切,则OQ>5,且点Q在⊙O外;若相交,则点Q可能在⊙O上,⊙O外,⊙O内;故B、C错误.∴若OQ=5,则直线l与⊙O相交;故D正确.故选D.【点睛】此题考查了直线与圆的位置关系,注意掌握分类讨论思想的应用是解题关键.3. 如图,已知⊙O的半径为5,点O到弦AB的距离为2,则⊙O上到弦AB所在直线的距离为3的点有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】考点:垂径定理;勾股定理.分析:根据垂径定理计算.解答:解:如图OD=OA=OB=5,OE⊥AB,OE=3,∴DE=OD-OE=5-3=2cm,∴点D是圆上到AB距离为2cm的点,∵OE=3cm>2cm,∴在OD上截取OH=1cm,过点H作GF∥AB,交圆于点G,F两点,则有HE⊥AB,HE=OE-OH=2cm,即GF到AB的距离为2cm,∴点G,F也是圆上到AB距离为2cm的点.故选C.点评:本题利用了垂径定理求解,注意圆上的点到AB距离为2cm的点不唯一,有三个.4.如图,在中,已知,是圆周上的一点,则为()A. B. C. D.【答案】B【解析】【分析】首先根据题画出图形,然后在优弧上取点D,连接AD,BD,根据圆周角的性质,即可求得∠ADB的度数,又由圆的内接四边形的性质,即可求得∠ACB的度数.【详解】如图:在优弧上取点D,连接AD,BD,∵∠AOB=100°,∴∠ADB=∠AOB=55°,∵四边形ADBC是⊙O的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=125°.故选B.【点睛】此题考查了圆周角定理与圆的内接四边形的性质,根据题意作出图形,掌握数形结合思想的应用及圆周角定理是解题关键.5.如图,正六边形内接于圆,圆的半径为,则这个正六边形的边心距和的长分别为()A. 、B. 、C. 、D. 、【答案】D【解析】试题解析:连接OC,OD,∵正六边形ABCDEF是圆的内接多边形,∴∠COD=60°,∵OC=OD,OM⊥CD,∴∠COM=30°,∵OC=6,∴OM=6cos30°=3,∴=2π故选D.考点:1.正多边形和圆;2.弧长的计算.6.高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以为圆心的圆的一部分,路面米,净高米,则此圆的半径A. 米B. 米C. 米D. 米【答案】B【解析】【分析】根据垂径定理可知AD的长,设半径为r,利用勾股定理列方程求出r的值即可.【详解】∵CD⊥AB,∴由垂径定理得AD=6米,设圆的半径为r,则OD2+AD2=OA2,即(9-r)2+62=r2,解得r=米.故选B.【点睛】考查了垂径定理、勾股定理.根据题意构造一个由半径、半弦、弦心距组成的直角三角形进行计算是解题关键.7.已知和三点、、,的半径为,,,,经过这三点中的一点任意作直线总是与相交,这个点是()A. B. C. D. 或【答案】A【解析】【分析】根据⊙O的半径为3,OP=2,OQ=3,OR=4,可以知道点P在圆内,点Q在圆上,点R在圆外,因而这三点中P的一点任意作直线总是与⊙O相交.【详解】∵的半径为,,,,∴Q点在圆上;R点在圆外;P点在圆内,∴经过P点任意作直线总是与⊙O相交.故选A.【点睛】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R 时,点在圆外;当d<R时,点在圆内.准确判断P、Q、R三点与⊙O的位置关系是解决本题的关键.8.如图,,是的直径,的半径为,,以为圆心,以为半径作,则与围成的新月形的面积为()平方单位.A. B. C. D.【答案】B【解析】【分析】新月形ACED的面积是圆O半圆的面积-弓形CED的面积,弓形CED的面积又=扇形BCD面积-三角形BCD 的面积,然后依面积公式计算即可.【详解】∵OC=OB=R,,∴BC=R,)∴新月形ACED的面积=S半圆-(S扇形BCD-S△BCD=-(-)=R2.故选B.【点睛】本题的关键是看出:新月形ACED的面积是圆O半圆的面积-弓形CED的面积,然后逐一求面积即可.9.如图,已知:是的直径,、是上的三等分点,,则是()A. B. C. D.【答案】C【解析】【分析】先求出∠BOE=120°,再运用“等弧对等角”即可解.【详解】∵∠AOE=60°,∴∠BOE=180°-∠AOE=120°,∴的度数是120°,∵C、D是上的三等分点,∴弧CD与弧ED的度数都是40度,∴∠COE=80°,故选:C.【点睛】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.熟练掌握圆周角定理是解题关键.10.如图,点,,在上,点在圆外,则下列结论正确的是()A. ∠C>∠DB. ∠C<∠DC. ∠C=∠DD. ∠C=2∠D【答案】A【解析】【分析】根据三角形外角的性质得到∠BEC>∠BDC,根据圆周角定理得到∠BAC=∠BEC,得到答案【详解】如图:连接AE,∵∠BEA是△ADE的外角,∴∠BEA>∠D,∵∠C=∠BEA,∴∠C>∠D,故A选项正确,则B、C、错误,∵不确定D点的位置,∴∠C不一定等于2∠D,故D选项错误,故选A.【点睛】本题考查的是圆周角定理和三角形的外角的性质的应用,掌握同弧所对的圆周角相等和三角形的一个外角大于与它不相邻的任何一个内角是解题的关键.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分)11.在,,,,点是的外心,现在以为圆心,分别以、、为半径作,则点与的位置关系分别是________.【答案】圆外,圆上,圆内【解析】【分析】由点是的外心,可知O为△ABC的外接圆的圆心,因为∠C=90°,由圆周角定理可知AB为外接圆的直径,根据勾股定理可求出AB的长,根据直角三角形斜边中线等于斜边一半可知OC的长度,根据半径的长判断点C的位置即可.【详解】∵,点是的外心,∴AB为⊙O的直径,且O为AB中点,∵,,∴AB==5,∴OC=2.5,∵2.5>2;2.5=2.5; 2.5<3,∴以、、为半径作,则点与的位置关系分别是圆外、圆上、圆内.故答案为:圆外、圆上、圆内【点睛】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R 时,点在圆外;当d<R时,点在圆内.根据圆周角定理确定O点的位置是解题关键.12.如下图,在以为圆心的两个同心圆中,大圆的弦交小圆于和两点,,,则长为________.【答案】【解析】【分析】如图:作OE⊥AB于E,根据垂径定理可知CE=CD,AE=AB,根据AC=AE-CE求出AC的长即可.【详解】如图:作OE⊥AB于E,∴根据垂径定理得:CE=CD=3,AE=AB=5,∴AC=AE-CE=2.故答案为:2【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,熟练掌握垂径定理是解题关键.13.已知:如图,为半的直径,、、为半圆弧上的点,,,则的度数为________度.【答案】【解析】【分析】根据同圆中,等弧所对的圆心角相等可知∠BOC的度数,即可求出∠AOC的度数.【详解】∵,∠BOE=55°,∴∠COD=∠DOE=∠BOE=55°,∴∠BOC=165°,∴∠AOC=180°-165°=15°,故答案为:15【点睛】本题考查圆周角定理,在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.在圆中经常利用此结论把圆心角、弧、弦之间进行转化.14.如图,边长为的正方形的顶点、在一个半径为的圆上,顶点、在圆内,将正方形沿圆的内壁逆时针方向作无滑动的滚动.当点第一次落在圆上时,点运动的路径长为________.【答案】【解析】【分析】设圆心为O,连接AO,BO,AC,AE,易证三角形AOB是等边三角形,确定∠GFE=∠EAC=30°,再利用弧长公式计算即可.【详解】如图所示:设圆心为O,连接AO,BO,AC,AE,∵AB=,AO=BO=,∴AB=AO=BO,∴△AOB是等边三角形,∴∠AOB=∠OAB=60°同理:△FAO是等边三角形,∠FAB=2∠OAB=120°,∠DAF=120°-90°=30°,即旋转角为30°,∴∠EAC=30°,∠GFE=∠FAD=120°-90°=30°,∵AD=AB=,∴AC=2,∴当点C第一次落在圆上时,点C运动的路径长为=()π;故答案为:()π【点睛】本题考查了正方形的性质、旋转的性质、等边三角形的判定和性质、勾股定理的运用以及弧长公式的运用,题目的综合性较强,解题的关键是正确的求出旋转角的度数.15.已知中,,,,直线过点且与平行,若以为轴将旋转一周,则所得的几何体的表面积为________.(不求近似值)【答案】【解析】【分析】根据,,,可求出△ABC的其余边长,表面积为一个圆锥的侧面积+一个圆的底面积+圆柱的侧面积,按照公式计算即可.【详解】∵Rt△ABC中,∠C=90°,∠A=30°,AB=10,∴BC=5,AC=5,∴所得几何体的表面积为:π×5×10+π×52+2π×5×5=75π+50.故答案为75π+50.【点睛】考查圆锥的计算;画出相关图形,判断出表面积的组成是解决本题的关键.16.如图,已知是的直径,为弦,度.过圆心作交于点,连接,则________度.【答案】【解析】【分析】先根据直角三角形两锐角互余求出∠BOD,再根据圆周角定理∠DCB=∠BOD即可得答案.【详解】∵OD⊥BC交弧BC于点D,∠ABC=30°,∴∠BOD=90°-∠ABC=90°-30°=60°,∴∠DCB=∠BOD=30°.故答案为:30【点睛】本题主要考查圆周角定理,在同圆或等圆中同弧所对的圆周角的度数是圆心角的一半,熟练掌握圆周角定理是解题关键.17.如图,的边位于直线上,,,,若由现在的位置向右无滑动地旋转,当第次落在直线上时,点所经过的路线的长为________(结果用含有的式子表示)【答案】【解析】【分析】根据含30度的直角三角形三边的关系得到BC=1,AB=2BC=2,∠ABC=60°;点A先以B点为旋转中心,顺时针旋转120°到A1,再以点C1为旋转中心,顺时针旋转90°到A2,然后根据弧长公式计算两段弧长,从而得到点A第3次落在直线上时,点A所经过的路线的长.【详解】∵Rt△ABC中,AC=,∠ACB=90°,∠A=30°,∴BC=1,AB=2BC=2,∠ABC=60°;∵Rt△ABC由现在的位置向右无滑动的翻转,且点A第3次落在直线l上时,有3个的长,2个的长, ∴点A经过的路线长=×3+×2=(4+)π.故答案为:(4+)π.【点睛】本题考查了旋转的性质与弧长的计算,解题的关键是熟练的掌握旋转的性质与弧长的计算方法. 18.如图,圆柱底面半径为,高为,点、分别是圆柱两底面圆周上的点,且、在同一母线上,用一棉线从顺着圆柱侧面绕圈到,求棉线最短为________.【答案】【解析】【分析】将圆柱体展开,然后利用两点之间线段最短解答即可.【详解】圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;∵圆柱底面半径为2cm,∴长方形的宽即是圆柱体的底面周长:2π×2=4πcm;又∵圆柱高为9πcm,∴小长方形的一条边长是3πcm;根据勾股定理求得AC=CD=DB=5πcm;∴AC+CD+DB=15πcm;故答案为:15π.【点睛】本题主要考查了圆柱的计算、平面展开--路径最短问题.圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.本题就是把圆柱的侧面展开成长方形,“化曲面为平面”,用勾股定理解决.19.以矩形的顶点为圆心作,要使、、三点中至少有一点在内,且至少有一点在外,如果,,则的半径的取值范围为________.【答案】【解析】【分析】先求出矩形对角线的长,然后由B、C、D与⊙A的位置,确定⊙A的半径的取值范围.【详解】根据题意画出图形如下所示:∵AB=CD=5,AD=BC=12,∴AC=BD==13.∵B、C、D中至少有一个点在⊙A内,且至少有一个点在⊙A外,∴点B在⊙A内,点C在⊙A外.∴5<r<13.故答案是:5<r<13.【点睛】本题考查的是点与圆的位置关系,要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.20.如图,在中,是弦,,,那么圆心到的距离是________,弦的长是________.【答案】(1). (2).【解析】【分析】过O作OC⊥AB交AB于C点,根据垂径定理可知OC垂直平分AB,根据OA=OB,∠AOB=120°可求出∠OAB=30°,根据30°角所对直角边等于斜边一半即可求得圆心到的距离;根据勾股定理求出AC的长即可求出AB的长.【详解】过O作OC⊥AB交AB于C点,如图所示:由垂径定理可知,OC垂直平分AB,∵OA=OB,∠AOB=120°∴∠OAB=30°∴OC=OA=cm∴由勾股定理可得:AC= =cm∴AB=2AC=5cm.故答案为:;5;【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分)21.一圆柱形排水管的截面如图所示,已知排水管的半径为,水面宽为.由于天气干燥,水管水面下降,此时排水管水面宽变为,求水面下降的高度.【答案】水面下降了米.【解析】【分析】如图:过点O作ON⊥CD于N,交AB于M,先根据垂径定理求得AM、CN,然后根据勾股定理求出OM、ON的长,即可得出结论【详解】如图,下降后的水面宽CD为6m,连接OA,OC,过点O作ON⊥CD于N,交AB于M.∴∠ONC=90°.∵AB∥CD,∴∠OMA=∠ONC=90°.∵AB=8m,CD=6m,∴AM=AB=4,CN=CD=3,在Rt△OAM中,∵OA=5,∴OM==3.同理可得ON=4,∴MN=ON-OM=1(米).答:水面下降了1米.【点睛】本题考查的是垂径定理的应用以及勾股定理的应用,熟知垂直于弦的直径平分弦,并且平分这条弦所对的两条弧是解答此题的关键.22.如图,在中,弦、于点,且.求证:.【答案】见解析【解析】【分析】根据,可证明,进而证明AC=BD,通过证明即可证明结论.【详解】∵,∴,,∴在与中,∵,∴,∴.【点睛】本题考查的是圆心角、弧、弦的关系及全等三角形的判定与性质,熟练掌握,圆心角、弧、弦的关系是解题关键.23.如图,在中,,,求分别以、、为圆心,以为半径画弧,三条弧与边所围成的阴影部分的面积.【答案】.【解析】【分析】由于三条弧所对的圆心角的和为180°,根据扇形的面积公式可计算出三个扇形的面积和,而三条弧与边AB 所围成的阴影部分的面积=S△ABC-三个扇形的面积和,再利用三角形的面积公式计算出△ABC的面积,然后代入即可得到答案.【详解】∵∠C=90°,CA=CB=2,∴AC=1,S△ABC==2,∵三条弧所对的圆心角的和为180°,三个扇形的面积和==,∴三条弧与边AB所围成的阴影部分的面积=S△ABC-三个扇形的面积和=2-,【点睛】本题考查扇形面积,熟练掌握面积公式并明确三条弧所对的圆心角的和为180°是解题关键.24.已知:如图,的外接圆,弦的长为,,求圆心到的距离.【答案】圆心到的距离为.【解析】【分析】连接,,过点作于点,根据圆周角定理可知∠BOC=60°,进而证明△OBC是等边三角形,根据垂径定理可知CD的长度,利用勾股定理求出OD的长即【详解】连接,,过点作于点,∵,∴.∵,∴是等边三角形,∴,∵OD⊥BC,∴CD=BC=2,∴=,即圆心到的距离为.【点睛】本题考查圆周角定理及垂径定理,在同圆中,同弧所对的圆周角的度数等于圆心角的一半,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握定理是解题关键.25.如图,已知为的直径,是弦,于,于,.求证:;求证:;若,,设,求值及阴影部分的面积.【答案】(1)见解析;(2)见解析;(3)x=5,.【解析】【分析】(1)根据直径所对的圆周角是90°可知∠ACB=∠AFO=90°,由平行线判定定理即可证明OF//BC;(2)由可知∠CBE=∠FOA,利用,,即可证明;(3)在Rt△OCE中,利用勾股定理列方程即可求出x的值,根据OC=2OE可知∠OCE=30°,即可求出∠COD的度数,利用扇形面积及三角形面积公式求出阴影面积即可.【详解】证明:∵为的直径,∴又∵∴证明:∵∴∠CBE=∠FOA∵,,∴解:连接.设,∵∴.在中,,根据勾股定理可得:解得:,即,∵OC=5+5=10,∴OC=2OE,∴∠OCE=30°,∴,∴扇形的面积是:的面积是:∴阴影部分的面积是:.【点睛】本题考查圆周角定理、垂径定理及扇形面积,熟练掌握定理和公式是解题关键.26.如图,内接于,,,.求的度数;将沿折叠为,将沿折叠为,延长和相交于点;求证:四边形是正方形;若,,求的长.【答案】(1);(2)见解析;(3).【解析】【分析】(1)连接和,由OE=BC,可知OE=BE,进而可知∠OBE=45°,同理可证∠OCE=45°,即可证明∠BOC=90°,根据圆周角定理即可求得∠BAC的度数;(2)由折叠性质可知AG=AD=AF,∠AGH=∠AFH=90°,∠DAC=∠CAF,∠BAD=∠BAG,由∠BAD+∠DAC=45°,可证明∠GAF=90°,即可证明四边形AFHG 是正方形;(3)由折叠性质可知,;由(2)可知∠BHC=90°,设AD长为x,利用勾股定理列方程求出x的值即可得解.【详解】(1)连接和;∵,∴;∵,∴,∴;∵,∴;由折叠可知,,,,,∴;∴;∴四边形是正方形;解:由得,,,,;设的长为,则,.在中,,∴;解得,,(不合题意,舍去);∴.【点睛】本题主要考查圆周角定理及折叠性质,在同圆中,同弧所对的圆周角的度数等于圆心角的一半;折叠后的图形与原图形全等,熟练掌握折叠的性质是解题关键.。
人教版数学九年级上册《圆》单元测试卷带答案
A. ①B. ③C. ②D. ④
9.已知正六边形的边长为 ,则这个正六边形的边心距是( )
A. B. C. D.
10.如图,直线 , 与 和 分别相切于点 和点 .点 和点 分别是 和 上的动点, 沿 和 平移. 的半径为 , .下列结论错误的是( )
【详解】解:连结OA、OB,如图1,
∵⊙O与l1和l2分别相切于点A和点B,
∴OA⊥l1,OB⊥l2,
∵l1∥l2,
∴点A、O、B共线,
∴AB为⊙O的直径,
∴l1和l2的距离为2;故C正确,
作NH⊥AM于H,如图1,
则NH=AB=2,
∵∠AMN=60°,
∴sin60°= ,
∴MN= ;故A正确,
当MN与⊙O相切,如图2,连结OM,ON,
求证: 是 的切线;
当点 在劣弧 上运动时,其他条件不变,若 .求证:点 是 的中点;
在满足 条件下, , ,求 的长.
参考答案
一、选择题(共 16 小题,每小题 3 分,共 48 分 )
1.下列语句中,不正确的有( )
①直径 弦;
②弧是半圆;
③经过圆内一定点可以作无数条弦;
④长度相等的弧是等弧.
A.①③④B.②③C.②D.②④
∴AC= AB= ×60=30,
CO=AO-10,
在Rt△AOC中,AO2=AC2+OC2,
AO2=302+(AO-10)2,解得AO=50cm.
∴内径为2×50=100cm.
故选C.
【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
九年级上册数学单元测试卷-第2章 对称图形——圆-苏科版(含答案)
九年级上册数学单元测试卷-第2章对称图形——圆-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,AB是⊙O的直径,O是圆心,弦CD⊥AB于E,AB=10,CD=8,则OE的长为( )A.2B.3C.4D.52、如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=( ).A.8cmB.5cmC.3cmD.2cm3、如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C 的大小等于()A.20°B.25°C.40°D.50°4、若⊙O的面积为25π,在同一平面内有一个点P,且点P到圆心O的距离为4.9,则点P与⊙O的位置关系为()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定5、如图,已知⊙O的半径为5cm,弦AB=6cm,则圆心O到弦AB的距离是()A.1cmB.2cmC.3cmD.4cm6、若扇形的半径为3,圆心角为60°,则此扇形的弧长是()A.πB. 2πC. 3πD.4π7、下列有关圆的一些结论:①弦的垂直平分线经过圆心;②平分弦的直径垂直于弦;③相等的圆心角所对的两条弦的弦心距相等;④等弧所在的扇形面积都相等,其中正确结论的个数是()A.4B.3C.2D.18、过钝角三角形的三个顶点作圆,其圆心在()A.三角形内B.三角形上C.三角形外D.以上都有可能9、如图,在扇形OAB中,∠AOB=90°,半径OA=6,将扇形OAB沿过点A的直线折叠,点O 恰好落在弧AB上的点处,折痕交OB于点C,则弧的长是()A. B. C. D.10、下列命题正确的是()A.三角形的内心到三角形三个顶点的距离相等B.三角形的内心不一定在三角形的内部C.等边三角形的内心,外心重合D.一个圆一定有唯一一个外切三角形11、如图△ABC的内接圆于⊙O,∠C=45°,AB=4,则⊙O的半径为()A.2B.4C.2D.412、如图,Rt△ABC中,∠C=90°,AB=13,BC=5,则其内切圆半径为()A.1B.2C.3D.413、已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.2 cmB.4 cmC.2 cm或4 cmD.2 cm或4cm14、如图,在中,,于,已知,,以点为圆心,为半径画圆,则点在()A. 上B. 内C. 外D.都有可能15、如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A. B. C.2π D.二、填空题(共10题,共计30分)16、如图,,是的切线,,为切点,连接,,,则________度.17、如图,已知正方形ABCD的顶点A、B在⊙O上,顶点C、D在⊙O内,将正方形ABCD绕点逆时针旋转,使点D落在⊙O上.若正方形ABCD的边长和⊙O的半径均为6cm,则点D 运动的路径长为________ cm.18、如图所示,四边形ABCD是圆内接四边形,其中,则________.19、如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2 cm,∠BCD=22.5°,则⊙O的半径为________cm.20、如图,已知AB,CD是☉O的直径,弧AE=弧AC,∠AOE=32°,那么∠COE的度数为________度.21、如图,已知⊙O上三点,,,切线交延长线于点,若,则________.22、如图,C是以AB为直径的⊙O上一点,已知AB=10,BC=6,则圆心O到弦BC的距离是________.23、如图,圆锥的底面半径为1cm,高SO等于2 cm,则侧面展开图扇形的圆心角为________°.24、已知圆锥的底面半径为5cm,母线长为8cm,则它的侧面积为________cm2.25、钟表的分针长10cm,经过20分钟,它的针尖转过的弧长是________cm.三、解答题(共5题,共计25分)26、现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计)求该圆锥底面圆的半径.27、如图,在Rt△ABC中,∠ABC=90°,点F为AC中点,⊙O经过点B,F,且与AC交于点D,与AB交于点E,与BC交于点G,连结BF,DE,弧EFG的长度为(1+)π.(1)求⊙O的半径;(2)若DE∥BF,且AE=a,DF=2+﹣a,请判断圆心O和直线BF的位置关系,并说明理由.28、如图,AC是⊙O的直径,弦BD交AC于点E.(1)求证:△ADE∽△BCE;(2)如果AD2=AE·AC,求证:CD=CB.29、如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.30、如图,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E。
第2章 圆数学九年级下册-单元测试卷-湘教版(含答案)
第2章圆数学九年级下册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、若圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是()A.40°B.80°C.120°D.150°2、如图,点A、B、C是圆O上的三点,且四边形OABC是平行四边形,OD⊥AB交圆O于点D,则∠OAD等于( )A.72.5°B.75°C.80°D.60°3、下列命题:①三点确定一个圆;②从圆外一点引圆的两条切线,它们的切线长相等;③所有的正方形都有外接圆;④三角形的外心到三角形各个顶点的距离相等;正确的有()A.1个B.2个C.3个D.4个4、在⊙O中,已知=2,则下列结论正确的是()A.AB>2CDB.AB=2CDC.AB<2CDD.不能确定AB与2CD 的大小关5、已知的半径为5,同一平面内有一点,且,则点与的位置关系是()A.点在圆内B.点在圆上C.点在圆外D.无法确定6、已知锐角∠AOB如图,①在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;②分别以点C,D为圆心,CD长为半径作弧,交于点M,N;③连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠CODB.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD7、如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°8、如图,直角三角形ABC有一外接圆,其中∠B=90°,AB>BC,今欲在上找一点P,使得= ,以下是甲、乙两人的作法:甲:⑴取AB中点D⑵过D作直线AC的平行线,交于P,则P即为所求乙:⑴取AC中点E⑵过E作直线AB的平行线,交于P,则P即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误CD.甲错误,乙正确9、如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为( )A.45°B.30°C.75°D.60°10、如图,,,是上的三点,且,则的度数是()A. B. C. D. 或11、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB 长100m,测得圆周角∠ACB=45°,则这个人工湖的直径AD为()A.50 mB.100 mC.150 mD.200 m12、如图,AB是的直径,PA与相切于点A,交于点C.若,则的度数为()A. B. C. D.13、如图,矩形中,,.若是矩形边上一动点,且使得,则这样的点有()A.1个B.2个C.3个D.4个14、如图,A,B,C是⊙O上三个点,∠AOB=2∠BOC,则下列说法中正确的是()A.∠OBA=∠OCAB.四边形OABC内接于⊙OC.AB=2BCD.∠OBA+∠BOC=90°15、如图,在⊙O中,=2,则下列结论正确的是()A.AB>2CDB.AB=2CD C.AB<2CDD.以上都不正确二、填空题(共10题,共计30分)16、如图,正方形的四个顶点分别在扇形的半径,和上,且点是线段的中点,若的长为,则长为________.17、如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C逆时针旋转α角后得到△A′B′C,当点A的对应点A'落在AB边上时,旋转角α的度数是________度,阴影部分的面积为________.18、如图:PA、PB切⊙O于A、B,过点C的切线交PA、PB于D、E,PA=10cm,则△PDE的周长为________cm.19、如图,PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,∠APB=30°,则∠ACB=________ .20、如图,已知AB,CD是⊙O的直径,CE是弦,且, ,则∠BOE 的度数________.21、如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B=________度.22、正六边形的边长为a,面积为S,那么S关于a的函数关系式是________ .23、如图,在圆O中,若ABC=50 ,则AOC=________ .24、如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC 上,且⊙P与边AB,AO都相切.若反比例函数(k≠0)的图象经过圆心P,则k=________。
(好题)初中数学九年级数学下册第三单元《圆》测试题(答案解析)(3)
一、选择题1.如图,PA PB 、分别与О相切于A B 、两点,点C 为О上一点,连接AC 、,BC 若50P ∠=,则ACB ∠的度数为( )A .115B .130C .65D .752.下列命题:①任意三点确定一个圆;②平分弦(不是直径)的直径垂直于弦;③相等的圆心角所对的弦相等;④长度相等的弧是等弧.其中真命题的有( )A .0个B .1个C .2个D .3个3.如图,已知E 是ABC 的外心,P ,Q 分别是AB ,AC 的中点,连接EP ,EQ ,分别交BC 于点F ,D .若10BF =,6DF =,8CD =,则ABC 的面积为( )A .72B .96C .120D .1444.如图,AB 是⊙O 的直径,C 是⊙O 上一点,BD 平分∠ABC 交⊙O 于点D ,交AC 于点E ,已知DE =2,DB =6,则阴影部分的面积为( )A .2π3B .4π3C .4π3D .π3 5.如图,O 的半径为5,3OP =,则经过点P 的弦长可能是( )A .3B .5C .9D .126.如图一个扇形纸片的圆心角为90°,半径为6,将这张扇形纸片折叠,使点A 和点O 恰好重合,折痕为CD ,则阴影部分的面积为( )A .933π-B .693π-C .393π-D .936π- 7.下列关于正多边形的叙述,正确的是( )A .正七边形既是轴对称图形又是中心对称图形B .存在一个正多边形,它的外角和为720︒C .任何正多边形都有一个外接圆D .不存在每个外角都是对应每个内角两倍的正多边形8.已知:O 的半径为2,3OA =,则正确的图形可能为( )A .B .C .D .9.如图,四边形ABCD 中,对角线AC ,BD 交于点E . 若BAC BDC ∠=∠,则下列结论中正确的是( )①AE BE DE CE = ②ABE △与DCE 的周长比为BE CE③ADE ABC =∠∠ ④ABE DCE ADE BCE S S S S ⋅=⋅ A .③④B .①②③C .①②④D .①②③④ 10.下列事件是随机事件的是( )A .一个图形平移后所得的图形与原来的图形全等B .直径是圆中最长的弦C .方程2210ax x ++=是一元二次方程D .任意画一个三角形,其内角和是360︒11.如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为弧AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E .若图中阴影部分的面积为10π,则CDE ∠=( )A .30B .36︒C .54︒D .45︒12.如图,正方形ABCD 的四个顶点都在⊙O 上,在AD 上取一点E (点E 不与D 重合),连接EC ,ED ,则∠CED 的度数为( )A .30°B .45°C .60°D .75°二、填空题13.如图,一次函数3233y x =-+的图象与x 轴交于点A ,与y 轴交于点B ,若向ABO 的外接圆C 内随机抛掷一枚小针,则针尖落在阴影部分的概率是_____________.14.已知O 的半径为1,AB 是O 的弦,2AB =,P 为O 外一点,且PA 切O 于点A ,1PA =,则线段PB 的长为________.15.圆锥的表面展开图由一个扇形和一个圆组成,已知扇形的半径为9,圆心角为120°,则圆锥的底面圆的半径为__________.16.如图,O 是ABC 的内切圆,切点分别为D 、E 、F ,80A ∠=︒,点P 为O 上任意一点(不与E 、F 重合),则EPF ∠=______.17.如图,BAC 是O 的内接三角形,BC 为直径,AD 平分BAC ∠,连接BD 、CD ,若65ACB ∠=︒,则ABD ∠的度数为_________.18.如图,从一块直径为2m 的圆形铁皮上画出一个圆心角为90的扇形.若随机在圆及其内部投针,则针孔扎在扇形(阴影部分)的概率为____.19.如图,已知O 的半径为2,ABC 内接于O ,135ACB ∠=︒,则弓形ACB (阴影部分)的面积为_____________.20.如图,ABC 内接于O ,70B ∠=︒,50OCB ∠=︒,点P 是O 上一个动点(不与图中已知点重合),若ACP △时等腰三角形,则ACP ∠的度数为___.三、解答题21.如图,已知ABC ∆.(1)用无刻度的直尺、圆规作ABC ∆的外接圆(只需作出图形,并保留作图痕迹). (2)若110BAC ︒∠=,在ABC ∆的外接圆中,仅用无刻度的直尺能画出的不同度数的圆周角有 (写度数).22.如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为40千米时,受影响区域的半径为260千米,B 市位于点P 的北偏东75︒方向上,距离P 点480千米.问:本次台风是否会影响B 市.若这次台风会影响B 市,求B 市受台风影响的时间.23.如图,直线AB 经过⊙O 上一点C ,且OA =OB ,CA =CB .(1)求证:AB 是⊙O 的切线;(2)若AB =6,△AOB 的面积为9,求图中阴影部分的面积.24.如图,在10×10的网格图内,建立如图所示的平面直角坐标系,△ABC 的顶点坐标分别为A (﹣1,2)、B (2,3)、C (3,1).(1)以原点O 为位似中心,将△ABC 按相似比2:1放大,得△A 1B 1C 1,请画出△A 1B 1C 1; (2)以原点O 为旋转中心,将△ABC 按顺时针方向旋转90°,画出旋转后的△A 2B 2C 2.直接写出点B 到B 2所经过的路径长 .25.学校花园边墙上有一宽(BC )为23m 的矩形门ABCD ,量的门框对角线AC 长为4cm ,为美化校园,现准备打掉地面BC 上方的部分墙体,使其变为以AC 为直径的圆弧形门,问要打掉墙体(阴影部分)的面积是多少?(结果中保留π,3)26.如图,ABC 中,D 为AB 边上一点,连接CD ,BD CD =.以AC 为直径作O ,过点O 作OE AC ⊥ 交BC 于点E ,连接DE ,BDE CDE ∠=∠.(1)求证:AB 为O 的切线;(2)若16AB =,8AC =,求BD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由切线的性质得出∠OAP=∠OBP=90°,利用四边形内角和可求∠AOB=130°,再利用圆周角定理可求∠ADB=65°,再根据圆的内接四边形对角互补可求∠ACB .【详解】解:如图所示,连接OA 、OB ,在优弧AB 上取点D ,连接AD 、BD ,∵ AP 、BP 是切线,∠P=50°,∴ ∠OAP=∠OBP=90°,∴∠AOB=360°-90°-90°-50°=130°,∴∠ADB=65°,又∵圆的内接四边形对角互补,∴∠ACB=180°-∠ADB=180°-65°=115°.故选:A .【点睛】本题考查了切线的性质、圆周角定理、圆内接四边形的性质、解题的关键是连接OA 、OB ,求出∠AOB .2.B解析:B【分析】依次判断真假命题即可,可以通过找到相应的反例,去论证命题的正确性.【详解】解:①假命题,当三点在同一条直线上时,就不能确定一个圆了,故此项错误; ②真命题,平分弦(不是直径)的直径垂直于弦,故此项正确;③假命题,在同圆或等圆中,相等的圆心角所对的弦相等,故此项错误;④假命题,在同圆或等圆中,长度相等的弧是等弧,故此项错误;综上所述,②正确.故选:B .【点睛】本题主要考查了确定圆的条件,垂径定理及圆周角定理等圆的一些基本的知识,解答此题的关键掌握理解圆的定义及性质.3.B解析:B【分析】连接AF ,AD ,AE ,BE ,CE ,根据三角形外心的定义,可得PE 垂直平分AB ,QE 垂直平分AC ,进而求得AF ,DF ,AD 的长度,可知△ADF 是直角三角形,即可求出△ABC 的面积.【详解】如图,连接AF ,AD ,AE ,BE ,CE ,∵点E 是△ABC 的外心,∴AE=BE=CE ,∴△ABE ,△ACE 是等腰三角形,∵点P 、Q 分别是AB 、AC 的中点,∴PE ⊥AB ,QE ⊥AC ,∴PE 垂直平分AB ,QE 垂直平分AC ,∴AF=BF=10, AD=CD=8,在△ADF 中,∵2222286=100=AD DF AF +=+,∴△ADF 是直角三角形,∠ADF=90°,∴S △ABC = ()()1122=1068896BF DF CD AD ⨯++⨯++=, 故选:B . 【点睛】本题考查三角形外心的定义,勾股定理逆定理等知识点,解题的关键是得到△ADF 是直角三角形. 4.A解析:A【分析】证明△DAE ~△DBA ,求得DA 23=,由AB 是⊙O 的直径,利用勾股定理求得⊙O 的直径,求得∠ABD=30︒,∠COD=60︒,再利用OCD OCD S S S=-阴影扇形即可求解.【详解】连接OC 、OD 、AD ,∵BD 平分∠ABC ,∴AD CD =,∴∠DAC=∠DBA ,∴△DAE ~△DBA ,∴DA DE DB DA =,即26DA DA=, ∴212DA =,∴DA 23=,∵AB 是⊙O 的直径,∴∠ADB=90︒,∴222AD BD AB +=,∴AB=43∴⊙O 的半径为3∵DA=OA=OD 23=,∴△DOA 是等边三角形,∴∠COD=∠AOD=60︒,∴OCD OCD S S S =-阴影扇形(2601603602π⨯=-⨯︒2π=-故选:A .【点睛】本题考查了相似三角形的判定与性质、等边三角形的判定与性质、勾股定理、扇形与等边三角形的面积等知识点,熟练掌握相关性质及定理是解题的关键.5.C解析:C【分析】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 是垂直时,弦最短为8;判断即可.【详解】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 垂直时,根据垂径定理,得半弦长,所以最短弦为8;所以符合题意的弦长为8到10,故选C.【点睛】本题考查了直径是最长的弦,垂径定理,熟练运用分类思想,垂径定理,勾股定理是解题的关键.6.A解析:A【分析】连接OD ,AD ,由题意得1122AC CO AO OD ===,30CDO ∠=︒,60COD ∠=︒,进而可得=AOD OAD AOD S S S S+-空白扇形扇形,然后可得=AOB S S S -阴影空白扇形,进而问题可求解. 【详解】解:连接OD ,AD , ∴1122AC CO AO OD ===, ∵DC ⊥AO ,∴30CDO ∠=︒,60COD ∠=︒,∴=AOD OAD AOD S S S S +-空白扇形扇形,22260603=666360360ππ⨯+⨯-⨯, 1293π=-,∴=AOB S S S -阴影空白扇形,()290=61293360ππ⨯--, 933π=-;故选A .【点睛】本题主要考查扇形面积,熟练掌握求不规则面积的方法及扇形面积计算公式是解题的关键.7.C解析:C【分析】根据中心对称图形、轴对称图形的定义、多边形外角和定理、正多边形的性质对各选项逐一判断即可得答案.【详解】A.正七边形是轴对称图形,不是中心对称图形,故该选项错误,B.任意多边形的外角和都等于360°,故该选项错误,C.任何正多边形都有一个外接圆,故该选项正确,D.∵正三角形的每个外角为120°,对应的每个内角为60°,∴存在每个外角都是对应每个内角两倍的正多边形,故该选项错误,故选:C .【点睛】本题考查正多边形的性质、中心对称图形、轴对称图形的定义及多边形外角和定理,熟练掌握相关性质及定理是解题关键.8.C解析:C【分析】根据圆的半径和OA 的大小确定点A 与圆的位置关系,从而作出判断即可.【详解】∵根据图的意义,得OA=2,与OA=3矛盾,∴A 选项错误;∵根据图的意义,得OA <2,与OA=3矛盾,∴B 选项错误;∵根据图的意义,得OA >2,且离圆较近,与OA=3相符,∴C 选项正确;∵根据图的意义,得OA >2,且离圆较远,与OA=3不符合,∴D 选项错误;故选C .【点睛】本题考查了点与圆的位置关系,熟练掌握圆心到点的距离与圆的半径的大小比较是解题的关键.9.C解析:C【分析】根据相似三角形可得①②正确,由四点共圆可知③不符合题意,面积比转化成边长比可得④正确.【详解】解:∵BAC BDC ∠=∠,AEB DEC ∠=∠∴ABE DCE ∴AE BE DE CE = ∴①正确;相似三角形周长比等于相似比,②正确∵BAC BDC ∠=∠,且△BDC 和△BAC 共有底BC∴得到A ,B ,C ,D 四点共圆;若ADE ABC =∠∠,则=ADE ABC ACB =∠∠∠,则AB=AC ,但题目中并没有告诉这个条件,所以③不一定正确;∵△ABE 和△ADE 共有高,∴ABE ADE S BE S DE =, ∵△CBE 和△CDE 共有高,∴BCE DCE BE S DE S = ∴ABEBCEADE DCE S BE S S DE S ==即,ABE DCE ADE BCE S S S S ⋅=⋅,故 ④正确;∴①②④正确,选C.【点睛】此题主要考查了相似三角形的判断及其性质,解决本题的关键是合理作辅助圆,熟练掌握相似三角的性质定理.10.C解析:C【分析】根据随机事件是可能发生也可能不发生的事件判断即可.【详解】解:A 、是必然事件,选项不符合题意;B 、是必然事件,选项不符合题意;C 、是随机事件,选项符合题意;D 、是不可能事件,选项不符合题意.故选:C .【点睛】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 11.B解析:B【分析】连接OC ,易得四边形CDOE 是矩形,△DOE ≌△CEO ,根据扇形的面积公式得∠COE=36°,进而即可求解.【详解】解:连接OC ,∵∠AOB =90°,CD ⊥OA ,CE ⊥OB ,∴四边形CDOE 是矩形,∴CD ∥OE ,∴∠DEO =∠CDE ,由矩形CDOE 易得到△DOE ≌△CEO ,∴图中阴影部分的面积=扇形OBC 的面积,∵S 扇形OBC =210360n π⨯=10π,解得:n=36, ∴CDE ∠=∠DEO=∠COE=36°.故选B .【点睛】本题考查了扇形面积的计算,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC 的面积等于阴影的面积是解题的关键.12.B解析:B【分析】连接DO 、CO ,利用正方形的性质可求得圆心角的度数为90°,再根据圆周角定理求解即可得出结论.【详解】解:如图,连接DO 、CO ,∵四边形ABCD 为正方形,∴∠COD =90°,∴∠CED =12∠COD =45°. 故选:B .【点睛】考查了正方形和圆的性质,掌握正方形的性质及圆周角定理并能正确的作出辅助线是解答此题的关键. 二、填空题13.【分析】利用一次函数解析式求出点AB 的坐标即可得由勾股定理求出求出则可得是等边三角形可得根据圆周角定理求出扇形圆心角的度数并由三角形中线将三角形可分为面积相等的两个三角形得可求出阴影部分的面积及圆的解析:13【分析】利用一次函数解析式求出点A 、B 的坐标,即可得6OA =,OB =AB =,求出BC OC AC ===OBC 是等边三角形,可得60OBA ∠=︒,根据圆周角定理求出扇形圆心角的度数,并由三角形中线将三角形可分为面积相等的两个三角形得OBC OAC SS =,可求出阴影部分的面积及圆的面积,利用面积比即可求出结论.【详解】解:∵一次函数y x =-+的图象与x 轴交于点A ,与y 轴交于点B , 令0y =,则6x =,∴()6,0A -,令0x =,则y =∴(0,B ,∴6OA =,OB =在Rt AOB 中,由勾股定理得:AB ==, ∴BC OC AC ===,∴BC OC OB ==, ∴OBC 是等边三角形,∴60OBA ∠=︒, ∴120ACO ∠=︒,∵OC 是AB 边上的中线,∴OBC OAC S S =,∴(2120=4360ACO S S ππ==阴影扇形,(212C S ππ==,∴针尖落在阴影部分的概率41123P ππ==. 故答案为:13. 【点睛】 此题考查了几何概率,掌握几何概率的计算方法及求出阴影部分的面积是解题的关键. 14.1或【分析】先利用勾股定理逆定理求出∠AOB 是直角再利用一组对边平行且相等得到四边形APBO 是平行四边形从而PB 的长等于半径OA 另当B 在右侧时还需讨论【详解】解:①如图所示:连接OAOB ∵OA=OB解析:1或5【分析】先利用勾股定理逆定理求出∠AOB 是直角,再利用一组对边平行且相等得到四边形APBO 是平行四边形,从而PB 的长等于半径OA .另当B 在右侧时,还需讨论.【详解】解:①如图所示:连接OA 、OB .∵OA=OB=1,AB=2,∴根据勾股定理的逆定理,得∠AOB=90°,根据切线的性质定理,得∠OAP=90°,则AP ∥OB ,又AP=OB=1,所以四边形PAOB 是平行四边形,所以PB=OA=1;②当B 在右侧时,如图所示:与①同理可证四边形APOB 是平行四边形,且∠AOB=90°,∴11,222OC AC BP BC ===, 在Rt △OBC 中,根据勾股定理 222215()122BC OC OB =+=+=, ∴PB=25BC =故答案为:15【点睛】考查了圆的性质、平行四边形判定和性质以及勾股定理,解题关键是能够根据勾股定理的逆定理发现直角三角形,进一步发现特殊四边形平行四边形.15.3【分析】根据弧长公式求出扇形的弧长圆锥侧面展开扇形的弧长等于圆锥底面圆的周长再利用圆周长的公式求解即可【详解】扇形的半径为9圆心角为120°扇形的弧长圆锥侧面展开扇形的弧长等于圆锥底面圆的周长设圆解析:3【分析】根据弧长公式求出扇形的弧长,圆锥侧面展开扇形的弧长等于圆锥底面圆的周长,再利用圆周长的公式求解即可【详解】扇形的半径为9,圆心角为120°∴扇形的弧长12096 180180n rlπππ⨯===圆锥侧面展开扇形的弧长等于圆锥底面圆的周长设圆锥底面圆的半径为r26rππ∴=3r∴=故答案为:3.【点睛】本题考查了圆锥侧面展开图与底面圆之间的关系,弧长的计算,解题关键是熟知圆锥侧面展开扇形的弧长等于圆锥底面圆的周长.16.50°或130°【分析】有两种情况:①当P在优弧EF上时连接OEOF求出∠EOF根据圆周角定理求出即可;②当P在劣弧EF上时根据圆内接四边形的性质得到∠EP1F+∠EP2F=180°代入求出即可【详解析:50°或130°【分析】有两种情况:①当P在优弧EF上时,连接OE、OF,求出∠EOF,根据圆周角定理求出即可;②当P在劣弧EF上时,根据圆内接四边形的性质得到∠EP1F+∠EP2F=180°,代入求出即可.【详解】解:有两种情况:①当P在优弧EF上时,连接OE、OF,∵圆O是△ABC的内切圆,∴OE⊥AB,OF⊥AC,∴∠AEO=∠AFO=90°,∵∠A=80°,∴∠EOF=360°-∠AEO-∠AFO-∠A=100°,∴∠EP 1F =12∠EOF=50°, ②当P 在劣弧EF 上时,∠FP 2E =180°-50°=130°,故答案为:50°或130°..【点睛】本题考查了垂线的定义,多边形的内角和定理,三角形的内切圆与内心,圆周角定理等知识点的理解和掌握,能综合运用性质进行推理是解题的关键.17.【分析】由为直径可得∠BAC=∠BDC=90°由平分可证BD=DC 可得∠DBC=∠DCB=45°可求∠ABC=90°-∠ACB=25°可求∠ABD=∠ABC+∠DBC=70°即可【详解】解:∵是的内解析:70︒【分析】由BC 为直径,可得∠BAC=∠BDC=90°由AD 平分BAC ∠,可证BD=DC ,可得∠DBC=∠DCB=45°,65ACB ∠=︒,可求∠ABC=90°-∠ACB=25°,可求∠ABD=∠ABC+∠DBC=70°即可.【详解】解:∵BAC 是O 的内接三角形,BC 为直径,∴∠BAC=∠BDC=90°∵AD 平分BAC ∠,∴∠BAD=∠CAD , ∴BD DC =,∴BD=DC ,∴∠DBC=∠DCB=45°,∵65ACB ∠=︒,∴∠ABC=90°-∠ACB=90°-65°=25°,∴∠ABD=∠ABC+∠DBC=25°+45°=70°.故答案为:70°.【点睛】本题考查圆的性质,直径所对圆周角性质,角平分线性质,直角三角形性质,掌握圆的性质,直径所对圆周角性质,角平分线性质,直角三角形性质是解题关键.18.【分析】连接AC根据圆周角定理得出AC为圆的直径解直角三角形求出AB求出扇形面积和面积两者的面积比即是针孔扎在扇形(阴影部分)的概率【详解】解:连接AC∵从一块直径为2m的圆形铁皮上剪出一个圆心角为解析:12【分析】连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,求出扇形面积和O面积,两者的面积比,即是针孔扎在扇形(阴影部分)的概率.【详解】解:连接AC,∵从一块直径为2m的圆形铁皮上剪出一个圆心角为90︒的扇形,即∠ABC=90︒,∴AC为直径,即AC=2m,AB=BC(扇形的半径相等),∵AB2+BC2=22,∴2m,∴S阴影部分=29023602ππ︒⨯=︒(m2),则:P针孔扎在扇形(阴影部分)=212==2OSS OA=阴影部分ππ故答案为:12.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.19.【分析】根据圆内接四边形对角互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB的度数然后根据弓形ACB的面积=S扇形OAB-S△OAB得出结果即可【详解】解:设点D为优弧AB上一点连接ADBDOA解析:2π-【分析】根据圆内接四边形对角互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据弓形ACB的面积=S扇形OAB-S△OAB得出结果即可.【详解】解:设点D 为优弧AB 上一点,连接AD 、BD 、OA 、OB ,如图所示,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴弓形ACB 的面积=S 扇形OAB -S △OAB =29021223602π⨯⨯-⨯⨯=2π-, 故答案为:2π-.【点睛】本题主要考查求弓形的面积,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.或或【分析】根据题意分三种情况讨论即可得∠ACP 的度数【详解】解:如图连接OAOB ∵∠OCB=50°∴∠OBC=50°∴∠BOC=180°-50°-50°=80°∵∠B=70°∴∠OBA=∠OAB=解析:35︒或40︒或55︒【分析】根据题意分三种情况讨论即可得∠ACP 的度数.【详解】解:如图,连接OA ,OB ,∵∠OCB=50°,∴∠OBC=50°,∴∠BOC=180°-50°-50°=80°.∵∠B=70°,∴∠OBA=∠OAB=20°,∴∠AOB=140°,∴∠AOC=360°-80°-140°=140°,∴∠OAC=∠OCA=20°,∴∠ACB=50°+20°=70°,∴AB=AC.当AP′=AC时,此时点P′与点B重合,不符合题意;当AP=PC时,∵∠B=70°,∴∠APC=180°-70°=110°,∴∠ACP=∠CAP=1(180°-110°)=35°;2当AP′=P′C时,∠P′AC=∠P′CA=1(180°-70)=55°;2当AC=P′C时,∠ACP′=180°-70°-70°=40°.故答案为:35°或40°或55°.【点评】本题考查了三角形的外接圆与外心、圆周角定理、等腰三角形的性质,解决本题的关键是综合运用以上知识进行分类讨论.三、解答题21.(1)见解析;(2)70︒、110︒【分析】(1)利用三角形外接圆的做法作出任意两边的垂直平分线进而得出圆心的位置即可得出答案.(2)根据同弧所对的圆周角相等求解即可.【详解】解:(1) 如图的圆为所求作(2) 若110BAC ∠=︒,则优弧BC 所对的圆周角大小为110°,劣弧BC 对应的圆周角的大小为180°-110°=70°,故有两个不同度数的圆周角,其度数分别为:70°和110°.故答案为:70°和110°.【点睛】此题主要考查了三角形外接圆的作法以及圆周角与弧的关系,熟练掌握三角形外接圆作法是解答此题的关键.22.本次台风会影响B 市,影响时间为5小时【分析】作BH ⊥PQ 于点H ,在Rt BHP 中,利用含30°角的直角三角形的性质求出BH 的长与260千米相比较即可.以B 为圆心,以260为半径作圆交PQ 于P 1、P 2两点,根据垂径定理即可求出P 1P 2的长,进而求出台风影响B 市的时间.【详解】如图,作BH ⊥PQ 于点H在Rt BHP 中,由条件知,PB =480,∠BPQ =75°﹣45°=30°,∴BH=14802⨯=240<260, ∴本次台风会影响B 市. 如图,以B 为圆心,以260为半径作圆交PQ 于P 1、P 2两点,若台风中心移动到P 1时,台风开始影响B 市,台风中心移动到P 2时,台风影响结束.根据BH=240,由条件得BP 1=BP 2=260,∴P1P2=222260240-=200,∴台风影响的时间t=20040=5(小时).故B市受台风影响的时间为5小时.【点睛】本题考查了含30°角的直角三角形的性质,勾股定理及垂径定理在实际生活中的运用,解答此题的关键是构造出直角三角形及圆.23.(1)见解析;(2)994π-.【分析】(1)连接OC,结合已知条件利用SSS易证△AOC≌△BOC,再利用全等三角形的性质可得∠OCA=∠OCB=90°,然后利用切线的判定可得直线AB与⊙O相切;(2)根据AB=6和(1)中三角形的全等,可得AC=BC=3,根据△AOB的面积为9,可得OC,并推出∠AOB=90°,则可利用扇形面积公式与△AOB的面积计算阴影部分的面积.【详解】(1)证明:如图,连接OC,∵OA=OB,CA=CB,OC=OC,∴△AOC≌△BOC(SSS),∴∠OCA=∠OCB=90°,∴直线AB与⊙O相切;(2)解:∵△AOC≌△BOC,∴AC=BC=12AB=3,∵△AOB的面积为9,∴12×AB•OC=9,∴12×6•OC=9,∴OC=3,∴OC =AC ,∴△OAC 是等腰直角三角形,∴∠AOC =∠BOC =45°,∴∠AOB =90°,∴S 阴影=S △AOB −S 扇形=29039993604ππ⋅-=-. 【点睛】本题考查了切线的判定和性质、全等三角形的判定和性质、扇形面积的计算等知识,解题的关键是掌握切线的判定与性质.24.(1)答案见详解;(2)13π. 【分析】(1)把A 、B 、C 的横纵坐标都乘以2得到A 1、B 1、C 1的坐标,然后描点连线即可; (2)利用网格特点和旋转性质画出A 、B 、C 的对应点A 2、B 2、C 2即可,然后利用弧长公式计算点B 到B 2所经过的路径长.【详解】解:(1)如图,△A 1B 1C 1为所作;(2)如图,△A 2B 2C 2为所作;OB 222313=+=所以点B 到B 2所经过的路径长901313π⨯⨯==. 13. 【点睛】本题考查了作图﹣位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k .也考查了旋转变换. 25.8-333π【分析】利用整个圆的面积减矩形的面积减扇形OBC 的面积加上三角形OBC 的面积,即可解答.【详解】由题可得:在Rt ABC 中4,2sin 26030120AB BC AB BC BAC AC BAC BCO BOC ==∴===∴∠==∴∠=︒∴∠=︒∴∠=︒要打掉的墙体面积OBC O ABCD OBC S S S S =--+△圆矩形扇形 ∴要打掉的墙体面积223238=-2234343O ABCD S S ππ=⋅⋅-⨯=-圆矩形 【点睛】本题考查了矩形的性质,直角三角形的性质,矩形、圆的面积公式及勾股定理,解题关键是结合图形通过面积转换得到规则的几何图形面积进而求解.26.(1)见解析;(2)10【分析】(1)根据等腰三角形的性质可证点E 为BC 的中点,在结合三角形中位线定理,证明//OE AB ,即可得到结论(2)设BD=CD=x ,在Rt ACD △中利用勾股定理,列出关于x 的方程即可求解【详解】(1)BD CD =BDC ∴是等腰三角形又BDE CDE ∠=∠.BE EC ∴=,AO OC =OE ∴为ABC 的中位线//OE AB ∴,BAC EOC ∴∠=∠OE AC ⊥,90BAC EOC ∴∠=∠=︒AB AC ∴⊥, AC 为O 的直径,AB ∴是O 的切线(2)设BD x =,CD BD x ∴==,16AB=,∴=-16AD xAC=在Rt ADC中,222+=,8AD AC DC()222∴-+=,168x xx=,解得:10∴=BD10【点睛】本题考查了圆切线的判定,等腰三角形的性质,以及勾股定理,解题关键是熟练掌握圆切线的判定定理,和等腰三角形性质的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章《圆》测试题
一、选择题(每题3分,共24分)
1.P为⊙O内与O不重合的一点,则下列说法正确的是( )
A.点P到⊙O上任一点的距离都小于⊙O的半径
B.⊙O上有两点到点P的距离等于⊙O的半径
C.⊙O上有两点到点P的距离最小
D.⊙O上有两点到点P的距离最大
2.若⊙A的半径为5,点A的坐标为(3,4),点P的坐标为(5,8),则点P的位置为
( )
A.在⊙A内 B.在⊙A上 C.在⊙A外 D.不确定
3.半径为R的圆中,垂直平分半径的弦长等于( )
A.43R B.23R C.3R D.23R
4.已知:如图,⊙O的直径CD垂直于弦AB,垂足为P,且AP=4cm,PD=2cm,则⊙O的
半径为( )
A.4cm B.5cm
C.42cm D.23cm
5.下列说法正确的是( )
A.顶点在圆上的角是圆周角
B.两边都和圆相交的角是圆周角
C.圆心角是圆周角的2倍
D.圆周角度数等于它所对圆心角度数的一半
6.下列说法错误的是( )
A.等弧所对圆周角相等 B.同弧所对圆周角相等
C.同圆中,相等的圆周角所对弧也相等. D.同圆中,等弦所对的圆周角相等
7.⊙O内最长弦长为m,直线ι与⊙O相离,设点O到ι的距离为d,则d与m的关系
是( )
A.d=m B.d>m C.d>2m D.d<2m
8.菱形对角线的交点为O,以O为圆心,以O到菱形一边的距离为半径的圆与其他几
边的关系为( )
A.相交 B.相切 C.相离 D.不能确定
二、填空题(每题3分,共24分)
9.如图,在△ABC中,∠ACB=90°,AC=2cm,BC=4cm,CM为中线,
以C为圆心,5cm为半径作圆,则A、B、C、M四点在圆外的有 ,
在圆上的有 ,在圆内的有 .
10.一点和⊙O上的最近点距离为4cm,最远距离为9cm,则这个圆的半径
是 cm.
11.AB为圆O的直径,弦CD⊥AB于E,且CD=6cm,OE=4cm,则AB= .
12.半径为5的⊙O内有一点P,且OP=4,则过点P的最短的弦长是 ,最长的
弦长是 .
13.如图,A、B、C是⊙O上三点,∠BAC的平分线AM交BC于
点D,交⊙O于点M.若∠BAC=60°,∠ABC=50°,则∠CBM=
,∠AMB= .
14.⊙O中,若弦AB长22cm,弦心距为2cm,则此弦所对
的圆周角等于 .
15.⊙O的半径为6,⊙O的一条弦AB为63,以3为半径的同心圆与直线AB的位置
关系是 .
16.已知⊙O1和⊙O2外切,半径分别为1 cm和3 cm,那么半径为5 cm与⊙O1、⊙O2都
相切的圆一共可以作出_____个.
三、解答题(40分)
17(6分).如图:由于过渡采伐森林和破坏植被,使我国某些地
区多次受到沙尘暴的侵袭.近来A市气象局测得沙尘暴中心在A市正
东方向400km的B处,正在向西北方向移动,距沙尘暴中心300km的
范围内将受到影响,问A市是否会受到这次沙尘暴的影响?
18(8分). ⊙O的直径为10,弦AB的长为8,P是弦AB上的一个动点,求OP长的
取值范围.
19(10分).如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4cm.
(1)求证:AC⊥OD;
(2)求OD的长;
(3)若2sinA-1=0,求⊙O的直径.
20(8分). 东海某小岛上有一灯塔A,已知A塔附近方圆25海里范围内有暗礁,我
110舰在O点处测得A塔在其北偏西60°方向,向正西方向航行20海里到达B处,测得A
在其西北方向.如果该舰继续航行,是否有触礁的危险?请说明理由.
21(8分). 设直线l,到⊙O的圆心的距离为d,半径为R,并使x2-2x+R=0,试由关
于x的一元二次方程根的情况讨论l与⊙O的位置关系.