电力系统继电保护原理实验
电力系统继电保护——3.1-3.2电网的距离保护-阻抗继电器原理和动作特性

Z m Z set
Zm
O
m
R
Z m Z set
R
(a)
(b)
| Zm | Zset
| U m | I m Z set
幅值比较方式
Z m Z set 270 arg 90o Z m Z set
o
相位比较方式
2. 全阻抗继电器—实际实现
jX
Z set
jX
Z m Z set
Z0 Zm Z0
jX
A
Z0
k
O
Zm
k
R
O
Zm Z0
Z0
(a)
Zm
A
R
A
Z0
(b)
| Zm Z0 | Zm Z0
Um 270 Arg 90 I m Z set
U P Um
U = I m Z0
6. 具有直线特性的继电器-电抗继电器
jX
jX set
o
相位比较方式
3. 方向阻抗继电器—实际实现
jX
Z set
jX
Z set
Zm
1 Z set 2
Z
m
1 2 Zset
Z set
Zm
O
Zm
O
R
(a)
(b)
Um 270 Arg 90 U m I m Z set
动作方程
U P Um
U =Um I m Zset
3. 方向阻抗继电器-几个概念的说明 起动阻抗随着测量阻抗 相角的变化而改变;
Zk (nTA / nTV )
动作特性扩大为一个圆
(a)
~
电力系统继电保护原理

电力系统继电保护原理引言电力系统继电保护是电力系统中非常重要的一部分,它的作用是保护发电、输电和配电设备以及负载设备,以防止电力系统发生故障。
本文将详细介绍电力系统继电保护的原理以及其在电力系统中的应用。
一、继电保护的概述继电保护是电力系统中的一项重要技术,用于及时发现和切除发电、输电和配电系统中的故障。
它起着安全、稳定运行电力系统的作用。
继电保护系统主要由继电保护装置、CT(Current Transformer)和PT(Potential Transformer)、配电自动化装置和通信装置等组成。
二、继电保护原理1. 继电保护装置继电保护装置是实现继电保护功能的关键设备。
它通过对电力系统各个部分电压和电流的测量,来实现故障的检测和切除。
根据检测到的电压和电流信号,继电保护装置会发出指令来切断电路,防止故障进一步扩大。
2. CT和PTCT(Current Transformer)和PT(Potential Transformer)是继电保护装置中的关键设备,用于将电流和电压信号转换为继电保护装置可处理的信号。
CT和PT通常与高压电力系统中的电流和电压传感器配合使用,将高电压和高电流信号降低到继电保护装置可处理的范围。
3. 配电自动化装置配电自动化装置是电力系统中常用的继电保护装置之一。
它可以实现对配电系统的自动化控制、故障检测和切除。
配电自动化装置通过测量电流和电压信号,来判断是否有电力系统故障,并根据设定的保护动作条件,自动切除故障电路,保证电力系统的安全运行。
4. 通信装置通信装置在电力系统继电保护中起着重要的作用。
它通过与其他继电保护装置和监控系统进行通信,实时传输电力系统状态信息,以实现对电力系统的远程监控和故障处理。
通信装置可以使继电保护系统具备远程操作、远程监控和远程维护等功能。
三、继电保护在电力系统中的应用1. 发电系统在发电系统中,继电保护主要用于保护发电机和变压器等重要设备。
继电保护工作原理

继电保护工作原理
继电保护工作原理是指通过继电器将电力系统各部件的状态信息传递给保护设备,实现对电力系统的保护。
其工作原理主要包括以下几个方面:
1. 电流保护:电流保护主要是通过测量电路中的电流来判断是否存在过载、短路等故障。
当电流超过设定值时,继电器会被动作,将信号发送给保护设备,从而切断故障电路。
2. 过电压保护:过电压保护是通过对系统中电压进行监测和测量,当电压超过设定值时,继电器会动作,将信号传递给保护设备,以避免电气设备受到损坏。
3. 低电压保护:低电压保护基本原理与过电压保护相似,但是保护对象是电压过低的情况。
当电压低于设定值时,继电器会触发保护动作,以避免设备在电压过低情况下无法正常工作。
4. 频率保护:频率保护用于监测电力系统的频率,当频率偏离正常范围时,继电器会动作,将信号传递给保护设备,以防止电力系统发生频率过高或过低的故障。
5. 距离保护:距离保护是用于判定系统中发生故障的位置,以便精确地切除故障区域。
它通过测量故障点电流和电压的相位差来判断故障的距离,从而实现保护动作。
6. 差动保护:差动保护是一种用于保护输电线路和变压器的重要方式。
它基于物理定律,通过比较输入和输出电流的差值,
来判定是否存在异常情况,如短路、接地等故障。
综上所述,继电保护工作原理是通过测量和比较电力系统中各种参数(电流、电压、频率等)的数值,判断系统是否存在故障,并通过继电器将信号传递给保护设备,实现对电力系统的自动保护。
电力系统继电保护实验

网络高等教育《电力系统继电保护》实验报告学习中心:层次:专科起点本科专业:年级:学号:学生姓名:实验一电磁型电流继电器和电压继电器实验一、实验目的1、熟悉DL型电流继电器和DY型电压继电器的实际结构,工作原理、基本特性;2、学习动作电流、动作电压参数的整定方法。
二、实验电路1.过流继电器实验接线图2.低压继电器实验接线图三、预习题1.过流继电器线圈采用___并联___接法时,电流动作值可由转动刻度盘上的指针所对应的电流值读出;低压继电器线圈采用__串联____接法时,电压动作值可由转动刻度盘上的指针所对应的电压值读出。
(串联,并联)2. 动作电流(压),返回电流(压)和返回系数的定义是什么?1、使继电器返回的最小电压称为返回电压,使继电器动作的最大电压称为动作电压,返回电压与动作电压之比称为返回系数。
2、使继电器动作的最小电流称为动作电流,使继电器返回的最大电流称为返回电流,返回电流与动作电流之比称为返回系数。
四、实验内容1.电流继电器的动作电流和返回电流测试表一过流继电器实验结果记录表2.低压继电器的动作电压和返回电压测试表二低压继电器实验结果记录表五、实验仪器设备六、问题与思考1.电流继电器的返回系数为什么恒小于1?由于有摩擦力矩和剩余力矩的存在,使得返回量小于动作量。
根据返回力矩的定义,返回系数恒小于1.2.返回系数在设计继电保护装置中有何重要用途?返回系数是确保保护选择性的重要指标,让不该动作的继电器及时返回,使正常运行的部分系统不被切除。
3. 实验的体会和建议通过实验对动作电流(压),返回电流(压)和返回系数以及返回系数在设计继电保护装置的用途、电流继电器的返回系数有了更深刻的了解。
实验二电磁型时间继电器和中间继电器实验一、实验目的1、熟悉时间继电器和中间继电器的实际结构、工作原理和基本特性;2、掌握时间继电器和中间继电器的测试和调整方法。
二、实验电路1.时间继电器动作电压、返回电压实验接线图2.时间继电器动作时间实验接线图3.中间继电器实验接线图4.中间继电器动作时间测量实验接线图三、预习题影响起动电压、返回电压的因素是什么?1、剩余力矩的大小,2、衔铁与铁芯之间的气隙大小,3、可动部分的摩擦力矩。
分析电力系统继电保护原理

继电保护系统作用
1)断开电力故障元件,最大限度地减少 对电力元件本身的损坏。
2)反应电力元件不正常工作状态,便于 监视与调整。
3)支持电力系统安全运行。特别是保护 快速动作对提高电网暂态稳定的特殊作 用,其他稳定措施是不能与其相比拟。
继电保护装置的功能可用一个等效的自动 化开关来描述,其逻辑框图如图所示。
方向电流保护
方向元件的规定
l 为了提高保护动作的可靠性,单侧电源线路的相电流保护 不应经方向元件控制。
1. 双侧电源线路的相电流和零序电流保护,如经核算在可能 出现的不利运行方式和不利故障类型下,均能与背侧线路 保护配合,也可不经方向元件控制;在复杂电网中,为简 化整定配合,相电流和零序电流保护宜经方向元件控制。 为不影响相电流和零序电流保护的动作性能,方向元件要 有足够的灵敏系数,且不能有动作电压死区。
限时电流速断保护 原则与单侧电源网络中第Ⅱ段的整定原则相同,与相邻线
路Ⅰ段保护配合。但需考虑分支电路的影响。 引入分支系数:
仅有助增时: 仅有外汲时: 无分支时:kfz=1
方向电流保护
对方向电流保护的评价
l 在多电源网络及单电源环网中能保证选择性; l 快速性和灵敏性同前述单侧电源网络的电流保护; l 接线较复杂,可靠性稍差,且增加投资; 1. 出口短路时,方向元件有死区,使保护有死区。
通用整定规则
终端线原则
电流保护I段 ①按躲本线路末端变压器其它侧故障整定。 电流保护Ⅱ段(可省略) ①按本线路末端故障有规定灵敏度整定。 ②按躲本线路末端变压器其它侧故障整定。 ③按与本线路变压器时限速断保护配合整定。 电流保护Ⅲ段 ①按本线路末端故障有规定灵敏度整定。 ②按本线路变压器其它侧故障有灵敏度整定。 ③按躲最大负荷电流整定。
电力系统继电保护实验指导书

实验一电磁型电流继电器实验一.实验目的1.熟悉DL型电流继电器的内部结构、工作原理、基本特性。
2.测量电流继电器的动作值及返回值,计算返回系数。
掌握测试、调整这些参数的基本方法。
3.了解继电器常开接点和常闭接点的区别,观察接点工作可靠性。
二.原理说明DL-20C系列电流继电器为电磁式继电器。
由电磁系统、整定装置、接触点系统组成。
当线圈导通时,衔铁克服游丝的反作用力矩而动作,使动合触点闭合。
转动刻度盘上的指针,可改变游丝的力矩,从而改变继电器的动作值。
改变线圈的串联或并联,可获得不同的额定值。
DL-20C系列电流继电器铭牌刻度值,为线圈并联时的额定值。
继电器用于反映发电机,变压器及输电线短路和过负荷的继电保护装置中。
三.实验设备序号设备名称使用仪器名称数量1 控制屏 12 EPL-20A 变压器及单相可调电源 13 EPL-04 继电器—DL-21C电流继电器 14 EPL-11 交流电压表 15 EPL-11 交流电流表 16 EPL-11 直流电源及母线 17 EPL-12B 光示牌 1四.实验内容及步骤1.机械部分检查、转轴活动部分检查、舌片与电磁铁间隙的检查、弹簧的检查与调整、触点的检查与调整轴承与轴尖的检查。
2. 整定点的动作值、返回值及返回系数测试实验接线图1-2为过流继电器的实验接线。
(1)电流继电器的动作电流和返回电流测试:a .选择EPL-04组件的DL-21C过流继电器(额定电流为6A),确定动作值并进行整定。
本实验整定值为2.7A及5.4A两种工作状态。
注意:本继电器在出厂时已把转动刻度盘上的指针调整到2.7A,学生也可以拆下玻璃罩子自行调整电流整定值。
b .根据整定值要求对继电器线圈确定接线方式; 注意:(1)过流继电器线圈可采用串联或并联接法,如右图所示。
其中串联接法电流动作值可由转动刻度盘上的指针所对应的电流值读出,并联接法电流动作值则为串联接法的2倍。
(2)串并联接线时需注意线圈的极性,应按照要求接线,否则得不到预期的动作电流值。
大工16春《电力系统继电保护实验》问题详解
网络高等教育《电力系统继电保护》实验报告学习中心:浙院层次:专科起点本科专业:电气工程及其自动化年级: 15 年春季学号:学生姓名:实验一电磁型电流继电器和电压继电器实验一、实验目的1. 熟悉DL型电流继电器和DY型电压继电器的的实际结构,工作原理、基本特性;2. 学习动作电流、动作电压参数的整定方法。
二、实验电路1.过流继电器实验接线图2.低压继电器实验接线图三、预习题1. DL-20C系列电流继电器铭牌刻度值,为线圈___并联___时的额定值;DY-20C 系列电压继电器铭牌刻度值,为线圈__串联___时的额定值。
(串联,并联)2.电流继电器的返回系数为什么恒小于1?答:返回电流与启动电流的比值称为继电器的返回系数Kre,Kre=Ire/Iop,使继电器开始动作的电流叫启动电流Iop,动作之后,电流下降到某一点后接点复归,继电器返回到输出高电子,这一电流点叫返回电流Ire,为了保证动作后输出状态的稳定性和可靠性,过电流继电器和过量动作继电器的返回系数恒小于1。
在实际应用中,常常要求较高的返回系数,如0.85-0.9。
四、实验内容1.电流继电器的动作电流和返回电流测试表一过流继电器实验结果记录表2.低压继电器的动作电压和返回电压测试表二低压继电器实验结果记录表五、实验仪器设备六、问题与思考1.动作电流(压),返回电流(压)和返回系数的定义是什么?答:在电压继电器或者中间继电器的线圈上,从0逐步升压,到继电器动作,这个电压是动作电压,继电器动作后再逐步降低电压,到继电器动作返回,这个电压是返回电压,返回电流与启动电流的比值称为继电器的返回系数。
2.返回系数在设计继电保护装置中有何重要用途?答:确保保护选择性的重要指标,让不该动作的继电器及时返回,使正常运行的部分系统不被切除。
实验二电磁型时间继电器和中间继电器实验一、实验目的1.熟悉时间继电器和中间继电器的实际结构、工作原理和基本特性;2.掌握时间继电器和中间继电器的的测试和调整方法。
电力系统继电保护原理
2、偏移阻抗: ρ不能太大, 也不能太小。 一般ρ∈(10~20)%
jX
Zm
C Zset1
Z0
φ
set1
B
R
15
-ρZset1
圆1:全阻抗 圆2:方向阻抗 圆3:偏移特性阻抗
1 3 2
jX
C
Zset1
φ
set1
R
-ρZset1
B
A
16
(4)上抛圆特性
偏移圆特性的一种特例,即Zset1和Zset2都在第一 象限。 圆心: 1 ( Z set 1 Z set 2 ) 2 半径: 1 ( Z set 1 Z set 2 ) 2
26
4.多边形特性阻抗元件
动作方程:
Z m Z set 2 1 arg 90 2 Rset
27
28
5.复合特性阻抗元件
29
3.2.3
绝对值比较与相位比较的相互转换
ZB ≤ ZA
绝对值比较动作方程:
相位比较动作方程:
90 ≤ arg
o
ZC ZD
≤ 270 o
ZC = ZB + ZA
k’ k
Im
. U m Zm= .
Im
Zk’
Zk
jX
C
Zk
φk R
k短路: Zm.2= Zk
Zm.2= -Zk’ k’短路:
-Zk’
A
B
2
考虑: 1)线路φk有差异 2) CT,PT有误差 3)故障点过渡电阻 4)分布电容等 ∴动作特性扩大为一 1 个区域。 圆1:全阻抗圆 圆2:方向阻抗圆 圆3:偏移特性阻抗圆 A 或其它形状
o
相位比较:
电力系统继电保护课程实验指导书
电⼒系统继电保护课程实验指导书电⼒系统继电保护实验指导书王荆中编著2014年4⽉⽬录第⼀章学⽣实验守则 (1)第⼆章电⼒系统继电保护实验 (5)实验⼀电流、电压继电器实验............................ . (5)实验⼆功率⽅向继电器特性实验........................ . (9)实验三电流速断保护及电压联锁 (11)实验四⽅向性过流保护 (15)实验五电流保护综合实验........................... ...... .17 实验六⽅向阻抗继电器特性实验...................... . (21)实验七负序电压继电器特性测试................ . (25)实验⼋⾃动重合闸前加速保护实验 (27)实验九差动继电器特性实验 (31)实验⼗变压器保护综合实验 (33)附TQXDB-IB多功能继电保护实验台说明 (37)第⼀章学⽣实验守则实验时应保证⼈⾝安全,设备安全,爱护国家财产,培养科学作风。
为此,在本实验室应遵守下列守则:1、严守纪律,按时开始实验。
2、特性实验信号源24V电源和电压源出⼝严禁短接。
3、严禁带电拆线、接线。
4、⾮本次实验⽤的设备器材,未经教师许可不得动⽤。
5、实验中如有异常情况要保持镇定,⽴即停⽌实验,迅速切断电源,并向教师报告。
6、若⾃⼰增加实验内容,须事先征得教师同意。
7、保持实验室整洁、安静,实验室内不得吸烟、喧哗,乱扔杂物,实验台上严禁放书包,⾐物。
8、实验结束应先拆电源端接线,后拆除负荷端接线。
必须将设备关闭电源,整理好桌椅后征得指导⽼师同意再离开教室。
9、实验完成后须按时上交实验报告。
第⼆章电⼒系统继电保护实验实验⼀:电流、电压继电器实验⼀、实验⽬的1、了解常规电流、电压继电器的构造及⼯作原理,动作定值的⽅法;2、测试DL-31型电流继电器的动作值、返回值和返回系数。
3、测试DY-36型电压继电器的动作值、返回值和返回系数。
电力系统继电保护原理及动作解析
电力系统继电保护原理及动作解析电力系统是现代工业生产和人们生活中不可或缺的基础设施之一。
而继电保护作为电力系统中的重要组成部分,起着检测和保护电力设备的作用。
本文将从继电保护的原理和动作解析两个方面进行阐述,以便读者更好地理解和掌握这一关键技术。
一、继电保护的原理继电保护的原理是基于电力系统中的电流、电压等物理量的变化来实现的。
当电力设备发生故障或异常时,电流、电压等物理量会发生变化,继电保护系统通过对这些变化进行监测和判断,及时采取相应的保护措施,以防止故障进一步扩大,保护电力设备的安全运行。
二、继电保护的动作解析继电保护的动作解析是指继电保护系统对电力系统中的故障或异常进行检测和判断,并根据判断结果采取相应的保护动作。
继电保护的动作解析可以分为两个阶段:故障检测和动作执行。
1. 故障检测:继电保护系统通过监测电力系统中的电流、电压等物理量的变化,检测是否存在故障或异常。
当监测到电流、电压等物理量超过设定的阈值或与设定的规律不符时,继电保护系统就会判断存在故障或异常。
2. 动作执行:一旦继电保护系统检测到故障或异常,就会执行相应的保护动作。
这些保护动作可以是切断电路、投入备用电源、改变电力系统的运行方式等。
通过执行这些保护动作,继电保护系统能够防止故障扩大,保护电力设备的安全运行。
继电保护的动作解析是一个复杂的过程,需要继电保护设备具备高度的灵敏性和可靠性。
同时,继电保护的动作解析还需要考虑电力系统的稳定性和可靠性等因素,以确保继电保护系统的正确运行。
继电保护的原理和动作解析是电力系统中非常重要的技术。
它通过对电流、电压等物理量的监测和判断,及时采取保护措施,保护电力设备的安全运行。
继电保护的动作解析是一个复杂而关键的过程,需要继电保护设备具备高度的可靠性和灵敏性。
只有通过科学合理的继电保护原理和动作解析,才能确保电力系统的安全稳定运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统继电保护原理实验指导书任丽苗王思华编写自动化学院2008年10月前言继电保护是一门理论和实践并重的学科。
为更好地掌握及了解继电保护的工作原理及动作性能,既需要运用所学的理论知识对系统故障情况和保护动作性能进行分析,还需要对各种继电保护的动作原理及性能进行实验。
本实验指导书在03年编写的《TKDZB-1型电力自动化及继电保护装置实验指导书》基础上,整理了专业教研室的教师们利用TKDZB-1型电力自动化及继电保护实验装置所做的一些实验及相关资料,并总结近几年学生做实验的实际情况,改编而成的。
TKDZB-1型电力自动化及继电保护实验装置是一套能够对继电保护系统中各种继电器和多种保护电路进行试验的装置,利用此装置能够掌握各种常规继电器、特殊继电器以及由它们所组成的各种保护电路、信号回路的结构、工作原理、电气特性、动作过程。
另外,利用TKDZB-1型电力自动化及继电保护实验装置,同学们还可以自行设计模拟一些较复杂的保护线路。
通过利用TKDZB-1型电力自动化及继电保护实验装置对学生进行实验训练,不但可以加深他们对继电保护工作原理的理解,提高同学们的实践能力,同时还为创新能力的培养提供了条件。
第一章实验的基本要求和安全操作规程1-1 实验的基本要求实验课的目的在于培养学生掌握基本的实验方法与操作技能。
培养学生学会根据实验目的,实验内容及实验设备拟定实验线路,选择所需仪表,确定实验步骤,测取所需数据,进行分析研究,得出必要结论,从而完成实验报告。
在整个实验过程中,必须集中精力,及时认真做好实验。
现按实验过程提出下列基本要求。
一、实验前的准备实验前应复习课本有关章节,认真研读实验指导书,了解实验目的、项目、方法与步骤,明确实验过程中应注意的问题(有些内容可到实验室对照实验预习,如熟悉组件的编号,使用及其规定值等),并按照实验项目准备记录抄表等。
实验前应写好预习报告,经指导教师检查认为确实作好了实验前的准备,方可开始作实验。
认真作好实验前的准备工作,对于培养同学独立工作能力,提高实验质量和保护实验设备都是很重要的。
二、实验的进行1、建立小组,合理分工每次实验都以小组为单位进行,每组由2~3人组成,实验进行中的接线、调节负载、保持电压或电流、记录数据等工作每人应有明确的分工,以保证实验操作协调,记录数据准确可靠。
2、选择组件和仪表实验前先熟悉该次实验所用的组件,选择仪表量程,然后依次排列组件和仪表便于测取数据。
3、按图接线根据实验线路图及所选组件、仪表、按图接线,线路力求简单明了,按接线原则是先接串联主回路,再接并联支路。
为查找线路方便,每路可用相同颜色的导线或插头。
4、开启电源,观察电源指示在正式实验开始之前,先熟悉电源仪表指示。
然后按交直流电源操作说明规范启动电源,观察所有仪表是否正常(如3个指示仪表是否一致、是否超满量程等)。
如果出现异常,应立即切断电源,并排除故障;如果一切正常,即可正式开始实验。
5、完成实验内容预习时对每次实验的试验方法、步骤及所需测数据的大小作到心中有数。
正式实验时,根据实验步骤逐次测取数据。
6、认真负责,实验有始有终实验完毕,须将数据交指导教师审阅。
经指导教师认可后,才允许拆线并把实验所用的组件、导线及仪器等物品整理好。
三、实验报告实验报告是根据实测数据和在实验中观察和发现的问题,经过自己分析研究或分析讨论后写出的心得体会。
实验报告要简明扼要、字迹清楚、图表整洁、结论明确。
实验报告包括以下内容:1) 实验名称、专业班级、学号、姓名、实验日期。
2) 列出实验中所用组件的名称及编号。
3) 列出实验项目并绘出实验时所用的线路图,并注明仪表量程,电阻器阻值等。
4) 数据的整理和计算5) 按记录及计算的数据用坐标纸画出曲线,图纸尺寸不小于8cm×8cm,曲线要用曲线尺或曲线板连成光滑曲线,不在曲线上的点仍按实际数据标出。
6) 根据数据和曲线进行计算和分析,说明实验结果与理论是否符合,可对某些问题提出一些自己的见解并最后写出结论。
实验报告应写在一定规格的报告纸上,保持整洁。
7) 每次实验每人独立完成一份报告,按时送交指导教师批阅。
1-2 TKDZB-1型实验装置电源操作规程为了确保实验时人身安全,TKDZB-1型实验装置全部采用封闭挂件的形式,为了确保实验设备安全,在实验过程中要做到:1)接线或拆线都必须在切断电源的情况下进行; 2) 学生独立完成接线或改接线路后必须同组同学再认真理一遍接线电路后方可接通电源。
实验中如发生事故,应立即切断电源,经查清问题和妥善处理故障后,才能继续进行实验。
而所有的电源操作必须严格按照下述电源操作规程操作。
说明:实验中开启及关闭交流或直流电源均在控制屏上操作一、开启三相交流电源的步骤为:1)开启电源前,要检查控制屏下面“直流操作电源”的“可调电压输出”开关(右下角)及“固定电压输出”开关(左下角)都须在“关”断的位置。
控制屏左侧面上安装的三相自耦调压器必须调在零位,即必须将调节手柄沿逆时针方向旋转到底。
2)无误后开启“电源总开关”,“停止”按钮指示灯亮,表示实验装置的进线已接通电源,但还不能输出电压。
此时在电源输出端进行实验电路接线操作是安全的。
3)按下“启动”按钮,“启动”按钮指示灯亮,只要调节自耦调压器的手柄,在输出口U、V、W处可得到0~450V的线电压输出,并可由控制屏上方的三只交流电压表指示。
当屏上的“电压指示切换”开关拨向“三相电网输入电压”时,三只电压表指示三相电网进线的线电压值;当“指示切换”开关拨向“三相调压输出电压”时,三表指示三相调压输出之值。
4)实验中如果需要改接线路,必须按下“停止”按钮以切断交流电源,保证实验操作的安全。
实验完毕,须将自耦调压器回到零位,将“直流操作电源”的两个电源开关置于“关”断位置,最后关断“电源总开关”。
二、开启单相交流电源的步骤为:1)开启电源前,检查控制屏下面“单相自耦调压器”电源开关须在“关”位置,调压器必须调至零位。
2)打开“电源总开关”,按下“启动”按钮,并将“单相自耦调压器”开关拨到“开”位置,通过手动调节,在输出口a、x两端,可获得所需的单相交流电压。
3)实验中如果需要改接线路,必须将开关拨到“关”位置,保证操作安全。
实验完毕,将调压器旋钮调回到零位,并把“直流操作电源”的开关拨回“关”位置,最后,还需关断“电源总开关”。
三、开启直流操作电源的步骤为:1)在交流电源启动后,接通“固定直流电压输出”开关,可获得220V、1.5A不可调的直流电压输出。
接通“可调直流电压输出”开关,可获得40~220V、3A可调节的直流电压输出。
固定电压及可调电压值可由可控制屏下方中间的直流电压表指示。
当将该表下方的“电压指示切换”开关拨向“可调电压”时,指示可调电源电压的输出值;当将它拨向“固定电压”时,指示固定电源电压的输出值。
2)“可调直流电源”是采用脉宽调制型开关稳压电源,输入端接有滤波用的大电容,为了不使过大的充电电流损坏电源电路,采用了限流延时保护电路。
所以本电源在开机时,约需有3~4秒钟的延时后,方进入正常的输出。
3)可调直流稳压输出设有过压和过流保护告警指示电路。
当输出电压调得过高时(超过240V),会自动切断电路,使输出为零,并告警指示。
只有将电压调低(约240V以下),并按“过压复位”按钮后,方能自动恢复正常输出。
当负载电流过大(即负载电阻过小),超过3A时,也会自动切断电路,并告警指示,此时若要恢复输出,只要调小负载电流(即调大负载电阻)即可。
有时候在开机时出现过流告警,这说明在开机时负载电流太大,需要降低负载电流。
若在空载下开机,发生过流告警,这是由于气温或湿度明显变化,造成光电耦合器TIL117漏电使过流保护起控点改变所致,一般经过空载开机(即开启交流电源后,再开启“可调直流电源”开关)预热几十分钟,即可停止告警,恢复正常。
第二章基础实验实验一继电器特性实验一、实验目的1、熟悉DL型电流继电器和DS-20型时间继电器的实际结构、工作原理、基本特性。
2、掌握动作电流值、时限整定和试验调整方法。
二、原理说明1、电流继电器DL-20C系列电流继电器用于反映发电机、变压器及输电线路短路和过负荷的继电保护装置中。
过电流继电器:当电流升高至整定值时,继电器立即动作,其常开触点闭合,常闭触点断开。
继电器的铭牌刻度值是按电流继电器两线圈串联,电压继电器两线圈并联时标注的指示值等于整定值;若上述二继电器两线圈分别作并联和串联时,则整定值为指示值的2倍。
2、时间继电器DS系列时间继电器用于各种继电保护和自动控制线路中,使被控制元件按时限控制原则进行动作。
DS-20系列时间继电器是带有延时机构的吸入式电磁继电器,其中DS-21~DS-24是内附热稳定限流电阻型时间继电器(线圈适于短时工作),DS-21/C~DS-24/C是外附热稳定限流电阻型时间继电器(线圈适于长时工作)。
DS-25~28是交流时间继电器。
该继电器具有一付瞬时转换触点,一付滑动主触点和一付终止主触点。
当加电压于线圈两端时,衔铁克服塔形弹簧的反作用力被吸入,瞬时常开触点闭合,常闭触点断开,同时延时机构开始启动,先闭合滑动常开主触点,再延时后闭合终止常开主触点,从而得到所需延时,当线圈断电时,在塔形弹簧作用下,使衔铁和延时机构立刻返回原位。
从电压加于线圈的瞬间起到延时闭合常开主触点上,这段时间就是继电器的延时时间,可通过整定螺钉来移动静接点位置进行调整,并由螺钉下的指针在刻度盘上指示要设定的时限。
三、实验设备四、实验内容及步骤1、电流继电器整定点的动作值、返回值及返回系数测试电流继电器特性测试实验接线图注2如图1-1所示。
(1)电流继电器的动作电流和返回电流测试a、选择ZB11继电器组件中的DL-24C/6型电流继电器,确定动作值并进行初步整定。
选2.4A和4.8A为实验整定值。
b、根据整定值要求对继电器线圈确定接线方式(串联或并联)本实验整定值2.4A采用是串联的接线方式,4.8A采用并联的接线方式。
c、按图1-1接线,检查无误后,调节自耦调压器及变阻器,增大输出电流,使继电器动作。
读取能使继电器动作的最小电流值,即使常开触点由断开变成闭表示。
合的最小电流,记入表1-1;动作电流用Idj继电器动作后,反向调节自耦调压器及变阻器降低输出电流,使触点开始返注1:只要将数字电秒表的Ⅰ、Ⅲ端连接到一起,数字电秒表即开始计时;一旦将Ⅱ端与Ⅰ、Ⅲ端连到一起即停止计时。
注2:接线时,分支点可通过将连接线的端子进行重叠来得到。
回至原来位置时的最大电流称为返回电流,用I fj 表示,记录下来并计算返回系数;继电器的返回系数是返回电流与动作电流的比值,用K f 表示。
K f =djfj I I 过电流继电器的返回系数在0.85-0.9之间。