九年级数学《圆》单元测试卷
数学九年级上学期《圆》单元检测卷(带答案)

∵OP=1,∠POE=45°,
∴OE=PE= ,即点P的坐标为( , ),
则第2秒P点为(0,1),
根据题意可知,第3秒P点为(- , ),第4秒P点为(-1,0),第5秒P点为(- ,- ),第6秒P点为(0,-1),
第7秒P点为( ,- ),第8秒P点为(1,0),
2018÷8=252……2,
A. B. πC. πD. π
11.如图,A B是⊙O的直径,C,D是圆上两点,连接A C,B C,A D,C D.若∠C A B=55°,则∠A D C的度数为( )
A. 55°B. 45°C. 35°D. 25°
12.如图,在矩形A B C D中,A B=3,B C=4,O为矩形A B C D对角线的交点,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为()
A. 44°B. 54°C. 62°D. 72°
3.如图,A B、C D分别与半圆OO切于点A,D,B C切⊙O于点E,若A B=4,C D=9,则⊙O 半径为( )
A. 12B. C. 6D. 5
4.如图,△A B C是⊙O的内接三角形,A B为⊙O的直径,点D为⊙O上一点,若∠A C D=40°,则∠B A D的大小为( )
16.如图,Rt△A B C中,A B⊥B C,A B=6,B C=4,P是△A B C内部的一个动点,且满足∠PA B=∠PB C,则线段CP长的最小值为_____.
17.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接A D,则图中阴影部分面积是_____.
人教版九年级数学上册第24章《圆》单元测试卷(含答案解析)

第24章《圆》单元测试卷一.选择题(共10小题)1.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个2.如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8,则BE为()A.2B.3C.4D.3.53.正六边形内接于圆,它的边所对的圆周角是()A.60°B.120°C.60°或120°D.30°或150°4.⊙O的半径r=5cm,直线l到圆心O的距离d=4,则直线l与圆的位置关系()A.相离B.相切C.相交D.重合5.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则的长度为()A.πB.πC.πD.π6.如图,⊙O是△ABC 的外接圆,BC 是直径,D在圆上,连接AD、CD,若∠ADC=35°,则∠ACB=()A.70°B.55°C.40°D.45°7.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+18.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O 上的一点,在△ABP中,PB=AB,则PA的长为()A.5B.C.5D.59.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6m,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.B.C.D.10.如图,AB是⊙O的直径,弦CD⊥AB,过点C作⊙O的切线与AB的延长线交于点P.若∠BCD=32°,则∠CPD的度数是()A.64°B.62°C.58°D.52°二.填空题(共8小题)11.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为.12.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE并延长交⊙O于点D,则DE= .13.如图所示,点A在半径为20的圆O上,以OA为一条对角线作矩形OBAC,设直线BC交圆O于D、E两点,若OC=12,则线段CE、BD的长度差是.14.如图,半径为2的⊙O与含有30°角的直角三角板ABC的AC边切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与⊙O相切时,该直角三角板平移的距离为.15.如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是.16.△ABC中,AB=CB,AC=10,S=60,E为AB上一动点,连结CE,过A作AF△ABC⊥CE于F,连结BF,则BF的最小值是.17.如图,等边三角形△ABC内接于半径为1的⊙O,则图中阴影部分的面积是.18.如图,已知线段AB=6,C为线段AB上的一个动点(不与A、B重合),将线段AC绕点A逆时针旋转120°得到AD,将线段BC绕点B顺时针旋转120°得到BE,⊙O外接于△CDE,则⊙O的半径最小值为.三.解答题(共7小题)19.十一期间,小明一家一起去旅游,如图是小明设计的某旅游景点的图纸(网格是由相同的小正方形组成的,且小正方形的边长代表实际长度100m,在该图纸上可看到两个标志性景点A,B.若建立适当的平面直角坐标系,则点A (﹣3,1),B(﹣3,﹣3),第三个景点C(1,3)的位置已破损.(1)请在图中画出平面直角坐标系,并标出景点C的位置;(2)平面直角坐标系的坐标原点为点O,△ACO是直角三角形吗?请判断并说明理由.20.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F.(1)AB与AC的大小有什么关系?请说明理由;(2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.21.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.22.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.23.如图,点I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,与BC相交于点E.(1)求证:DI=DB;(2)若AE=6cm,ED=4cm,求线段DI的长.24.如图,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB.点C、E、D分别在OA、OB、弧AB上,过点A作AF⊥DE交ED的延长线于F,如果正方形的边长为1,求阴影部分M、N的面积和.25.如图:△A BC是圆的内接三角形,∠BAC与∠ABC的角平分线AE、BE相交于点E,延长AE交圆于点D,连接BD、DC,且∠BCA=60°.(1)求证:△BED为等边三角形;(2)若∠ADC=30°,⊙O的半径为,求BD长.参考答案一.选择题(共10小题)1.【解答】解:∵d=3<半径=4∴直线与圆相交∴直线m与⊙O公共点的个数为2个故选:C.2.【解答】解:连接OC.∵AB是⊙O的直径,AB=10,∴OC=OB=AB=5;又∵AB⊥CD于E,CD=8,∴CE=CD=4(垂径定理);在Rt△COE中,OE=3(勾股定理),∴BE=OB﹣OE=5﹣3=2,即BE=2;故选:A.3.【解答】解:圆内接正六边形的边所对的圆心角=360°÷6=60°,根据圆周角等于同弧所对圆心角的一半,边所对的圆周角的度数是60×=30°或180°﹣30°=150°.故选:D.4.【解答】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴5>4,即d<r,∴直线l与⊙O的位置关系是相交,故选:C.5.【解答】解:连接OE、OC,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴的长度==π,故选:A.6.【解答】解:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠D=35°,∴∠ACB=55°,故选:B.7.【解答】解:连接OD、AD,∵在△ABC中,AB=AC,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∴△ABC是Rt△BAC,∵BC=4,∴AC=AB=4,∵AB为直径,∴∠ADB=90°,BO=DO=2,∵OD=OB,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S△BOD +S扇形DOA=+=π+2.故选:B.8.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选:D.9.【解答】解:连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=3米,∵∠AOB=90°,CD∥OB,∴CD⊥OA,在Rt△OCD中,∵OD=6,OC=3,∴CD===3米,∵sin∠DOC===,∴∠DOC=60°,∴S阴影=S扇形AOD﹣S△DOC=﹣×3×3 =(6π﹣)平方米.故选:A.10.【解答】解:连接OC,∵CD⊥AB,∠BCD=32°,∴∠OBC=58°,∵OC=OB,∴∠OCB=∠OBC=58°,∴∠COP=64°,∵PC是⊙O的切线,∴∠OCP=90°,∴∠CPO=26°,∵AB⊥CD,∴AB垂直平分CD,∴PC=PD,∴∠CPD=2∠CPO=52°故选:D.二.填空题(共8小题)11.【解答】解:由圆周角定理得,∠AOD=2∠ACD=50°,∴∠BOD=180°﹣50°=130°,故答案为:130°.12.【解答】解:如图,连接BD,CD,EC.∵点E是△ABC的内心,∴∠DAB=∠DAC,∠ECA=∠ECD,∵∠DCB=∠DAB,∠DEC=∠EAC+∠ECA,∠ECD=∠ECB+∠DCB,∴∠DEC=∠DCE,∴DE=DC,∵BC是直径,∴∠BDC=90°,∵∠DAB=∠DAC,∴=,∴BD=DC,∵BC=4,∴DC=DB=2,∴DE=2,故答案为2.13.【解答】解:如图,设DE的中点为M,连接OM,则OM⊥DE.∵在Rt△AOB中,OA=20,AB=OC=12,∴OB===16,∴OM===,在Rt△OCM中,CM===,∵BM=BC﹣CM=20﹣=,∴CE﹣BD=(EM﹣CM)﹣(DM﹣BM)=BM﹣CM=﹣=.故答案为:.14.【解答】解:根据题意画出平移后的图形,如图所示:设平移后的△A′B′C′与圆O相切于点D,连接OD,OA,AD,过O作OE⊥AD,可得E为AD的中点,∵平移前圆O与AC相切于A点,∴OA⊥A′C,即∠OAA′=90°,∵平移前圆O与AC相切于A点,平移后圆O与A′B′相切于D点,即A′D与A′A为圆O的两条切线,∴A′D=A′A,又∠B′A′C′=60°,∴△A′AD为等边三角形,∴∠DAA′=60°,AD=AA′=A′D,∴∠OAE=∠OAA′﹣∠DAA′=30°,在Rt△AOE中,∠OAE=30°,AO=2,∴AE=AO•cos30°=,∴AD=2AE=2,∴AA′=2,则该直角三角板平移的距离为2.故答案为:2.15.【解答】解:连接OA、OB,如下图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=5,PO=13,∴由勾股定理得:PA=12,∴PA=PB=12;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,故此题应该填24cm.16.【解答】解:过B作BD⊥AC于D,∵AB=BC,∴AD=CD=AC=5,∵S=60,△ABC∴,即,BD=12,∵AF⊥CE,∴∠AFC=90°,∴F在以AC为直径的圆上,∵BF+DF>BD,且DF=DF',∴当F在BD上时,BF的值最小,此时BF'=12﹣5=7,则BF的最小值是7,故答案为:7.17.【解答】解:连接OB、OC,连接A O并延长交BC于H,则AH⊥BC,BH=CH.∵△ABC是等边三角形,OB=OA=1,∴BH=OB,∴BH=CH=,∴BC=,=•()2=,∴S△ABC∴S=π•12﹣=π﹣,阴故答案为π﹣.18.【解答】解:如图,连接OD、OA、OC、OB、OE.∵OA=OA,OD=OC,AD=AC,∴△OAD≌△OAC,∴∠OAC=∠OAD=∠CAD=60°,同法可证:∠OBC=∠OBE=∠ABE=60°,∴△AOB是等边三角形,∴当OC⊥AB时,OC的长最短,此时OC=OA•sin60°=3,故答案为3.三.解答题(共7小题)19.【解答】解:(1)如图;(2)△ACO是直角三角.理由如下:∵A(﹣3,1),C(1,3),∴OA==,OC==,AC==2,∵OA2+OC2=AC2,∴△AOC是直角三角形,∠AOC=90°.20.【解答】解:(1)AB=AC.理由是:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,又∵DC=BD,∴AB=AC;(2)连接OD、过D作DH⊥AB.∵AB=8,∠BAC=45°,∴∠BOD=45°,OB=OD=4,∴DH=2∴△OBD 的面积=扇形OBD的面积=,阴影部分面积=.21.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.22.【解答】(1)证明:延长AD交⊙O于点F,连接BF.∵AF为⊙O的直径,∴∠ABF=90°,∴∠AFB+∠BAD=90°,∵∠AFB=∠ACB,∴∠ACB+∠BAD=90°.(2)证明:如图2中,过点O作OH⊥AC于H,连接BO.∵∠AOB=2∠ACB,∠ADC=2∠ACB,∴∠AOB=∠ADC,∴∠BOD=∠BDO,∴BD=BO,∴BD=OA,∵∠BED=∠AHO,∠ABD=∠AOH,∴△BDE≌△AOH,(AAS),∴DE=AH,∵OH⊥AC,∴AH=CH=AC,∴AC=2DE=4,∴DE=2.23.【解答】(1)证明:连接BI.∵点I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI.又∵∠DBI=∠CBI+∠DBC,∠DIB=∠ABI+∠BAI,∠DBC=∠DAC=∠BAI,∴∠DBI=∠DIB,∴DI=DB.(2)∵∠DBC=∠DAC=∠BAI,∠ADB=∠BDA,∴△BDE∽△ABD,∴,即BD2=D E•AD=DE•(AE+DE)=4×(6+4)=40,DI=BD=(cm).24.【解答】解:连接OD,∵正方形的边长为1,即OC=CD=1,∴OD=,∴AC=OA﹣OC=﹣1,∵DE=DC,BE=AC,弧BD=弧AD=长方形ACDF的面积=AC•CD=﹣1.∴S阴25.【解答】(1)证明:∵∠BAC与∠ABC的角平分线AE、BE相交于点E,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠AEB=180°﹣(∠EAB+∠EBA)=180°﹣(∠CAB+∠CBA)=180°﹣(180°﹣∠BCA)=120°,∴∠DEB=60°,由圆周角定理得,∠BDA=∠BCA=60°,∴△BED为等边三角形;(2)∵∠ADC=30°,∠BDA=60°,∴∠BDC=90°,∴BC是⊙O的直径,即BC=4,∵AE平分∠BAC,∴=,∴BD=DC=4.。
九年级数学《圆》单元测试卷及答案含有详细解析

九年级数学《圆》单元测试卷一、选择题1、如果⊙O 的半径为6 cm ,OP =7cm ,那么点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内 B .点P 在⊙O 上 C .点P 在⊙O 外 D .不能确定2、如图,在⊙O 中,AB =AC ,∠AOB=40°,则∠ADC 的度数是( )。
A .40° B .30° C .20° D .15°(第2题图) (第3题图) (第4题图) (第5题图) 3、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD=8,OP=3,则⊙O 的半径为() A .10 B .8 C .5 D .34、如图所示,四边形ABCD 内接于⊙O ,F 是弧CD 上一点,且弧DF=弧BC ,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC =105°,∠BAC =25°,则∠E 的度数为( )A. 45°B. 50°C. 55°D. 60°5、如图,AB 是⊙O 的切线,B 为切点,AO 与⊙O 交于点C.若∠BAO =40°,则∠CBA 的度数为( )A. 15°B. 20°C. 25°D. 30°6、如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC=8,BD=6,以AB 为直径作一个半圆,则图中阴影部分的面积为( )(第6题图) (第7题图)A .25π-6B .π-6C .π-6 D .π-67、如图,在△ABC 中,AB=CB ,以AB 为直径的⊙O 交AC 于点D .过点C 作CF ∥AB ,在CF 上取一点E ,使DE=CD ,连接AE .对于下列结论:①AD=DC ;②△CBA ∽△CDE ;③;④AE 为⊙O 的切线,一定正确的结论全部包含其中的选项是( )A .①②B .①②③C .①④D .①②④二、填空题8、如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D ,C ,E .若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是 。
九年级数学圆单元测试卷一含答案解析

圆单元测试卷一一、选择题:(每题3分,共30分)1.如图,⊙O的弦AB垂直于直径MN,C为垂足,若OA=5cm,下面四个结论中可能成立的是()A.AB=12cm B.OC=6cm C.MN=8cm D.O C=2.5cm2.如图所示,⊙O的弦AB、AC的夹角为50°,MN分别为弧AB和弧AC的中点,OM、ON分别交AB、AC于点E、F,则∠MON的度数为()A.110°B.120°C.130°D.100°3.如图,△ABC内接于圆O,∠A=50°,∠ABC=60°,BD是圆O的直径,BD交AC于点E,连接DC,则∠AEB等于()A.70°B.10°C.90°D.120°4.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为()A.3cm B.6cm C.cm D.9cm5.A,B,C是平面内的三点,AB=3,BC=3,AC=6,下列说法正确的是()A.可以画一个圆,使A,B,C都在圆上B.可以画一个圆,使A,B在圆上,C在圆外C.可以画一个圆,使A,C在圆上,B在圆外D.可以画一个圆,使B,C在圆上,A在圆内6.两圆的半径分别是R和r(R>r),圆心距为d,若关于x的方程x2﹣2rx+(R﹣d)2=0有两个相等的实数根,则两圆的位置关系是()A.一定内切B.一定外切C.相交D.内切或外切7.三角形的外心是()A.三条中线的交点B.三条边的中垂线的交点C.三条高的交点D.三条角平分线的交点8.如图,==,AD为⊙O的弦,∠BAD=50°,则∠AED等于()A.50°B.60°C.70°D.75°9.如图,已知扇形OAB的圆心角为60°,半径为1,将它沿着箭头所示方向无滑动滚动到扇形O′A′B′位置时,点O到O′所经过的路径的长为(A.πB.πC.5πD.2π10.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.弦AB的长等于圆内接正六边形的边长B.弦AC的长等于圆内接正十二边形的边长C.D.∠BAC=30°二、填空题:(每题4分,共24分)11.如图,⊙O的直径为10,弦AB=8,P是弦AB上一动点,那么OP长的取值范围是_________.12.如图,D、E分别是⊙O的半径OA、OB上的点,CD⊥OA,CE⊥OB,CD=CE,则与弧长的大小关系是_________.13.如图,在⊙O中,∠BOC=50°,OC∥AB.则∠BDC的度数为_________度.14.如图所示,半圆0的圆心在梯形ABCD的下底AB上,梯形的三边AD,DC,CB均与半圆0相切,已知AD=a,BC=b,则AB的长为_________.15.如图,王虎使一长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为A到A1到A2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A2时共走过的路径长为_________cm.(结果保留π).16.如图,BC是半圆O的直径,点D是半圆上一点,过点D作⊙O切线AD,BA⊥DA于点A,BA交半圆于点E.已知BC=10,AD=4.那么直线CE与以点O为圆心,为半径的圆的位置关系是_________.三、解答题:(共94分)17.如图,⊙O上三点A、B、C把圆分成、和,三段弧的度数之比为3:1:2,连接AB、BC、CA,求证:△ABC是直角三角形.18.如图,AB是⊙O的直径,CD为弦,分别过A、B两点作直线CD的垂线,垂足分别为E、F.求证:EC=DF.19.如图,在⊙O中,=,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.20.如图,平行四边形ABCD中,以A为圆心,AB为半径的圆分别交AD、BC于F、G,延长BA交圆于E.求证:=.四、解答题:.21.如图,已知AB和CD是⊙O的两条弦,且AB⊥CD,连接OC,作∠OCD的平分线交⊙O于P,连接PA、PB,求证:PA=PB.22.如图,PA是⊙O的切线,切点是A,过点A作AH⊥OP于点H,交⊙O于点B.求证:PB是⊙O的切线.23.如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2.(1)求⊙O1的半径;(2)求图中阴影部分的面积.24.已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.(I)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);(II)如图②,连接CD、CE,若四边形ODCE为菱形,求的值.五、解答题:解答时每小题必须给出必要的演算过程或推理步骤.25.如图,等圆⊙O1和⊙O2相交于A,B两点,⊙O2经过⊙O1的圆心O1,两圆的连心线交⊙O1于点M,交AB于点N,连接BM,已知AB=2.(1)求证:BM是⊙O2的切线;(2)求的长.26.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.参考答案一、选择题:每小题只有一个答案是正确的,请将正确答案的代号填入题后的括号内.1.D.2.C.3.B.4.A.5.B.6.D.7.B.8.D.9.B.10.D.二、填空题:请将答案直接填写在题后的横线上.11.3≤OP≤5.12.相等13.7514.a+b15.cm.16.相离.三、解答题:下列各题解答时必须给出必要的演算过程或推理步骤.17.解答:证明:∵、、三段弧的度数之比为3:1:2.∴的度数为:×360°=180°∴的度数为:×360°=60°,∴的度数为:×360°=120°,∴∠C=90°,∠A=30°,∠B=60°∴△ABC是直角三角形18.解答:证明:过点O作OM⊥CD于点M,∵OM⊥CD,∴CM=DM,∵AE⊥EF,OM⊥EF,BF⊥EF,∴AE∥OM∥BF,∵AB是⊙O的直径,∴OA=OB,∴OM是梯形AEFB的中位线,∴EM=FM∴EM﹣CM=FM﹣DM,即EC=DF19.解答:证明:∵=,∴AB=AC∴△ABC是等腰三角形∵∠ACB=60°∴△ABC是等边三角形,∴AB=BC=CA∴∠AOB=∠BOC=∠COA.20.如图,平行四边形ABCD中,以A为圆心,AB为半径的圆分别交AD、BC于F、G,延长BA交圆于E.求证:=.解答:证明:连接AG.∵A为圆心,∴AB=AG,∴∠ABG=∠AGB,(2分)∵四边形ABCD为平行四边形,∴AD∥BC,∠AGB=∠DAG,∠EAD=∠ABG,(4分)∴∠DAG=∠EAD,(5分)∴=.(6分)四、解答题:下列各题解答时必须给出必要的演算过程或推理步骤.21.如图,已知AB和CD是⊙O的两条弦,且AB⊥CD,连接OC,作∠OCD的平分线交⊙O于P,连接PA、PB,求证:PA=PB.解答:证明:∵OC=OP,∴∠1=∠2.∵CP平分∠OCD,∴∠2=∠3,∴∠3=∠1,∴CD∥OP,∵CD⊥AB,∴OP⊥AB.∴=,∴PA=PB.22.如图,PA是⊙O的切线,切点是A,过点A作AH⊥OP于点H,交⊙O于点B.求证:PB是⊙O的切线.解答:证明:连接OA,OB;∵PA是⊙O的切线,∴∠OAP=90°.∵OA=OB,AB⊥OP,∴∠AOP=∠BOP.又∵OA=OB,OP=OP,∴△AOP≌△BOP(SAS).∴∠OBP=∠OAP=90°.∴PB是⊙O的切线.23.如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2.(1)求⊙O1的半径;(2)求图中阴影部分的面积.解答:解:(1)在正方形ABCD中,AB=AD=4,∠A=90°,∴BD==4∴OO1=BD=∴⊙O1的半径=.(2)设线段AB与圆O1的另一个交点是E,连接01E∵BD为正方形ABCD的对角线∴∠ABO=45°∵O1E=O1B∴∠BEO1=∠EBO1=45°∴∠BO1E=90°∴S1=S扇形O1BE﹣S△O1BE==﹣1根据图形的对称性得:S1=S2=S3=S4∴S扇形=4S1=2π﹣4.24.已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.(I)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);(II)如图②,连接CD、CE,若四边形ODCE为菱形,求的值.解答:解:(1)如图①,连接OC,则OC=4,∵AB与⊙O相切于点C,∴OC⊥AB,∴在△OAB中,由AO=OB,AB=10,得AC=AB=5.在Rt△AOC中,由勾股定理得OA===;(2)如图②,连接OC,则OC=OD,∵四边形ODCE为菱形,∴OD=CD,∴△ODC为等边三角形,有∠AOC=60°.由(1)知,∠OCA=90°,∴∠A=30°,∴OC=OA,∴=.五、解答题:解答时每小题必须给出必要的演算过程或推理步骤.25.如图,等圆⊙O1和⊙O2相交于A,B两点,⊙O2经过⊙O1的圆心O1,两圆的连心线交⊙O1于点M,交AB于点N,连接BM,已知AB=2.(1)求证:BM是⊙O2的切线;(2)求的长.解答:(1)证明:连接O2B,∵MO2是⊙O1的直径,∴∠MBO2=90°,∴BM是⊙O2的切线;(2)解:∵O1B=O2B=O1O2,∴∠O1O2B=60°,∵AB=2,∴BN=,∴O2B=2,∴===.26.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.解答:(1)证明:连接OC∵OA=OC∴∠OCA=∠OAC∵AC平分∠PAE∴∠DAC=∠CAO∴∠DAC=∠OCA∴PB∥OC∵CD⊥PA∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)解:过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6﹣x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5﹣x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5﹣x)2+(6﹣x)2=25,化简得x2﹣11x+18=0,解得x1=2,x2=9.∵CD=6﹣x不能小于0,故x=9舍去,∴x=2,从而AD=2,AF=5﹣2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.。
九年级上册数学《圆》单元综合测试卷(附答案)

九年级上册数学《圆》单元测试卷(满分120分,考试用时120分钟)1.如图,⊙O是△A B C 外接圆,∠A =40°,则∠OB C =()A .30°B .40°C .50°D .60°2.如图,在△A B C 中,C os B ,sin C =35,A C =5,则△A B C 的面积是()A .212B .12C .14D .213.如图,O与正方形A B C D 的两边A B ,A D 相切,且D E与O相切于点E.若O的半径为5,且11AB ,则D E的长度为()A.5 B .6 C D .11 24.如图,在矩形A B C D 中,A B =8,A D =12,经过A ,D 两点的⊙O 与边B C 相切于点E ,则⊙O 的半径为( )A .4B .214C .5D .2545.如图,O为圆心,AB 是直径,C 是半圆上的点,D 是AC 上的点.若BOC 40∠=,则D ∠的大小为( )A .110 B .120C .130 D .140 6.边长为2的正方形内接于⊙O ,则⊙O 的半径是( ) A .1 BC .2D .7.如图,A B 是⊙O 的弦,A O 的延长线交过点B 的⊙O 的切线于点C ,如果∠C A B =30°,则OC 的长度为( )A .B .2C .D .48.在Rt △A B C 中,∠C =90°,A C =8C m ,A B =10C m ,以C 为圆心,以9C m 长为直径的⊙C 与直线A B 的位置关系为( )A .相交B .相离C .相切D .相离或相交9.如图,C D 为圆O 的直径,弦A B ⊥C D ,垂足为E ,C E=1,半径为25,则弦A B 的长为( )A .24B .14C .10D .710.如图,用不同颜色的马赛克片覆盖一个圆形的台面,估计15圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面( )A .56~箱B .67~箱C .78~箱D .89~箱11.如图所示,扇形纸扇完全打开后,弧B C 60cm =,弧D E 20cm =.外侧两竹条AB ,AC 都等于30cm ,贴纸的宽度BD ,CE 都等于20cm ,则贴纸的面积是( )A .2400cmB .2800cmC .21200cmD .21600cm12.如图,△A B C 的内切圆⊙O 与A B ,B C ,C A 分别相切于点D ,E ,F ,且A D =2,B C =5,则△A B C 的周长为( )A .16B .14C .12D .1013.如图,在平面直角坐标系中,直线l 的函数表达式为y =x ,点O 1的坐标为(1,0),以O 1为圆心,O 1O 为半径画圆,交直线l 于点P 1,交x 轴正半轴于点O 2,以O 2为圆心,O 2O 为半径画圆,交直线l 于点P 2,交x 轴正半轴于点O 3,以O 3为圆心,O 3O 为半径画圆,交直线l 于点P 3,交x 轴正半轴于点O 4;…按此做法进行下去,其中20172018P O 的长为_____.14.如图,点B ,C ,D 在⊙O 上,若∠B C D =130°,则∠B OD 的度数是________°.15.如图,边长为6的正六边形A B C D EF的中心与坐标原点O重合,A F∥x轴.将正六边形绕原点逆时针旋转n次,每次旋转60°,当n=2019时,顶点A 的坐标为_____.16.如图,A B 是⊙O的切线,B 为切点,A O的延长线交⊙O于C 点,连接B C ,如果∠A =30°,A B =2A C 的长等于______.17.如图,D 、E分别是⊙O两条半径OA 、OB 的中点,AC=CB.(1)求证:C D =C E.(2)若∠A OB =120°,OA =x,四边形OD C E的面积为y,求y与x的函数关系式.18.如图,点C 在以A B 为直径的半圆⊙O上,A C =B C .以B 为圆心,以B C 的长为半径画圆弧交A B 于点D .(1)求∠A B C 的度数;(2)若A B =2,求阴影部分的面积.19.如图,正方形A B C D 内接于⊙O,M为弧A D 中点,连接B M,C M.(1)求证:B M=C M;(2)当⊙O的半径为2时,求∠B OM的度数.20.如图,点O在边长为的正方形A B C D 的对角线A C 上,以O为圆心OA 为半径的⊙O交A B 于点E.(1)⊙O过点E的切线与B C 交于点F,当0<OA <6时,求∠B FE的度数;(2)设⊙O与A B 的延长线交于点M,⊙O过点M的切线交B C 的延长线于点N,当6<OA <12时,利用备用图作出图形,求∠B NM的度数.21.在△A B C 中,90︒∠=C ,以边A B 上一点O 为圆心,OA 为半径的圈与B C 相切于点D ,分别交A B ,A C 于点E ,F(I )如图①,连接A D ,若25CAD ︒∠=,求∠B 的大小;(Ⅱ)如图②,若点F 为AD 的中点,O 的半径为2,求A B 的长.22.如图,已知△A B C 中,以A B 为直径的半⊙O交A C 于D ,交B C 于E,B E=C E,∠C =70°,求∠D OE的度数.23.一个边长为4的等边三角形A B C 的高与⊙O的直径相等,如图放置,⊙O与B C 相切于点C ,⊙O 与A C 相交于点E,(1)求等边三角形的高;(2)求C E的长度;(3)若将等边三角形A B C 绕点C 顺时针旋转,旋转角为α(0°<α<360°),求α为多少时,等边三角形的边所在的直线与圆相切.24.如图,A B 是⊙O的直径,A B =12,弦C D ⊥A B 于点E,∠D A B =30°.(1)求扇形OA C 的面积;(2)求弦C D 的长.25.如图,A B 为半圆O的直径,A C 是⊙O的一条弦,D 为BC的中点,作D E⊥A C ,交A B 的延长线于点F,连接D A .(1)求证:EF为半圆O的切线;(2)若D A =D F=(结果保留根号和π)26.如图,已知半圆O 的直径DE 12cm =,在ABC 中,ACB 90∠=,ABC 30∠=,BC 12cm =,半圆O 以2cm /s 的速度从左向右运动,在运动过程中,点D 、E 始终在直线BC 上.设运动时间为()t s ,当t 0s =时,半圆O 在ABC 的左侧,OC 8cm =.()1当t 为何值时,ABC 的一边所在直线与半圆O 所在的圆相切?() 2当ABC 的一边所在直线与半圆O 所在的圆相切时,如果半圆O 与直线DE 围成的区域与ABC 三边围成的区域有重叠部分,求重叠部分的面积.参考答案1.如图,⊙O 是△A B C 外接圆,∠A =40°,则∠OB C =( )A .30°B .40°C .50°D .60°[答案]C [解析][分析]根据一条弧所对的圆周角等于它所对的圆心角的一半求得∠B OC ,再根据三角形的内角和定理以及等腰三角形的两个底角相等进行计算.[详解]连接OC ,如图,根据圆周角定理,得∠B OC =2∠A =80°∵OB =OC∴∠OB C =∠OC B ==50°. 1802BOC ︒-∠[点评]本题考查了圆周角定理:一条弧所对的圆周角是它所对的圆心角的一半;也考查了等腰三角形的性质以及三角形的内角和定理.2.如图,在△A B C 中,C os B =,sin C =,A C =5,则△A B C 的面积是( )A .B .12C .14D .21[答案]A[解析][分析]根据已知作出三角形的高线A D ,进而得出A D ,B D ,C D ,的长,即可得出三角形的面积.[详解]解:过点A 作A D ⊥B C ,∵△A B C 中,,sinC =,A C =5, ∴C osB ==, ∴∠B =45°,∵sinC ===, 235212352BD AB 35AD AC 5AD∴,∴B D =3,则△A B C 的面积是:×A D ×B C =×3×(3+4)=.故选:A .[点评]此题主要考查了解直角三角形的知识,作出A D ⊥B C ,进而得出相关线段的长度是解决问题的关键.3.如图,与正方形A B C D 的两边A B ,A D 相切,且D E与相切于点E.若的半径为5,且,则D E的长度为()A .5B .6CD .[答案]B[解析][分析]连接OE,OF,OG,根据切线性质证四边形A B C D 为正方形,根据正方形性质和切线长性质可得D E=D F.[详解]连接OE,OF,OG,1212212O O O 11AB=112∵A B ,A D ,D E 都与圆O 相切,∴D E ⊥OE ,OG ⊥A B ,OF ⊥A D ,D F=D E ,∵四边形A B C D 为正方形,∴A B =A D =11,∠A =90°,∴∠A =∠A GO=∠A FO=90°,∵OF=OG=5,∴四边形A FOG 为正方形,则D E=D F=11-5=6,故选:B[点评]考核知识点:切线和切线长定理.作辅助线,利用切线长性质求解是关键.4.如图,在矩形A B C D 中,A B =8,A D =12,经过A ,D 两点的⊙O 与边B C 相切于点E ,则⊙O 的半径为( )A .4B .C .5D . [答案]D [解析][分析]连结EO 并延长交A D 于F ,连接A O ,由切线的性质得OE ⊥B C ,再利用平行线的性质得到214254OF ⊥A D ,则根据垂径定理得到A F=D F= A D =6,由题意可证四边形A B EF 为矩形,则EF=A B =8,设⊙O 的半径为r ,则OA =r ,OF=8-r ,然后在Rt △A OF 中利用勾股定理得到(8-r )2+62=r 2,再解方程求出r 即可.[详解]如图,连结EO 并延长交A D 于F ,连接A O ,∵⊙O 与B C 边相切于点E ,∴OE ⊥B C ,∵四边形A B C D 为矩形,∴B C ∥A D ,∴OF ⊥A D ,∴A F=D F= A D =6,∵∠B =∠D A B =90°,OE ⊥B C ,∴四边形A B EF 为矩形,∴EF=A B =8,设⊙O 的半径为r ,则OA =r ,OF=8-r ,在Rt △A OF 中,∵OF 2+A F 2=OA 2,∴(8-r )2+62=r 2,1212解得r=, 故选D .[点评]本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理和矩形的性质.解决本题的关键是构建直角三角形,利用勾股定理建立关于半径的方程.5.如图,为圆心,是直径,是半圆上的点,是上的点.若,则的大小为( )A .B .C .D .[答案]A [解析][分析]连接B D ,由A B 是直径可得∠A D B =90°,根据圆周角定理可知∠B D C =∠B OC ,进而可求出∠D 的度数.[详解]连接B D , ∵是直径,是上的点,254OAB C D AC BOC 40∠=D∠11012013014012AB D AC∴∠A D B =90°,∵∠B D C 与∠B OC 是弦B C 所对的圆周角和圆心角,∠B OC =40°,∴∠B D C =∠B OC =20°, ∴∠A D C =∠A D B +∠B D C =90°+20°=110°.故选A .[点评]本题考查了圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;直径所对的圆周角等于90°. 6.边长为2的正方形内接于⊙O ,则⊙O 的半径是( )A .1BC .2D .[答案]B[解析][分析]连接OB ,C O ,在Rt △B OC 中,根据勾股定理即可求解.[详解]解:连接OB ,OC ,则OC=OB ,∠B OC =90°, 在Rt △B OC 中, ∴⊙O故选:B .12OB ===[点评]此题主要考查了正多边形和圆,本题需仔细分析图形,利用勾股定理即可解决问题.7.如图,A B 是⊙O 的弦,A O 的延长线交过点B 的⊙O 的切线于点C ,如果∠C A B =30°,则OC 的长度为()A .B.2 C . D .4[答案]D [解析][分析]连接OB ,作OH ⊥A B 于H ,根据垂径定理求出A H ,根据余弦的定义求出OA ,根据切线的性质定理得到∠OB C =90°,根据直角三角形的性质计算即可.[详解]解:连接OB ,作OH ⊥A B 于H ,则A H=HB = 在Rt △A OH 中,OA ==2,12AH cos A =∠∠B OC =2∠A =60°,∵B C 是⊙O 的切线,∴∠OB C =90°,∴∠C =30°,∴OC =2OB =4,故选D .[点评]本题考查的是切线的性质、垂径定理、圆周角定理,掌握切线的性质定理:圆的切线垂直于经过切点的半径是解题的关键.8.在Rt △A B C 中,∠C =90°,A C =8C m ,A B =10C m ,以C 为圆心,以9C m 长为直径的⊙C 与直线A B 的位置关系为( )A .相交B .相离C .相切D .相离或相交[答案]B[解析][分析]此题首先应求得圆心到直线的距离D ,据直角三角形的面积公式即可求得;若D <r ,则直线与圆相交;若D =r ,则直线于圆相切;若D >r ,则直线与圆相离.[详解]解:∵A C =8C m ,A B =10C m , ∴,S △A B C =A C ×BC =×6×8=24, ∴A B 上的高为:24×2÷10=4.8,即圆心到直线的距离是4.8,∵r=4.5,1212∴4.8>4.5∴⊙C 与直线A B 相离,故选B .[点评]本题主要考查了直线与圆的位置关系,根据三角形的面积求出斜边上的高的长度是解答此题关键.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.9.如图,C D 为圆O的直径,弦A B ⊥C D ,垂足为E,C E=1,半径为25,则弦A B 的长为()A .24B .14C .10D .7[答案]B[解析][分析]连接OA ,根据垂径定理得到A E=EB ,根据勾股定理求出A E,得到答案.[详解]连接OA ,∵C D 为圆O的直径,弦A B ⊥C D ,∴A E=EB ,由题意得,OE=OC -C E=24,在Rt△A OE中,=7,∴A B =2A E=14,故选B .[点评]本题考查的是垂径定理和勾股定理的应用,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 10.如图,用不同颜色的马赛克片覆盖一个圆形的台面,估计圆心角的扇形部分大约需要片马赛克片.已知每箱装有片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面( )A .箱B .箱C .箱D .箱[答案]B [解析][分析]利用扇形面积公式即可计算.[详解]360÷15=24,所以覆盖一个圆形的台面需24×34=816片马赛克片,816÷125=6.53.故选B .[点评]本题看似是一个求扇形面积的题,但是不是,只要算出圆形中有几个15度的扇形即可求出此题. 11.如图所示,扇形纸扇完全打开后,弧B C ,弧D E .外侧两竹条,都等于,贴纸的宽度,都等于,则贴纸的面积是( )A .B .C .D .[答案]B 153412556~67~78~89~60cm =20cm =AB AC 30cm BD CE20cm 2400cm 2800cm 21200cm 21600cm[解析][分析]根据扇形的面积公式:S 扇形=lr ,即可求得扇形B A C 的面积和扇形D A E 的面积,根据贴纸的面积是:扇形B A C 的面积﹣扇形D A E 的面积即可求解.[详解]A D =AB ﹣B D =30﹣20=10C m .扇形B A C 的面积是:•A B =×60×30=900C m 2. 扇形D A E 的面积是:•A D =×20×10=100C m 2,∴贴纸的面积是:扇形B A C 的面积﹣扇形D A E 的面积=900﹣100=800C m 2.故选B .[点评]本题考查了扇形的面积的计算,关键是理解贴纸的面积是:扇形B A C 的面积﹣扇形D A E 的面积,把不规则的图形转化成规则图形的面积求解.12.如图,△A B C 的内切圆⊙O 与A B ,B C ,C A 分别相切于点D ,E ,F ,且A D =2,B C =5,则△A B C 的周长为( )A .16B .14C .12D .10[答案]B [解析][分析]根据切线长定理进行求解即可.[详解]∵△A B C 的内切圆⊙O 与A B ,B C ,C A 分别相切于点D ,E ,F ,∴A F =A D =2,B D =B E ,C E =C F ,1212BC 1212DE 12∵B E+C E =B C =5,∴B D +C F =B C =5,∴△A B C 的周长=2+2+5+5=14,故选B .[点评]本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.13.如图,在平面直角坐标系中,直线l 的函数表达式为y =x ,点O 1的坐标为(1,0),以O 1为圆心,O 1O 为半径画圆,交直线l 于点P 1,交x 轴正半轴于点O 2,以O 2为圆心,O 2O 为半径画圆,交直线l 于点P 2,交x 轴正半轴于点O 3,以O 3为圆心,O 3O 为半径画圆,交直线l 于点P 3,交x 轴正半轴于点O 4;…按此做法进行下去,其中的长为_____.[答案]22015π[解析][分析]连接P 1O 1,P 2O 2,P 3O 3,易求得P n O n 垂直于x 轴,可知为圆的周长,再找出圆半径的规律即可解题.[详解]解:连接P 1O 1,P 2O 2,P 3O 3…, 20172018PO 1n n P O 14∵P 1 是⊙O 1上的点,∴P 1O 1=OO 1,∵直线l 解析式为y =x ,∴∠P 1OO 1=45°,∴△P 1OO 1为等腰直角三角形,即P 1O 1⊥x 轴,同理,P n O n 垂直于x 轴,∴ 为圆的周长, ∵以O 1为圆心,O 1O 为半径画圆,交x 轴正半轴于点O 2,以O 2为圆心,O 2O 为半径画圆,交x 轴正半轴于点O 3,以此类推,∴OO 1=1=20,OO 2=2=21,OO 3=4=22,OO 4=8=23,…,∴OO n =,∴,∴,故答案为:22015π.[点评]本题考查了图形类规律探索、一次函数的性质、等腰直角三角形的性质以及弧长的计算,本题中准确找到圆半径的规律是解题的关键.1n n P O 1412n -12112224n n n n P O 201520172018P 2O π=14.如图,点B ,C ,D 在⊙O 上,若∠B C D =130°,则∠B OD 的度数是________°.[答案][解析][分析]首先圆上取一点A ,连接A B ,A D ,根据圆的内接四边形的性质,即可得∠B A D +∠B C D =180°,即可求得∠B A D 的度数,再根据圆周角的性质,即可求得答案.[详解]圆上取一点A ,连接A B ,A D ,∵点A ,B ,C ,D 在⊙O 上,∠B C D =130°,∴∠B A D =50°,∴∠B OD =100°.故答案为100°. [点评]此题考查圆周角定理,圆的内接四边形的性质,解题关键在于掌握其定义.15.如图,边长为6的正六边形A B C D EF 的中心与坐标原点O 重合,A F ∥x 轴.将正六边形绕原点逆时针旋转n 次,每次旋转60°,当n =2019时,顶点A 的坐标为_____.100[答案](3,[解析][分析]将正六边形A B C D EF 绕原点O 逆时针旋转2019次时,点A 所在的位置就是原D 点所在的位置.[详解]2019×60°÷360°=336…3,即与正六边形A B C D EF绕原点O 逆时针旋转3次时点A 的坐标是一样的. 当点A 按逆时针旋转180°时,与原D 点重合.连接OD ,过点D 作D H ⊥x 轴,垂足为H ;由已知ED =6,∠D OE =60°(正六边形的性质),∴△OED 是等边三角形,∴OD =D E =OE =6. ∵D H ⊥OE ,∴∠OD H =30°,OH =HE =3,HD =∵D 在第四象限,∴D (3,﹣,即旋转2019后点A 的坐标是(3,﹣.故答案为:(3,﹣.[点评]本题考查了正多边形和圆、旋转变换的性质,掌握正多边形的性质、旋转变换的性质是解题的关键. 16.如图,A B 是⊙O 的切线,B 为切点,A O 的延长线交⊙O 于C 点,连接B C ,如果∠A =30°,A B =2A C 的长等于______.[答案]6 [解析][分析]连接OB ,首先利用切线的性质可得∠A B O=90°,接下来在△A B O 中,利用正切与余弦的定义即可求出OB 与OA 的长;然后根据圆的半径相等,并结合线段之间的关系进行解答即可.[详解]连接OB ,如图所示.∵A B 是圆O 的切线,∴∠A B O =90°.∵∠A =30°,∴tA n A =,C os A =, ∴OB =2,OA =4,3OB AB =2AB OA =∴A C =4+2=6.故答案为6.[点评]本题是一道关于直线与圆的位置关系的题目,解答本题的关键是熟练掌握切线的性质与锐角三角函数的定义.17.如图,D 、E 分别是⊙O 两条半径OA 、OB 的中点, .(1)求证:C D =C E .(2)若∠A OB =120°,OA =x ,四边形OD C E 的面积为y ,求y 与x 的函数关系式.[答案](1)证明见解析;(2)y=x 2. [解析][分析](1)连接OC ,根据圆心角、弧、弦的关系定理得到∠C OA =∠C OB ,证明△C OD ≌△C OE ,根据全等三角形的性质证明;(2)连接A C ,根据全等三角形的判定定理得到△A OC 为等边三角形,根据正切的定义求出C D ,根据三角形的面积公式计算即可.[详解](1)证明:连接OC ,AC=CB4∵,∴∠C OA =∠C OB ,∵D 、E 分别是⊙O 两条半径OA 、OB 的中点,∴OD =OE ,在△C OD 和△C OE 中,,∴△C OD ≌△C OE (SA S )∴C D =C E ;(2)连接A C ,∵∠A OB =120°,∴∠A OC =60°,又OA =OC ,∴△A OC 为等边三角形,∵点D 是OA 的中点,∴C D ⊥OA ,OD =OA =x , 在Rt △C OD 中,C D =OD •t A n ∠C OD =, ∴四边形OD C E 的面积为y=×OD ×C D ×2. [点评]本题考查的是圆心角、弧、弦的关系定理,全等三角形的判定和性质,等边三角形的性质,掌握圆心角、弧、弦的关系定理,全等三角形的判定定理和性质定理是同角的关键.AC=CB OD OE COD COE OC OC ⎧⎪∠∠⎨⎪⎩===121221218.如图,点C 在以A B 为直径的半圆⊙O 上,A C =B C .以B 为圆心,以B C 的长为半径画圆弧交A B 于点D .(1)求∠A B C 的度数;(2)若A B =2,求阴影部分的面积.[答案](1)45°;(2).[解析][分析](1)根据圆周角定理得到∠A C B =90°,根据等腰三角形的性质即可得到结论;(2)根据阴影部分的面积=S △A B C -S 扇形D B C 即可得到结论.[详解](1)∵A B 为半圆⊙O 的直径,∴∠A C B =90°.∵A C =B C ,∴∠A B C =45°;(2)∵A C =B C ,∴∠A B C =45°,∴△A B C 是等腰直角三角形.∵A B =2,∴B C = A B,∴阴影部分的面积=S △A B C -S 扇形D B C =.[点评]本题考查了不规则图形面积的计算,圆周角定理,等腰直角三角形的性质,熟练掌握扇形的面积公式是解题的关键.19.如图,正方形A B C D 内接于⊙O ,M 为弧A D 中点,连接B M ,C M .(1)求证:B M =C M ;(2)当⊙O 的半径为2时,求∠B OM 的度数. 14π-221452360π⨯⨯14π=-[答案](1)答案见解析;(2)135°.[解析][分析](1)根据正方形的性质得到A B =C D ,根据圆心角、弧、弦的关系得到,得到,即可得到结论;(2)连接OA 、OB 、OM ,根据正方形的性质求出∠A OB 和∠A OM ,计算即可.[详解](1)∵四边形A B C D 是正方形,∴A B =C D ,∴.∵M 为的中点,∴,∴,∴B M =C M ;(2)连接OA 、OB 、OM .∵四边形A B C D 是正方形,∴∠A OB =90°.∵M 为弧A D 的中点,∴∠A OM =45°,∴∠B OM =∠A OB +∠A OM =135°.[点评]本题考查了正多边形的性质、圆心角、弧、弦的关系定理,掌握正方形的性质、圆心角、弧、弦的关系定理是解题的关键.20.如图,点O 在边长为的正方形A B C D 的对角线A C 上,以O 为圆心OA 为半径的⊙O 交A B 于AB CD =BM CM =AB CD =AD AM DM =BM CM =点E.(1)⊙O过点E的切线与B C 交于点F,当0<OA <6时,求∠B FE的度数;(2)设⊙O与A B 的延长线交于点M,⊙O过点M的切线交B C 的延长线于点N,当6<OA <12时,利用备用图作出图形,求∠B NM的度数.[答案](1)∠B FE=45°;(2)∠B NM=45°.[解析][分析](1)连结OE,根据圆的半径都相等可得OA =OE,再根据等边对等角可得∠EA O=∠A EO,接下来再根据正方形以及切线性质即可得到∠B EF=45°,至此,再根据三角形内角和是180°即可得到∠B FE 的度数了;(2)根据题意画出图形,连结OM,根据等边对等角的性质和正方形的性质可得∠OA M=∠A MO=45°,至此,再根据切线的性质以及三角形内角和定理进行求解即可;[详解](1)连接OE,如解图,∵四边形A B C D 为正方形,∴∠2=45°,∵OE=OA ,∴∠1=∠2=45°,∵EF为⊙O的切线,∴OE⊥EF,∴∠OEF=90°,∴∠B EF=45°,∵∠B =90°,∴∠B FE=45°;(2)连接OM,如解图,∵OM=OA ,∴∠OMA =∠OA M=45°,∵MN 为⊙O 的切线,∴OM ⊥MN,∴∠OMN=90°,∴∠B MN=45°,∵∠MB N=90°,∴∠B NM=45°.[点评]本题主要考查了切线的性质,等腰直角三角形的性质,正方形的性质.切线的性质:①过切点及圆心的线段垂直于该切线;②圆心到切点的距离等于圆的半径.21.在△A B C 中,,以边A B 上一点O 为圆心,OA 为半径的圈与B C 相切于点D ,分别交A B ,A C 于点E ,F(I )如图①,连接A D ,若,求∠B 的大小;(Ⅱ)如图②,若点F 为的中点,的半径为2,求A B 的长.90︒∠=C 25CAD ︒∠=ADO[答案](1)∠B =40°;(2)A B = 6.[解析][分析](1)连接OD ,由在△A B C 中, ∠C =90°,B C 是切线,易得A C ∥OD ,即可求得∠C A D =∠A D O ,继而求得答案;(2)首先连接OF,OD ,由A C ∥OD 得∠OF A =∠FOD ,由点F为弧A D 的中点,易得△A OF是等边三角形,继而求得答案.[详解]解:(1)如解图①,连接OD ,∵B C 切⊙O于点D ,∴∠OD B =90°,∵∠C =90°,∴A C ∥OD ,∴∠C A D =∠A D O,∵OA =OD ,∴∠D A O=∠A D O=∠C A D =25°,∴∠D OB =∠C A O=∠C A D +∠D A O=50°,∵∠OD B =90°,∴∠B =90°-∠D OB =90°-50°=40°;(2)如解图②,连接OF,OD ,∵A C ∥OD ,∴∠OFA =∠FOD ,∵点F为弧A D 的中点,∴∠A OF=∠FOD ,∴∠OFA =∠A OF,∴A F=OA ,∵OA =OF,∴△A OF为等边三角形,∴∠FA O=60°,则∠D OB =60°,∴∠B =30°,∵在Rt△OD B 中,OD =2,∴OB =4,∴A B =A O+OB =2+4=6.[点评]本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△A OF为等边三角形是解(2)的关键.22.如图,已知△A B C 中,以A B 为直径的半⊙O交A C 于D ,交B C 于E,B E=C E,∠C =70°,求∠D OE的度数.[答案]∠D OE =40°.[解析][分析]连接A E,判断出A B =A C ,根据∠B =∠C =70°求出∠B A C =40°,再根据同弧所对的圆周角等于圆心角的一半,求出∠D OE的度数.[详解]连接A E,∵A B 是⊙O的直径,∴∠A EB =90°,∴A E⊥B C ,∵B E=C E,∴A B =A C ,∴∠B =∠C =70°,∠B A C =2∠C A E,∴∠B A C =40°,∴∠D OE=2∠C A E=∠B A C =40°.[点评]本题考查了等腰三角形的性质和圆周角定理,熟练掌握圆周角定理是解题的关键.同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.23.一个边长为4的等边三角形A B C 的高与⊙O的直径相等,如图放置,⊙O与B C 相切于点C ,⊙O 与A C 相交于点E,(1)求等边三角形的高;(2)求C E 的长度;(3)若将等边三角形A B C 绕点C 顺时针旋转,旋转角为α(0°<α<360°),求α为多少时,等边三角形的边所在的直线与圆相切.[答案](1)(2)3;(3)α=60°或120°或180°或300°. [解析][分析](1)作A M⊥MC 于M,在直角三角形A C M中,利用勾股定理即可解题,(2)连接EF,在直角三角形C EF 中, 利用勾股定理即可解题,(3)画出图形即可解题.[详解]解:(1)如图,作A M ⊥MC 于M .∵△A B C 是等边三角形,∴∠MA C =∠MA B =30°,∴C M = A C =2, ∴A M =(2)∵C F 是⊙O 直径,∴C F =C M =EF ,则∠C EF =90°,∵∠EC F =90°﹣∠A C B =30°,12∴EF = C F∴C E=3.(3)由图象可知,α=60°或120°或180°或300°时,等边三角形的边所在的直线与圆相切.[点评]本题考查了直线和圆的位置关系,属于简单题,作辅助线和利用勾股定理求边长是解题关键. 24.如图,A B 是⊙O 的直径,A B =12,弦C D ⊥A B 于点E ,∠D A B =30°.(1)求扇形OA C 的面积;(2)求弦C D 的长.[答案](1)12π;(2)[解析][分析](1)根据垂径定理得到,根据圆周角定理求出∠C A B ,根据三角形内角和定理求出∠A OC ,根据扇形面积公式计算;(2)根据正弦的定义求出C E ,根据垂径定理计算即可.[详解](1)∵弦C D ⊥A B ,∴,12∴∠C A B =∠D A B =30°,∵OA =OC ,∴∠OC A =∠OA C =30°,∴∠A OC =120°,∴扇形OA C 的面积==12π;(2)由圆周角定理得,∠C OE =2∠C A B =60°,∴C E =OC ×sin ∠C OE =3,∵弦C D ⊥A B ,∴C D =2C E =6.[点评]本题考查了扇形面积计算,圆周角定理,垂径定理的应用,掌握扇形面积公式是解题的关键. 25.如图,A B 为半圆O 的直径,A C 是⊙O 的一条弦,D 为的中点,作D E ⊥A C ,交A B 的延长线于点F ,连接D A .(1)求证:EF 为半圆O 的切线;(2)若D A =D F =,求阴影区域的面积.(结果保留根号和π)[答案](1)证明见解析 (2)﹣6π [解析][分析](1)直接利用切线的判定方法结合圆心角定理分析得出OD ⊥EF ,即可得出答案; BC 2(2)直接利用得出S△A C D =S△C OD ,再利用S阴影=S△A ED ﹣S扇形C OD ,求出答案.[详解](1)证明:连接OD ,∵D 为弧B C 的中点,∴∠C A D =∠B A D ,∵OA =OD ,∴∠B A D =∠A D O,∴∠C A D =∠A D O,∵D E⊥A C ,∴∠E=90°,∴∠C A D +∠ED A =90°,即∠A D O+∠ED A =90°,∴OD ⊥EF,∴EF为半圆O的切线;(2)解:连接OC 与C D ,∵D A =D F,∴∠B A D =∠F,∴∠B A D =∠F=∠C A D ,又∵∠B A D +∠C A D +∠F=90°,∴∠F=30°,∠B A C =60°,∵OC =OA ,∴△A OC 为等边三角形,∴∠A OC =60°,∠C OB =120°,∵OD ⊥EF ,∠F =30°,∴∠D OF =60°,在Rt △OD F 中,D F =∴OD=D F •t A n30°=6,在Rt △A ED 中,D A =,∠C A D =30°,∴D E =D A •sin30°=EA =D A •C os30°=9,∵∠C OD=180°﹣∠A OC ﹣∠D OF =60°,由C O =D O ,∴△C OD 是等边三角形,∴∠OC D =60°,∴∠D C O =∠A OC =60°,∴C D ∥A B ,故S △A C D =S △C OD ,∴S 阴影=S △A ED ﹣S 扇形C OD ==.[点评]此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S △A C D =S △C OD 是解题关键.2160962360π⨯⨯⨯62π-26.如图,已知半圆的直径,在中,,,,半圆以的速度从左向右运动,在运动过程中,点、始终在直线上.设运动时间为,当时,半圆在的左侧,. 当为何值时,的一边所在直线与半圆所在的圆相切?当的一边所在直线与半圆所在的圆相切时,如果半圆与直线围成的区域与三边围成的区域有重叠部分,求重叠部分的面积.[答案](1)1s 或4s 或7s 或16s ;(2)或.[解析][分析](1)随着半圆的运动分四种情况:①当点E 与点C 重合时,A C 与半圆相切,②当点O 运动到点C 时,A B 与半圆相切,③当点O 运动到B C 的中点时,A C 再次与半圆相切,④当点O 运动到B 点的右侧时,A B 的延长线与半圆所在的圆相切.分别求得半圆的圆心移动的距离后,再求得运动的时间.(2)在1中的②,③中半圆与三角形有重合部分.在②图中重叠部分是圆心角为90°,半径为6C m 的扇形,故可根据扇形的面积公式求解.在③图中,所求重叠部分面积为=S △POB +S 扇形D OP .[详解]解:(1)①如图,当点E 与点C 重合时,A C ⊥OE ,OC =OE =6C m ,所以A C 与半圆O 所在的圆相切,此时点O 运动了2C m ,所求运动时间为:t ==1(s ); ②如图,当点O 运动到点C 时,过点O 作OF ⊥A B ,垂足为F .在Rt △FOB 中,∠FB O =30°,OB =12C m ,则OF =6C m ,即OF 等于半圆O 的半径,所以A B 与半圆O 所在的圆相切.此时点O 运动了8C m ,所求运动时间为:t ==4(s ); ③如图,当点O 运动到B C 的中点时,A C ⊥OD ,OC =OD =6C m ,所以A C 与半圆O 所在的圆相切.此时点O 运动了14C m ,所求运动时间为:t ==7(s ); O DE 12cm =ABC ACB 90∠=ABC 30∠=BC 12cm =O 2cm /s D E BC ()t s t 0s =O ABC OC 8cm =()1t ABC O () 2ABC O O DEABC 29πcm ()26πcm ()2282142④如图,当点O运动到B 点的右侧,且OB =12C m时,过点O作OQ⊥A B ,垂足为Q.在Rt△QOB 中,∠OB Q=30°,则OQ=6C m,即OQ等于半圆O所在的圆的半径,所以直线A B 与半圆O所在的圆相切.此时点O运动了32C m,所求运动时间为:t==16(s).综上所述:t=1s或4s或7s或16s.(2)当△A B C 的一边所在的直线与半圆O所在的圆相切时,半圆O与直径D E围成的区域与△A B C 三边围成的区域有重叠部分的只有如图②与③所示的两种情形.①如图②,设OA 与半圆O的交点为M,易知重叠部分是圆心角为90°,半径为6C m的扇形,所求重叠部分面积为:S扇形EOM=π×62=9π(C m2);②如图③,设A B 与半圆O的交点为P,连接OP,过点O作OH⊥A B ,垂足为H.则PH=B H.在Rt△OB H中,∠OB H=30°,OB =6C m,则OH=3C m,B H,B P,S△POB=××C m2),又因为∠D OP=2∠D B P=60°,所以S扇形D OP==6π(C m2),所求重叠部分面积为:S△POB+S扇形D OP(C m2).综上所述:重叠面积为或.[点评]本题利用了直线与圆相切的概念,扇形的面积公式,直角三角形的面积公式,锐角三角函数的概念求解.32214122606360π⨯29πcm()26πcm()。
人教版九年级上册数学《圆》单元测试卷(含答案)

人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、单选题OP ,则点P与O的位置关系是( ) 1.已知O的半径为5,同一平面内有一点P,且7A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2.已知正六边形的边长是2,则该正六边形的边心距是()A.1 B C.2 D.23.如图,已知在⊙O中,BC是直径,AB=DC,∠AOD=80°,则∠ABC等于( )A.40°B.65°C.100°D.105°4.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=( )A.85°B.95°C.105°D.115°5.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°6.如图,AB是⊙O的直径,C,D为⊙O上的点,AD CD,如果∠CAB=40°,那么∠CAD的度数为()A.25°B.50°C.40°D.80°7.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为() A.相离B.相切C.相交D.相切、相交均有可能8.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外9.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定10.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°11.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则P A+PB的最小值为()A.4 B.C.D.212.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为O的直径,弦AB CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )A.12寸B.13寸C.24寸D.26寸二、填空题13.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D =_____度.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为______.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.20.如图,矩形ABCD 中,3AB =,4AD =.作DE ⊥AC 于点E ,作AF ⊥BD 于点F .(1)求AF 、AE 的长;(2)若以点A 为圆心作圆, B 、C 、D 、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求A的半径 r 的取值范围.21.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?23.如图,P是⊙O外一点,P A是⊙O的切线,A是切点,B是⊙O上一点,且P A=PB,延长BO分别与⊙O、切线P A相交于C、Q两点.(1)求证:PB是⊙O的切线;(2)QD为PB边上的中线,若AQ=4,CQ=2,求QD的值.24.如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,8CD cm =,求直径AB 的长.25.如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为BD 的中点.若40A ∠=,求B ∠的度数.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)参考答案一、单选题12.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD 为的直径,弦,垂足为E ,CE=1寸,AB=10寸,求直径CD 的长”,依题意得CD 的长为( )A .12寸B .13寸C .24寸D .26寸【答案】D 【解析】【分析】连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE ,最后根据勾股定理进一步求解即可.【详解】如图,连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,∵CD 为的直径,弦,垂足为E ,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知, O AB CD⊥2xx 2x x O AB CD ⊥12在Rt △AOE 中,,∴,解得:,∴,即CD 长为26寸.【点评】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.二、填空题13.如图,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 切⊙O 于C ,连接AC ,若∠CAB =30°,则∠D =_____度.【答案】30【解析】【分析】连接OC ,如图,根据切线的性质得∠OCD =90°,再根据等腰三角形的性质和三角形外角性质得到∠COD =60°,然后利用互余计算∠D 的度数.【详解】连接OC ,如图,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD =90°.∵OA =OC ,∴∠ACO =∠CAB =30°,∴∠COD =∠ACO +∠CAB =60°,∴∠D =90°﹣∠COD =90°﹣60°=30°. 故答案为30.222AO AE OE =+()22251x x =+-13x =226x=【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质. 14.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.【答案】1【解析】【分析】根据同弧或等弧所对的圆周角相等可得∠A=∠CDB=30°,再根据AB 是⊙O 的直径,得出∠ACB=90°,则BC=AB ,从而得出结论. 【详解】解:∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=, 故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.12121212⨯=【答案】【解析】【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【详解】设扇形的半径为r.根据题意得:6π解得:r=故答案为【点评】本题考查了扇形的面积公式.熟练将公式变形是解题的关键.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.【答案】10cm【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•30=300π,然后解方程即可.【详解】解:根据题意得•2π•r•30=300π,解得r=10(cm).245360rπ=1212故答案为:10cm.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.【答案】证明见解析【解析】【分析】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【详解】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,∵OA=OB又∵M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,OM ONAOC BOCOC OC,=⎧⎪∠=∠⎨⎪=⎩∴△MOC≌△NOC(SAS),∴MC=NC.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点评】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.【答案】(1)见解析【解析】【分析】(1)由角平分线性质定理可得DE =DF ,由圆内接四边形性质可得∠A +∠BCD =180°,然后代换可得∠A =∠DCF ,又∠DEA =∠F =90°, 所以△AED ≌△CFD;(2)由三角形全等可得AE =CF ,BE =BF ,设AE =CF =x ,可得x =1;在Rt △BFD ,根据30°所对的直角边是斜边的一半,则BD =2DF ,利用勾股定理解得BD =【详解】(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠BCD =180°,又∵∠DCF +∠BCD =180°,∴∠A =∠DCF∵BD 是∠ABC 的角平分线,又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∠DEA =∠F =90°,∴△AED ≌△CFD.(2)∵△AED ≌△CFD ,∴AE =CF ,BE =BF ,设AE =CF =x ,则BE =10-x ,BF =8+x ,即10-x =8+x ,解得x =1,在Rt △BFD ,∠DBC =30°,设DF =y ,则BD =2y ,∵BF 2+DF 2=BD 2,∴y 2+92=(2y)2,y =BD =【点评】本题考查了全等三角形的性质和判定,勾股定理等知识,由条件灵活转移线段关系是解题关键. 20.如图,矩形中,,.作DE ⊥AC 于点E ,作AF ⊥BD 于点F . (1)求AF 、AE 的长;(2)若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求的半径 的取值范围.【答案】(1),;(2) 【解析】【分析】(1)先利用等面积法算出AF=,再根据勾股定理得出; (2)根据题意点F 只能在圆内,点C 、D 只能在圆外,所以⊙A 的半径r 的取值范围为.【详解】解:如图,ABCD 3AB =4AD =A B C D Ar 125AF =165AE = 2.44r <<125165AE = 2.44r <<(1)在矩形中,,.∴∵DE ⊥AC ,AF ⊥BD ,∴ ; ∴AF=, 同理,DE=, 在Rt △ADE 中,=, (2) 若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,则r>2.4,当至少有2个点在圆外,r<4,故⊙A 的半径r 的取值范围为:21.如图,已知.(1)用尺规作正六边形,使得是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.ABCD 3AB =4AD =11··22ABD S AB AD BD AF ==△125125165A B C D 2.44r <<O O【答案】(1)答案见解析;(2)答案见解析【解析】【分析】(1)利用正六边形的性质外接圆边长等于外接圆半径;(2)连接对角线以及利用正六边形性质.【详解】解:(1)如图所示:,(2)如图所示:【点评】此题主要考查了复杂作图以及全等三角形和正六边形的性质,根据正六边形性质得出作法是解题关键.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?【答案】5cm【解析】【分析】先根据垂径定理求出AD 的长,设OA=rcm ,则OD=(r-2)cm ,再根据勾股定理求出r 的值即可.【详解】解:作OD ⊥AB 于D ,如图所示:∵AB=8cm ,OD ⊥AB ,小坑的最大深度为2cm ,∴AD=AB=4cm . 设OA=rcm ,则OD=(r-2)cm在Rt △OAD 中,∵OA 2=OD 2+AD 2,即r 2=(r-2)2+42,解得r=5cm;即铅球的半径OA 的长为5cm .【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.如图,P 是⊙O 外一点,P A 是⊙O 的切线,A 是切点,B 是⊙O 上一点,且P A =PB ,延长BO 分别与⊙O 、切线P A 相交于C 、Q 两点.(1)求证:PB 是⊙O 的切线;(2)QD 为PB 边上的中线,若AQ =4,CQ =2,求QD 的值.12【答案】(1)详见解析;(2)QD【解析】【分析】(1)要证明PB 是⊙O 的切线,只要证明∠PBO=90°即可,根据题意可以证明△OBP ≌△OAP ,从而可以解答本题;(2)根据题意和勾股定理的知识,可以求得QD 的值.【详解】(1)证明:连接OA ,在△OBP 和△OAP 中,,∴△OBP ≌△OAP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,A 是切点,∴∠OAP =90°,∴∠OBP =90°,∵OB 是半径,∴PB 是⊙O 的切线;(2)连接OCPA PB OB OAOP OP ⎧⎪⎨⎪⎩===∵AQ=4,CQ=2,∠OAQ=90°,设OA=r,则r2+42=(r+2)2,解得,r=3,则OA=3,BC=6,设BP=x,则AP=x,∵PB是圆O的切线,∴∠PBQ=90°,∴x2+(6+2)2=(x+4)2,解得,x=6,∴BP=6,∴BD=3,∴QD,即QD【点评】本题考查切线的判定与性质,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.如图,的直径垂直弦于,且是半径的中点,,求直径的长.【解析】【分析】连接OC ,根据垂径定理可求CM =DM =4cm ,再运用勾股定理可求半径OC ,则直径AB 可求.【详解】连接OC .设圆的半径是r .∵直径AB ⊥CD,∴CM =DM =CD =4cm . ∵M 是OB 的中点,∴OM =r ,由勾股定理得:OC 2=OM 2+CM 2,∴r 2=(r )2+42,解得:r =,则直径AB =2r =(cm ).【点评】本题考查了垂径定理,解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.25.如图,四边形内接于,为的直径,点为的中点.若,求的度数. O AB CD M M OB 8CD cm =AB 1212123ABCD O AB O C BD 40A ∠=B ∠【答案】.【解析】【分析】连接AC ,根据圆周角定理可得∠ACB=90°,∠BAC=∠BAD ,然后根据∠B 与∠BAC 互余即可求解.【详解】解:连接,∵是直径,∴,∵点为的中点,,∴, ∴在中,.【点评】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)【答案】见解析70B ∠=12AC AB 90ACB ∠=C BD 40BAD ∠=11402022BAC BAD ∠=∠=⨯=Rt ABC 902070B ∠=-=【解析】【分析】根据圆的性质,弦的垂直平分线过圆心,所以只要找到两条弦的垂直平分线,交点即为圆心,有圆心就可以作出圆轮.【详解】如图:圆O为所求.【点评】本题考查了圆的基本性质,是一种求圆心的作法.作圆的方法有:①圆心半径;②三个圆上的点.。
九年级上册数学《圆》单元综合测试题(含答案)

[点睛]本题考查了垂径定理、勾股定理的应用,关键在于正确地作出辅助线构建直角三角形,认真地进行计算.
5.如图,A B是⊙O的弦,点C在圆上,已知∠OB A=40°,则∠C=()
A. 40°B. 50°C. 60°D. 80°
[答案]B
[解析]
[分析]
首先根据等边对等角即可求得 的度数,然后根据三角形的内角和定理求得 的度数,再根据圆周角定理即可求解.
[答案]相离
[解析]
[分析]
A. B. C. D.
[答案]D
[解析]
[分析]
连接OA,由题意即可得出OC、OA的长度,运用勾股定理即可推出A D的长度,然后,通过垂径定理即可推出A B的长度.
[详解]连接OA.
∵⊙O的弦A B垂直平分半径OC,C D= ,∴OC= ,∴OA= .
∵OC⊥A B,∴A D= .
∵A B=2A D,∴A B= .
1.下列关于圆的说法,不正确的是( )
A.圆是轴对称图形B.圆是中心对称图形
C.优弧大于劣弧D.垂直于弦的直径平分这条弦所对的弧
[答案]C
[解析]
[分析]
根据圆的基本概念、圆的基本性质分析即可.
[详解]A.圆是轴对称图形,过圆心的直线都是它的对称轴,该说法正确;
B.圆是中心对称图形,它的中心对称点为圆心,该说法正确;
[详解] ,
,
,
.
故选: .
[点睛]本题考查了等腰三角形的性质定理以及圆周角定理,正确理解定理是关键.
6.如图,现有一个圆心角为90°,半径为8Cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()
A.2CmB.3CmC.4CmD.1Cm
(完整版)初三数学圆单元测试卷(含答案)

圆单元测试卷(总分:120 分时间:120 分钟)一、填空题(每题 3 分,共 30 分)1.如图1 所示AB 是⊙O的弦,OC⊥AB于C,若OA=2cm,OC=1cm,则AB 长为.图1 图2 图 32.如图2 所示,⊙O的直径CD 过弦EF 中点G,∠EOD=40°,则∠DCF=.3.如图 3 所示,点 M,N 分别是正八边形相邻两边 AB,BC 上的点,且 AM=BN,则∠MON=度.4.如果半径分别为2 和3 的两个圆外切,那么这两个圆的圆心距是.5.如图4 所示,宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm)则该圆的半径为cm.图4 图5 图66.如图5 所示,⊙A的圆心坐标为(0,4),若⊙A的半径为3,则直线y=x 与⊙A 的位置关系是.7.如图6 所示,O 是△ABC的内心,∠BOC=100°,则∠A=.8.圆锥底面圆的半径为5cm,母线长为8cm,则它的侧面积为.(用含的式子表示)9.已知圆锥的底面半径为 40cm,母线长为 90cm,则它的侧面展开图的圆心角为.41 2210. 矩形 ABCD 中,AB=5,BC=12,如果分别以 A ,C 为圆心的两圆相切,点 D 在⊙C 内,点B在⊙C 外,那么⊙A 的半径 r 的取值范围为 .二、选择题(每题 4 分,共 40 分)11. 如图 7 所示,AB 是直径,点 E 是 AB 中点,弦 CD∥AB 且平分 OE ,连 AD ,∠BAD 度数为( )A .45°B .30°C .15°D .10°图 7 图 8 图 912.下列命题中,真命题是( )A .圆周角等于圆心角的一半B .等弧所对的圆周角相等C .垂直于半径的直线是圆的切线D .过弦的中点的直线必经过圆心13.(易错题)半径分别为 5 和 8 的两个圆的圆心距为 d ,若 3<d≤13, 则这两个圆的位置关系一定是( ) A .相交B .相切C .内切或相交D .外切或相交14. 过⊙O 内一点 M 的最长弦长为 10cm ,最短弦长为 8cm ,那么 OM 长为( )A .3cmB .6cmC . cmD .9cm15. 半径相等的圆的内接正三角形,正方形边长之比为( )A .1:B .:C .3:2D .1:216. 如图 8,已知⊙O 的直径 AB 与弦 AC 的夹角为 35°,过 C 点的切线 PC 与 AB 的延长线交于点 P ,则∠P 等于( ) A .15°B .20°C .25°D .30°17. 如图 9 所示,在直角坐标系中,A 点坐标为(-3,-2),⊙A 的半径为 1,P 为 x 轴上一动点,PQ 切⊙A 于点 Q ,则当 PQ 最小时,P 点的坐标为( ) A .(-4,0)B .(-2,0)C .(-4,0)或(-2,0)D .(-3,0)18.在半径为 3 的圆中,150°的圆心角所对的弧长是( )23A . 154B . 152C .54D .5219. 如图 10 所示,AE 切⊙D 于点 E ,AC=CD=DB=10,则线段 AE 的长为( )A .10B .15C .10D .2020. 如图 11 所示,在同心圆中,两圆半径分别是 2 和 1,∠AOB=120°, 则阴影部分的面积为( )A. 4B. 2C.34D.三、解答题(共 50 分)21.(8 分)如图所示,CE 是⊙O 的直径,弦 AB⊥CE 于 D ,若 CD=2,AB=6,求⊙O 半径的长.22.(8 分)如图所示,AB 是⊙O 的直径,BC 切⊙O 于 B ,AC 交⊙O 于 P ,E 是 BC 边上的中点,连结 PE ,PE 与⊙O 相切吗?若相切,请加以证明,若不相切,请说明理由.23.(12 分)已知:如图所示,直线 PA 交⊙O 于 A ,E 两点,PA 的垂线 DC 切⊙O 于点 C ,过 A 点作⊙O 的直径 AB .(1)求证:AC 平分∠DAB;(2)若 AC=4,DA=2,求⊙O 的直径.324.(12 分)“五一”节,小雯和同学一起到游乐场玩大型摩天轮, 摩天轮的半径为 20m ,匀速转动一周需要 12min ,小雯所坐最底部的车厢(离地面 0.5m ). (1)经过 2min 后小雯到达点 Q 如图所示,此时他离地面的高度是多少.(2)在摩天轮滚动的过程中,小雯将有多长时间连续保持在离地面不低于 30.5m 的空中.25.(10 分)如图所示,⊙O 半径为 2,弦 BD=2 ,A 为弧 BD 的中点,E 为弦 AC 的中点,且在 BD 上,求四边形 ABCD 的面积.3 3 3 3 3答案:13 1.2 cm 2.20° 3.45 4.5 5. 6.相交47.20° 8.40cm 29.160° 10.1<r<8 或 18<r<2511.C 12.B 13.D 14.A 15.B 16.B 17.D 18.D 19.C 20.B121. 解:连接 OA ,∵CE 是直径,AB⊥CE,∴AD= AB=3.2∵CD=2,∴OD=OC-CD=OA-2.由勾股定理,得 OA 2-OD 2=AD 2, ∴OA 2-(OA-2)2=92,解得 OA=13,∴⊙O 的半径等于13 .4422. 解:相切,证 OP⊥PE 即可.23. 解:(1)连 BE ,BC ,∠CAB+∠ABC=90°,∠DCA=∠ABC,∴∠DAC,∠CAB,AC 平分∠DAB.(2)DA=2,AC=4,∠ACD=30°,∠ABC=∠DCA=30°,∵AC=4,∴AB=8. 124.(1)10.5 (2) ×12=4(min ).325.解:连结 OA 交 BD 于点 F ,连接 OB .∵OA 在直径上且点 A 是 BD 中点,∴OA ⊥BD ,•BF=DF= .在 Rt △BOF 中,由勾股定理得 OF 2=OB 2-BF 2,OF= =1. OA = 2,∴ AF = 1,∴ S∆ABD =2 3 ⨯1 = .2∵点 E•是 AC 中点,∴AE=CE .又∵△ADE 和△CDE 同高,∴S △CDE =S △ADE , 同理 S △CBE =S △ABE ,∴S △BCD =S △CDE +S △CBE =S △ADE +S △ABE =S △ABD = , ∴S 四边形 ABCD =S △ABD +S △BCD =2 .22 - ( 3)2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学《圆》单元测试卷
一、选择题(每题4分,共40分)
1.如图1,AB是⊙O的弦,OC⊥AB,垂足为C,若OA=5,OC=4,则AB的长为()
A. 3
B. 6
C. 41
D. 241
2.如图2,AB是⊙O的弦,C是弧AB的中点,∠BAC=32°,那么∠ABC的度数是()
A. 25°
B. 29°
C. 30°
D. 32°
3.如图3,等边三角形ABC内接于⊙O,P是弧AB上的一点,则∠APB=()A.120° B.135° C. 140° D. 150°
图1 图2 图3
4.AB是⊙O的弦,∠AOB=84°,则弦AB所对的圆周角是()
A.42° B.138° C. 168° D. 42°或138°
5.⊙O的直径为10㎝,圆心O到直线L的距离为7㎝,则直线L与⊙O的位置关系是()
A.相交 B.相切 C. 相离 D. 不能确定
6、已知⊙A、⊙B相切,圆心距为10 ,其中⊙A的半径为4,则⊙B的半径为()
A. 6
B. 14
C. 6或14
D. 不确定
7.如图7,正方形ABCD内接于⊙O,点P在弧CD上,则∠BPC=( ) A.35° B.40° C. 45° D. 50°
8.如图8,一把遮阳伞撑开时母线的长是2米,底面半径为1米,则做这把遮阳伞需用布料的面积是()平方米
A .4π
B .2π
C .π
D .1π2 9. 如图9,一个圆环的面积是9π,大圆的弦AB 切小圆于点C ,则弦AB 的长是( )
A .3
B .6 C. 9 D. 18
10. ⊙O 是⊿ABC 的内切圆,D 是切点,BD=3㎝,DC=2㎝,△ABC 的周长是16㎝,那么AB=( )㎝.
A .4
B .5 C. 6 D. 7
图7
图8 图9 图10 二、填空题(每题4分,共24分)
11.如图,点P 是⊙O 外一点,PA 切⊙O 于点A ,∠O=55°,则∠P 度数为_________.
12.已知圆弧的半径为6㎝,圆心角为30°,则这个圆弧的弧长为_________(结果保留π).
13.若正六边形的边长为2,则此正六边形的边心距为___________.
14、在图2中在△ABC 中,I 为内心,若∠A =80°,则∠BIC = .
15.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图3所示,已知AB =16m ,半径 OA =10 m ,高度CD 为_ ____m .
16. 如图4,在△ABC 中,∠A=90,分别以B 、C 为圆心的两个等圆外切,两圆的半径都为2cm ,则图中阴影部分的面积为
三、解答题(每题12分,共36分) 2
1
B A O
C
D 图1 图2 图3 图4
17.一个圆锥的底面半径为6cm, 母线长为10cm,求这个圆锥的侧面积和全面积。
18.如图,⊙O的直径AB为6cm,C是⊙O上一点,∠BAC=30°,过点C的切线交AB的延长线于点P,求(1)∠ACP的度数(2)AP的长
19.如图,△ABC是⊙O内接三角形,AE是直径,交BC与F,D是BC上一点,若∠1=∠2.求证:AD⊥BC.
附加题(20分)
20.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且PDA PBD
∠=∠. 延长PD交圆的切线BE于点E Array
(1) 判断直线PD是否为O
(2) 如果60
∠=,PD=PA
BED。