2014年初三中考模拟测试题数学试卷

合集下载

2014年九年级数学中考模拟调研试卷及答案

2014年九年级数学中考模拟调研试卷及答案

中考模拟数学试题满分:100分 考试时间:120分钟 2014.4友情提示:亲爱的同学,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行。

预祝你取得满意的成绩!1. 代数式12+x 中x 的取值范围是( )A .x ≥-21B . x ≥21C . x >21D . x >-212.在下列图形中,即是轴对称图形,又是中心对称图形的是( )3.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是()A. 211B. 1.4C. 3D. 2 4.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁5.如图,是小明用八块小正方体搭的积木,该几何体的俯视图是 ( ).6.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式20132+-m m 的值为( ) A .2014 B .2013 C .2012 D .20117.在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足V•m =ρ,它的图象如图2所示,则该气体的质量m 为( )A .1.4kgB .5kgC .7kg.D .0.28kg8.点A 、B 、C 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积这和是 ( ) A .1 B .3 C .3(1)m - D .3(2)2m -轮物9.一个滑轮起重装置,如图4所示,滑轮的半径是10cm ,当重物上升10cm 时,滑轮的一条半径OA ,绕轴心O 按逆时针方向旋转的角度约为(假定设绳索与滑轮之间没有滑动,∏取3.14,结果精确到10)( )A. 1150B. 600C. 570D. 2910.为了求20123222221+++++ 的值,可令S =20123222221++++= ,则2S =201343222222+++++ ,因此2S-S =122013-,所以20123222221+++++ =122013-仿照以上推理计算出20123255551+++++ 的值是( )A.152012-B.152013- C.152012-D.4152013-第7题图 第8题图 第9题图3)A .B .C .D .班级: 姓名: 考号:二.填空题(细心填一填,试试自己的身手,每小题3分,共15分)11.分解因式:a a a 4423+-= .12.某校参加中学生足球校级联赛的队员的年龄如下(单位:岁):13,14,16,15,14,15,15,15,16,14,则这些队员年龄的众数是______. 13. 某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______.14.如图,一块等腰直角的三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到A B C ''的位置,使A C B ',,三点共线,那么旋转角度的大小为 .15.已知:如图12,在直角坐标系中,O 为坐标原点,四边形OABCA (10,0),C (0,4),点D是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标为 . 三、解答题(共55分,解答应写出文字说明、证明过程或推演步骤)16.(本题51012sin 45(2)3-⎛⎫+-π- ⎪⎝⎭.17.(本题5分)先化简式子(x x x -+21-122+-x x x )÷x 1,然后请选取一个你最喜欢的x 值代入求出这个式子的值.18. (本题8分)如图,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在格点上,请按要求完成下列各题:(1) 用签字笔...画AD ∥BC (D 为格点),连接CD ; (2) 线段CD 的长为 ;(3) 请你在ACD △的三个内角中任选一个锐角..,若你所选的锐角是 ,则它所对应的正弦函数值是 。

2014年初三中考热身考试数学试卷参考答案

2014年初三中考热身考试数学试卷参考答案

2014年初三中考热身考试数学试卷参考答案一、选择题(每题3分,共24分)1.C.2.B.3.A.4.B. 5.C.6.B.7.C 8.A.二、填空题(每题3分,共30分)9. 2 .10.m(x-1)2;11.1;12.2;13.165 °;14.(9,0).15.14.16.65π.17.2k≤;18.8.3三、解答题:(本大题共96分)19.(8分)(1)8;(2)x=-1,0。

20.(8分)22.12aa+=-21.(8分)(1)2012年农村居民和城镇居民人均可支配收入1.6和3.6万元;(3) 2013年.22.(1)P=14;(2)甲或丙;23.(1)作任意弦的垂直平分线;(2)②BA、CD交于G,AC、BD交于H,作GH交圆于M、N。

24.深度约3.5米;25. (1)(1)y=-2x2+60x+2000;(0<x≤20且x为整数)(2)当x=15时,y有最大值2450;(3)当每件商品的售价为65元时,每个月的利润恰为2250元.26.(10分)(1)S1+S2=12S.(2)S1+S2=27;27.(1)成立;(2)不成立,∠AFC=∠AC B-∠DAC;(3)∠AFC+∠ACB+∠DAC=1800.28.(1)P43 (,); 55t t-(2)①当52t≤时,S=212;25t当51023t≤时,S=6;5t当1043t≤时,S=4。

②当4<t<5时,不可能;当t=5时,∠DPE=∠DBE=90°,⊿PDE为直角三角形;若∠PDE=90°,则⊿PQD∽⊿DME,∴PQ/DQ=DM/ME,∴80513,9t±=805139+(舍去);若∠PED=90°,则⊿PNE∽⊿EMD,∴PN/NE=EM/MD,无实数根,综上所述,t=5或80-513.9t=第 1 页共1 页。

2014届九年级数学中考一模模拟试卷及答案

2014届九年级数学中考一模模拟试卷及答案

DBCA 2014年中考调研测试(一)数 学 试 卷考生须知:1.本试卷满分为120分,考试时间为120分钟。

2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效。

4.选择题使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔记清楚。

5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。

第Ⅰ卷 选择题(共30分)(涂卡)一、选择题(每小题3分,共30分) 1.54的相反数是( ) A. 45 B. 45- C. 54 D. 54-2.下列计算正确的是( )A .34x x x +=B .325()x x =C .633x x x ÷=D .2532x x x =⋅3.下列图形中既是轴对称图形又是中心对称图形的个数是( )A. 1个B. 2个C. 3个D. 4个 4.图1所示的几何体主视图是( )图1 A. B .C .D .5.将抛物线2)2(3-=x y 向左平移3个单位得到的抛物线的解析式是( ) A.2)5(3-=x y B.3)2(32+-=x y C.2)1(3+=x y D.3)2(32--=x y6.一个不透明的袋子里有5个红球和3个黄球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是黄球的概率是( )A.15 B. 31 C. 38 D. 587.已知反比例数3k y x+=的图象在每一象限内y 随x 的增大而增大,则k 的取值范围是( )A. k>3B. k<-3C. k>-3D. k<38.如图,Rt △ABC 中,∠ACB=90º,CD ⊥AB ,BC=3,AC=4, tan ∠BCD 等于( )A.34 B. 43 C. 35 D. 459.如图,矩形ABCD 中,两条对角线相交于点O ,折叠矩形,第8题图 EOA DE DACBAFEACBDx y (时)(千米)4207CO A B ED 使顶点D 与对角线交点O 重合,折痕为CE ,已知△CDE 的 周长是10cm,则矩形ABCD 的周长为( )A. 15cmB. 18cmC. 19cmD. 20cm10.快车与慢车分别从相距420千米的甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地.快慢两车距各自出发地的路程y (千米)与所用的时间x (时)的关系如图所示,下列说法正确的有 ( )①快车返回的速度为140千米/时 ②慢车的速度为70千米/时 ③出发314小时时,快慢两车距各自出发地的路程相等④快慢两车出发错误!未找到引用源。

【初中数学】2014年山东省中考数学模拟试题 人教版

【初中数学】2014年山东省中考数学模拟试题 人教版

2014年山东省中考数学模拟试题第I 卷(选择题 共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分) 1.下列运算正确的是( )2=±B.2142-⎛⎫=- ⎪⎝⎭2=-D.|2|2--=2.下列运算正确的是( )A.3362a a a +=B.358()()a a a --=-C.2363(2)424a b a a b -=-D.221114416339a b a b b a ⎛⎫⎛⎫---=-⎪⎪⎝⎭⎝⎭3.若一个圆锥的母线长是它底面半径的3倍,则它的侧面展开图的圆心角等于( ) A.120B.135C.150D.1804.将(21)(2)1y x x =-++化成()y a x m n 2=++的形式为( )A.23252416y x ⎛⎫=+- ⎪⎝⎭B.2317248y x ⎛⎫=-- ⎪⎝⎭C.2317248y x ⎛⎫=+- ⎪⎝⎭D.2317248y x ⎛⎫=++ ⎪⎝⎭5.计算211111a a ⎛⎫⎛⎫-- ⎪⎪-⎝⎭⎝⎭的结果为( ) A.1a a +-B.1a a- C.1aa- D.11a a+- 6.如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若AC =AB =tan BCD ∠的值为( )7.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,ACB D(第6题)A BCFDE(第7题)且14CF CD =,下列结论:①30BAE ∠= ,②ABE AEF △∽△,③AE EF ⊥,④ADF ECF △∽△.其中正确的个数为( )A.1B.2C.3D.48.如图,ABC △是等腰直角三角形,且90ACB ∠= ,曲线CDEF 叫做“等腰直角三角形的渐开线”,其中 CD, DE , EF , 的圆心依次按A B C ,,循环.如果1AC =,那么由曲线CDEF 和线段CF 围成图形的面积为( )A.(12π4+B.(9π+24+C.(12π24++D.(9π4+9.已知三点111()P x y ,,222()P x y ,,3(12)P -,都在反比例函数ky x=的图象上,若10x <,20x >,则下列式子正确的是( )A.120y y <<B.120y y <<C.120y y >> D.120y y >>10.半径分别为13和15的两圆相交,且公共弦长为24,则两圆的圆心距为( ) A.546或14 B.654或4 C.14 D.4或1411.若1x ,2x 是方程2240x x --=的两个不相等的实数根,则代数式22112223x x x -++的值是( )A.19B.15C.11D.3E (第8题)P(第12题)12.如图,四边形A B C D 是边长为2c m 的正方形,动点P 在ABCD 的边上沿A B C D →→→的路径以1cm/s 的速度运动(点P 不与A D ,重合).在这个运动过程中,APD △的面积2(cm )S 随时间()t s 的变化关系用图象表示,正确的为( )注意事项:1.答卷前将密封线内的项目填写清楚.2.第II 卷共8页,用蓝黑钢笔或圆珠笔直接答在试卷上.二、填空题(本大题共7小题,满分21分.只要求填写最后结果,每小题填对得3分)13.方程(2)(3)20x x ++=的解是 .14.如图,ABE △和ACD △是ABC △分别沿着AB AC ,边翻折180 形成的,若150BAC ∠= ,则θ∠的度数是 .15.若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是 .16.如图,M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴相切于点C ,则圆心M 的坐标是 .17.如图,图①,图②,图③,……是用围棋棋子摆成的一列具有一定规律的“山”字.则第n 个“山”字中的棋子个数是 .……图①图②图③图④(第17题)CDA EBθ(第14题)x(第16题)ABC D(第18题)A . BCD18.如图,一游人由山脚A 沿坡角为30 的山坡AB 行走600m ,到达一个景点B ,再由B 沿山坡BC 行走200m 到达山顶C ,若在山顶C 处观测到景点B 的俯角为45 ,则山高CD 等于 (结果用根号表示)19.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文x y z ,,对应密文23343x y x y z ++,,.例如:明文1,2,3对应密文8,11,9.当接收方收到密文12,17,27时,则解密得到的明文为 .三、解答题(本大题共7小题,满分63分.解答应写出必要的文字说明、证明过程或推演步骤) 20.(本小题满分6分)某中学为了解毕业年级800名学生每学期参加社会实践活动的时间,随机对该年级60名学生每学期参加社会实践活动的时间进行了统计,结果如下表:(1)补全右面的频率分布表;(2)请你估算这所学校该年级的学生中,每学期参加社会实践活动的时间大于7天的约有多少人?21.(本小题满分8分)如图,在梯形ABCD 中,AD BC ∥,对角线BD 平分ABC ∠,BAD ∠的平分线AE 交BC 于E F G ,,分别是AB AD ,的中点. (1)求证:EF EG =;(2)当AB 与EC 满足怎样的数量关系时,EG CD ∥?并说明理由.B E C DG AF(第21题)22.(本小题满分9分)某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价比第一次提高了1元,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?23.(本小题满分9分)如图,在ABC △中,AB AC =,以AB 为直径的圆O 交BC 于点D ,交AC 于点E ,过点D 作DF AC ⊥,垂足为F .(1)求证:DF 为O 的切线;(2)若过A 点且与BC 平行的直线交BE 的延长线于G 点,连结CG .当ABC △是等边三角形时,求AGC ∠的度数.24.(本小题满分9分)市园林处为了对一段公路进行绿化,计划购买A B ,两种风景树共900棵.A B ,两种树的相关信息如下表:若购买A 种树x 棵,购树所需的总费用为y 元. (1)求y 与x 之间的函数关系式;(2)若购树的总费用82000元,则购A 种树不少于多少棵?(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A B ,两种树各多少棵?此时最低费用为多少?25.(本小题满分10分)如图,在OAB △中,90B ∠= ,30BOA ∠=,4OA =,将OAB △绕点O 按逆时针方向旋转至OA B ''△,C 点的坐标为(0,4).(1)求A '点的坐标;(2)求过C ,A ',A 三点的抛物线2y ax bx c =++的解析式; (3)在(2)中的抛物线上是否存在点P ,使以O A P ,,为顶G(第23题)点的三角形是等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由. 26.(本小题满分12分) 如图,在ABC △中,90BAC ∠= ,AD 是BC 边上的高,E 是BC 边上的一个动点(不与B C ,重合),EF AB ⊥,EG AC ⊥,垂足分别为F G ,.(1)求证:EG CGAD CD=; (2)FD 与DG 是否垂直?若垂直,请给出证明;若不垂直,请说明理由; (3)当AB AC =时,FDG △为等腰直角三角形吗?并说明理由.B (第26题)[参考答案]13.12x =,27x =- 14.6015.4a >16.(54),17.52n +18.(300+19.329,, 三、解答题(本大题共7小题,满分63分)20.(本小题满分6分) 解:(1)21,0,35;15,0,25 ··················· 4分 (2)4280056060⨯= ············ 6分 21.(本小题满分8分) (1)证明:AD BC ∥ DBC ADB ∴∠=∠ 又ABD DBC ∠=∠ABD ADB ∴∠=∠AB AD ∴= ················ 2分又12AF AB = ,12AG AD =AF AG ∴= ······························ 3分又BAE DAE ∠=∠AE AE =AFE AGE ∴△≌△EF EG ∴= ······························ 5分 (2)当2AB EC =时,EG CD ∥ ···················· 6分 2AB EC = 2AD EC ∴=12GD AD EC ∴== ·························· 7分又GD EC ∥∴四边形GECD 是平行四边形 EG CD ∴∥ ······························ 8分22.(本小题满分9分) 解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:12001500101x x +=+ ··························· 4分 去分母,整理得2291200x x -+=解之得:15x =,224x =BECDGA F (第21题)经检验15x =,224x =都是原方程的解每本书的定价为7元∴只取5x = ······························6分 所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元) ······ 8分 所以两次共赚钱48040520+=(元)答:该老板两次售书总体上是赚钱了,共赚了520元. ············ 9分 23.(本小题满分9分) (1)证明:连结AD OD ,AB 是O 的直径AD BC ∴⊥ ················ 2分ABC △是等腰三角形BD DC ∴=又AO BO = OD AC ∴∥DF AC ⊥ ················ 4分OF OD ∴⊥DF OD ∴⊥DF ∴是O 的切线··························· 5分 (2)AB 是O 的直径 BG AC ∴⊥ABC △是等边三角形 BG ∴是AC 的垂直平分线GA GC ∴= ······························ 7分又AG BC ∥,60ACB ∠=60CAG ACB ∴∠=∠=ACG ∴△是等边三角形60AGC ∴∠= ···························· 9分24.(本小题满分9分)解:(1)80100(900)y x x =+-2090000x =-+ ······················· 3分 (2)由题意得:209000082000x -+≤ 45004100x -+≤G(第23题)400x ≥即购A 种树不少于400棵 ························ 5分 (3)92%98%(900)94%900x x +-⨯≥92989009894900x x +⨯-⨯≥ 64900x --⨯≥600x ≤ ······························· 7分 2090000y x =-+ 随x 的增大而减小∴当600x =时,购树费用最低为206009000078000y =-⨯+=(元)当600x =时,900300x -=∴此时应购A 种树600棵,B 种树300棵 ·················9分 25.(本小题满分10分) 解:(1)过点A '作A D '垂直于x 轴,垂足为D 则四边形OB A D ''为矩形 在A DO '△中,A D OA ''=sin 4sin 60A OD '∠=⨯= 2OD A B AB ''===∴点A '的坐标为(2 ············ 3分 (2)(04)C ,在抛物线上,4c ∴=24y ax bx ∴=++(40)A ,,(2A ',在抛物线24y ax bx =++上16440424a b a b ++=⎧⎪∴⎨++=⎪⎩,·························· 5分解之得3a b ⎧=⎪⎨⎪=⎩∴所求解析式为23)4y x =++. ··············7分 (3)①若以点O 为直角顶点,由于4OC OA ==,点C 在抛物线上,则点(04)C ,为满足条件的点.②若以点A 为直角顶点,则使PAO △为等腰直角三角形的点P 的坐标应为(44),或(44)-,,经计算知;此两点不在抛物线上.③若以点P 为直角顶点,则使PAO △为等腰直角三角形的点P 的坐标应为(22),或(22)-,,经计算知;此两点也不在抛物线上.综上述在抛物线上只有一点(04)P ,使OAP △为等腰直角三角形. ······ 10分 26.(本小题满分12分)(1)证明:在ADC △和EGC △中Rt ADC EGC ∠=∠=∠ ,C C ∠=∠ ADC EGC ∴△∽△ EG CGAD CD∴= ················· 3分 (2)FD 与DG 垂直 ·············· 4分证明如下:在四边形AFEG 中,90FAG AFE AGE ∠=∠=∠=∴四边形AFEG 为矩形AF EG ∴=由(1)知EG CGAD CD= AF CG AD CD∴= ····························· 6分 ABC △为直角三角形,AD BC ⊥ FAD C ∴∠=∠ AFD CGD ∴△∽△ ADF CDG ∴∠=∠ ··························· 8分 又90CDG ADG ∠+∠=90ADF ADG ∴∠+∠=即90FDG ∠=FD DG ∴⊥ ····························· 10分 (3)当AD AC =时,FDG △为等腰直角三角形,理由如下:AB AC = ,90BAC ∠= AD DC ∴=由(2)知:AFD CGD △∽△ 1FD AD GD DC ∴== FD DG ∴=又90FDG ∠=B (第26题)FDG ∴△FDG ∴△为等腰直角三角形 ················· 12分。

2014-2015学年初三中考数学模拟试卷

2014-2015学年初三中考数学模拟试卷

初三数学模拟试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.下列计算正确的是……………………………………………………………( )A .1)2(0-=-B .823-=- C .5)3(2-=--- D .632-=-2.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( )A .1-<aB .1->aC .0<bD .1>b3. 如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 交于一点P ,若∠A =50°,则∠BPC 的度数是……………………………………… ……( ) A .150° B .130° C .120° D .100° 4. 下列函数中,y 随x 的增大而减小的函数是……………………………………( )A .y =x 3-B .y =4xC .y =x2-D .y =2x - 5. 在下列图形中,是中心..对称图形的是………………………………………… ()6. 如图,⊙O 1和⊙O 2内切,它们的半径分别为3和1,过O 1作⊙O 2的切线,切点为A ,则O 1A 的长为……………………………………………………………………( )A .2B .4C D7. 已知圆锥形模具的母线长和底面圆的直径均是10cm ,求得这个模具的侧面积是( )A .50πcm 2B .75πcm 2C .100πcm 2D .150πcm 2 8. 二次函数y =ax 2+bx+c 的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是( )A.ab <0 B .bc <0 C.a+b+c >0 D.a-b+c <0A B a b -1 0 1 (第2题图)DA B E (第3题图) C PA. B. D.(第8题图) (第6题图)9、 丽丽的文具盒中有两支水彩笔,一支红色的,一支蓝色的;三支蜡笔,分别是黄色的,绿色的,红色的。

江苏省泰州市高港区2014年中考数学一模试题

江苏省泰州市高港区2014年中考数学一模试题

高港区九年级第一次模拟考试数学试题(考试时间:120分钟 满分150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题纸上,答案写在试卷上无效.第一部分 选择题(共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.−5的绝对值是 ( ▲ ) A. 5 B. −5 C.51 D. 51- 2.下列计算正确的是 ( ▲ )A.5)5(2-=- B.16412=⎪⎭⎫⎝⎛--C.236x x x =÷ D.()523x x =3.已知1x =是方程220x bx +-=的一个根,则方程的另一个根是 ( ▲ ) A.1B.2C. 2-D. 1-4.下列标志图中,既是轴对称图形,又是中心对称图形的是 ( ▲ )A B C D5. 如图所示的几何体的左视图是 ( ▲ )A B C D6. 在一副扑克牌中,洗好,随意抽取一张,下列说法错误的是 ( ▲ )A .抽到大王的概率与抽到红桃3的概率相同B .抽到黑桃A 的概率比抽到大王的概率大C .抽到A 的概率与抽到K 的概率相同D .抽到A 的概率比抽到小王的概率大第二部分 非选择题(共132分)二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接写在答题卡相应位置.......上) 7.-27的立方根是 ▲ .8.计算:223a a ⋅= ▲ .9.命题“同位角相等”是 ▲ 命题(填“真”或“假”).10.2014年江苏省泰州市经信委对重点工业投资储备项目调查摸底, 工业总投资314.86亿元, 314.86亿这个数可用科学记数法表示为 ▲ . 11.不等式组⎩⎨⎧>+>-.36;02x x x 的解集是 ▲ .13.对角线 ▲ 的平行四边形是矩形.14.图中S □ABCD =18cm 2,P 为BC 边上任意一点,M 为AP 上的一个点,且MP AM 21=,图中阴影部分面积是 ▲ cm 2.15.如图△ABD 与△AEC 都是等边三角形,AB ≠AC ,下列结论中:①BE =DC ;②∠BOD =60°;③△BOD ≌△COE .正确的序号是 ▲ .16.如图,直线y =-x +b 与双曲线xy 1=(x >0)交于A 、B 两点,与x 轴、y 轴分别交于E 、F 两点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,当b= ▲ 时,△ACE 、△BDF 与△ABO 面积的和等于△EFO 面积的43. 三、解答题(本大题共10小题,满分102分。

2014年九年级数学中考一模预测试卷 及答案

高中招生模拟考试数学试题一.仔细选一选 (本题有10个小题, 每小题3分, 共30分) 1.下列各数中,倒数为– 2的数是( )A. 2B. – 2C. 21D.21- 2.下列各式中,错误..的是( ) A. 3)3(2=-B.3=-C. 3)3(2=D. 3=-4. 图象经过点(2,1)的反比例函数是( )A. 2y x =-B. 2y x =C. 12y x= D. 2y x =5.将一块含60°角的三角板与一无刻度的直尺按如图所示摆放,如果三角板的斜边与直尺的长边平行,则图中1∠等于( )A .30°B .35°C .45°D .60°6. 心率即心脏在一定时间内跳动的次数. 某次九年级体检对5名同学的心率测试结果如下(次/分):76,72,74,76,77. 则下列说法错误..的是( ) A .这组测试结果的众数是76 B. 这组测试结果的平均数75 C. 这组测试结果的中位数是74 D. 这组测试结果的方差是2.3 7. 如图是某几何体的三视图,则该几何体的表面积为( )A. 31224+B. 31216+C. 3624+D. 3616+8. 不等式组⎪⎩⎪⎨⎧>+<--x x a x x 324)3(2无解,则a 的取值范围是( )A.2<aB.a ≤2C. 2>aD. a ≥2 9. 已知⊙O 半径为3cm ,下列与⊙O 不是..等圆的是( ) A. ⊙1O 中,120°圆心角所对弦长为 B. ⊙2O 中,45°圆周角所对弦长为 C. ⊙3O 中,90°圆周角所对弧长为32πcm D. ⊙4O 中,圆心角为60°的扇形面积为32π2cm 10.如图,射线AM 、BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交第7题第5题BE 、BN 于点F 、C ,过点C 作AM 的垂线CD ,垂足为D . 若CD =CF ,则=ADAE( ) A. 215- B. 412+ C. 21 D.413+二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 11.当3=x 时,分式bx ax +-没有意义,则=b . 12.如图,铁管CD 固定在墙角,BC =5米,∠BCD =55°,则顶端D 的高度为 .13. 函数b ax y +=的图象如图,则方程0=+b ax 的解为 ;不等式0<b ax +≤2的解集为 .14. 函数y = 2x 与函数y =x2的图象相交于A ,C 两点,AB 垂直于x 轴于点B ,则△ABC 的面积为 .15. 矩形纸片ABCD 中,AD =15cm ,AB =10cm ,点P 、Q 分别为AB 、CD 的中点. 如图,将这张纸片沿AE 折叠,使点B 与点G 重合,则AGE ∆的外接圆的面积为 .16. 如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B(4,2),一次函数y =kx -1的图象平分它的面积.若关于x 的函数k m x k m mx y +++-=2)3(2的图象与坐标轴只有两个交点,则m 的值为 .三. 全面答一答 (本题有7个小题, 共66分)17. (本小题满分6分) 梯形ABCD 中,AD ∥BC ,请用尺规作图并解决问题. ⑴作AB 中点E ,连接DE 并延长交射线CB 于点F ,在DF 的 下方作FDG ∠=ADE ∠,边DG 交BC 于点G ,连接EG ; ⑵试判断EG 与DF 的位置关系,并说明理由.第13题第12题第15题第16题18.(本小题满分8分)一个数的算术平方根为62-m ,此数的平方根为)2(-±m ,求这个数.19. (本小题满分8分)甲、乙两人每次都从五个数–2,–1,0,1,2中任取一个,分别记作x 、y .在平面直角坐标系中有一圆心在原点、半径为2的圆. ⑴能得到多少个不同的数组(x ,y )?⑵若把⑴中得到的数组作为点P 的坐标 (x ,y ), 则点P 落在圆内的概率是多少?20. (本小题满分10分)如图,点A 的坐标为)0,1(-,点B 在直线42-=x y 上运动.⑴若点B 的坐标是)2,1(-,把直线AB 向上平移m 个单位后,与直线42-=x y 的交点在第一象限,求m 的取值范围;⑵当线段AB 最短时,求点B 的坐标.第20题21. (本小题满分10分)如图,AB =AC ,AE 是△ABC 中BC 边上的高线,点D 在直线AE 上一点(不与A 、E 重合).⑴ 证明:△ADB ≌△ADC ;⑵当△AEB ∽△BED 时,若cos ∠DBE =32,BC = 8,求线段AE 的长度.22. (本小题满分12分) 如图,抛物线与x 轴相交于B 、C 两点,与y 轴相交于点A ,P (a ,m a a ++-272)(a 为任意实数)在抛物线上,直线b kx y +=经过A 、B 两点,平行于y 轴的直线2=x 交直线AB 于点D ,交抛物线于点E . ⑴若2=m ,①求直线AB 的解析式;②直线x =t 0(≤t ≤)4与直线AB 相交于点F ,与抛物线相交于点G . 若FG ∶DE =3∶4,求t 的值;⑵当EO 平分AED ∠时,求m 的值.23. (本小题满分12分) 如图,已知正方形ABCD 的边长为4,点E 、F 分别从C 、A 两点同时出发,以相同的速度作直线运动. 已知点E 沿射线CB 运动,点F 沿边BA 的延长线运动,连结DF 、DE 、EF ,EF 与对角线AC 所在的直线交于点M ,DE 交AC 于点N .⑴求证:DE ⊥DF ;⑵设CE =x ,AMF ∆的面积为y ,求y 与x 之间的函数关系式,并写出自变量的取值范围;第21题第22题⑶随着点E 在射线CB 上运动,NA ·MC 的值是否会发生变化?若不变,请求出NA ·MC 的值;若变化,请说明理由.2014年中考数学一模答案一、 选择题1. D2. D3. B4. B5. A6. C7. A8. B9. B (解析:90°所对的弦长才为 10. A 解析:二、 填空题 11. -312. 5tan55° 13. x=3 14. 0≤x<3 15. 2 16. 0或-1或12-解析:第23题备用图222CD=CF CDE CFE ED=EF DEC=FEC=ECB BE=BC AE=ED=y EF=y BC=BE=x BF=x AEF CBF ,y 0,()()10AE =AD x y y y yx x x y x x xy x y x x x x y ∠∠∠∴∴=+-=+-=++=∴===+由易知≌,,,设x,,,+y,由∽,有可得则得2B BE x E BCOE y=(3m 1)x 2m 1=x 1)(21)mx m -+++---过点作⊥轴于点,知直线平分梯形必过矩形的中心(2,1)则求得k=1,函数为,mx (。

2014年九年级数学中考模拟考前预测试卷及答案

2014年学业水平测试数学模拟试题一、选择题:(本大题共12个小题,每小题选对得3分,满分36分) 1.-2的倒数是A .2B .-2C .21D .21-2.2013年5月,温家宝总理在《政府工作报告》中提到,国家财政性教育经费支出五年累计7.79万亿元。

7.79万亿用科学记数法表示为 A .121079.7⨯ B . 111079.7⨯C .131079.7⨯D . 11109.77⨯3.已知点P (3,-2)与点Q 关于x 轴对称,则Q 点的坐标为A .(-3,2)B .(-3,-2)C .(3,2)D .(3,-2)4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为 A .51B .31 C .85 D .835.如图,已知a ∥b ,∠1=40︒,则∠2= . A .140︒ B .120︒ C .40︒ D .50︒6.已知一个多边形的内角和等于900,则这个多边形的边数是( ) A .6B .7C .8D .97.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是( ).(第5题) ba c218. 如果k x x ++82可运用完全平方公式进行因式分解,则k 的值是( ) A .8 B.16 C.32 D.649.在四川雅安抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过( ) A .66厘米B .76厘米C .86厘米D .96厘米10.二次函教225y x x =+-有( )A .最大值5-B .最小值5-C .最大值6-D .最小值6- 11.下列说法:①解分式方程一定会产生增根;②方程04422=+--x x x 的根为2; ③方程 42121-=x x 的最简公分母为2x (2x-4); ④11111-+=-+x x x 是分式方程. 其中正确的个数是( )A .1个B .2个C .3个D .4个12.如图,将边长为a 的正六边形A 1 A 2 A 3 A 4 A 5 A 6在直线上由图1的位置按顺时针方向向右作无滑动滚动,当A 1第一次滚动到图2位置时,顶点A 1所经过的路径的长为( ).A.a aa a二、填空题:(本大题共6个小题4分24分)13.4 的算术平方根是 ▲ .AE14.分解因式:x -x y = ▲ . 15.反比例函数 y=xk的图象经过点(2,1),则k 的值是 . 16.请写出一个解为x =2的一元一次方程: ▲ .17.如图,AB CD ⊥于点B BE ,是ABD ∠的平分线,则CBE ∠的度数为 ▲ . 18.观察下列等式: 1×2=×(1×2×3﹣0×1×2) 2×3=×(2×3×4﹣1×2×3) 3×4=×(3×4×5﹣2×3×4) …计算:3×[1×2+2×3+3×4+…+n (n+1)]= ___▲______ .一、选择答案 班级 姓名 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空答案13、 14、 15、 16、 17、 18、 三、解答(共60分)19.(1)(本小题5分)计算011)245-+-(2)(本小题满分5分)解不等式组:3625x x -<⎧⎨+<⎩20.(本题6分)如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,≈1.732).21.(本小题7分)某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?22.(本题满分7分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率B是 .23.(本小题满分8分)如图7,在一方形ABCD 中.E 为对角线AC 上一点,连接EB 、ED. (1)求证:△BEC ≌△DEC :(2)延长BE 交AD 于点F ,若∠DEB=140°.求∠AFE 的度数.24.(本小题满分10分)己知:如图:△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 干点F ,交⊙O 于点D ,DF ⊥AB 于点E ,且交AC 于点P ,连结AD 。

2014年中考二调数学模拟试题

第6题图第3题图(千米)第4题图2014年中考数学模拟试题亲爱的同学:这份试卷将记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题. 预祝你取得好成绩! 请注意:1.选择题答案用铅笔涂在答题卡上. 2.填空题、解答题不得用铅笔或红色笔填写. 3.考试时,不允许使用科学计算器.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下面的计算一定正确的是( )A .6332b b b =+ B .2229)3(q p pq -=-C .8531535y y y =⋅ D .339b b b =÷2.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字)应为( )A .51075.6-⨯ 克 B .51074.6-⨯ 克 C .61074.6-⨯ 克 D .61075.6-⨯克 3.星期六,小亮从家里骑直行车到同学家去玩,然后返回,如图是他离家的路程y (千米)与时间x (分钟)的图象,根据图象信息,下列说法不一定正确的是( )A .小亮到同学家的路程是3千米.B .小亮在同学家逗留的时间是1小时.C .小亮回家时用的时间比去时用的时间少.D .小亮去时走上坡路,回家时走下坡路. 4.如图,直线AB ∥CD ,直线EF 与AB ,CD 分别交于点E ,F ,EG ⊥EF ,垂足为E ,若o601=∠,则∠2的度数为 A .o60 B .o45 C .o 30 D .o155.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ① AD 是∠BAC 的平分线;②∠ADC=60°; ③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.A .4B .3C .2D .16.如图所示,在平行四边形ABCD 中,AC 与BD 相交于 点O ,E 为OD 的中点,连接AE 并延长交DC 于点F , 则DF :FC=( )A .1:4B .1:3C .2:3D .1:27.不等式组⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(315的解集是A .2>xB .42≤<xC .2<x 或4≥xD .4≤x8.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于M ,O ,N ,连接AN ,CM ,则四边形ANCM 是菱形. 乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于E ,F ,连接EF ,则四边形ABEF 是菱形.根据两人的作法可判断( )A .甲正确,乙错误B .乙正确,甲错误C .甲、乙均错误D .甲、乙均正确 9.已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,下列结论:①0<b ;②024<++c b a ; ③0>+-c b a ;④22)(b c a <+.其中正确的结论是( )A .①②B .①③C .①③④D .①②③④10.如图,在等腰直角△ACB 中,∠ACB=90°,O 是斜边AB 的中点,点DAC 、BC上,且∠DOE=90°,DE 交OC 于点P .则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC 的面积等于四边形CDOE 的面积的2倍;(3)CD+CE=OA ;(4)AD 2+BE 2=2OP •OC . 其中正确的结论有( )A . 4个B .3个C .2个D .1个第6题图11.如图所示,在直角坐标系中放置一个边长为1的正方形ABCD ,将正方形ABCD 沿x 轴的正方向无滑动的在x 轴上滚动,当点A 离开原点后第一次落在x 轴上时,点A 运动的路径线与x 轴围成的面积为( )A .1+πB .12+πC .212+π D .21+π12.如图,点P (a ,a )是反比例函数xy 16=在第一象限内的图象上的一个点,以点P为顶点作等边△PAB ,使A 、B 落在x 轴上,则△POA 的面积是( )A .3B .4C .33412- D .33824- 第Ⅱ卷 (非选择题 共84分)注意事项:1.用钢笔或圆珠笔(蓝色或黑色)直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分. 13.因式分解 3222x x y xy -+= . 14.化简 =+-÷+---121)12113(22a a a a a . 15.同时抛掷A 、B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x 、y ,并以此确定点P (x ,y ),那么点P 落在抛物线x x y 32+-=上的概率为 .16.如图,在平面直角坐标系中,点O 是原点,点B (0,),点A 在第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M 在线段AB 上.若点B 和点E 关于直线OM 对称,则点M 的坐标是 .17 1 的正方形。

2014年九年级中考第一次模拟数学试题及答案

2014年中考网上阅卷适应性测试数 学 试 题(满分:150分 测试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分。

每题所给的四个选项,只有一个符合题意,请将正确答案的序号填涂在答题卡的相应的表格中)1.︱-12︱等于A . 2B .-2C . 12D .-122.9的立方根是A .3B .39C .3±D .39±3.下列各图中,不是中心对称图形的是A .B .C .D . 4.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是A .a >bB . a >-bC .-a >bD .-a <-b5.函数1y x =+x 的取值范围是A .x ≥-1B .x ≤-1C . x >-1D .x <-1 6.已知,在Rt △ABC 中,∠C =90°,AC =3,BC =4,则sin A 的值为A . 34B . 43C . 35D . 457.在数轴上表示5±的两点以及它们之间的所有整数点中,任意取一点P ,则P 点表示的数大于3的概率是A .41B .92C .51D .1128.如图,在平面直角坐标系中,⊙M 和y 轴相切于原点O ,平行于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是A .(-4,2)B .(-4.5,2)C .(-5,2)D .(-5.5,2)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.地球上的海洋面积大约为361000000千米2,将361000000这个数用科学记数法表示为 .ab(第4题)QP OMy10.计算:( 2- 3 ) (2+ 3 )= .11.分解因式:22242y xy x +-= .12.宝应县青少年活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如下表所示:年龄组13岁14岁 15岁 16岁 参赛人数 5191214则全体参赛选手年龄的中位数是 岁.13.已知y 是x 的反比例函数,且当x =3时,y =8,那么当x =4时, y = . 14.如图,该图形经过折叠可以围成一个正方体,折好以后,和“静”字相对的字是 .15.已知⊙O 的半径为5厘米,若⊙O ′和⊙O 外切时,圆心距为7厘米,则⊙O ′和⊙O 内切时,圆心距为 厘米.16.如图,△ABC 内接于⊙O ,直径AD=2,∠ABC=30°,则CD 的长度是 . 17.如图,矩形ABCD 中,AB=3cm ,BC=4cm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年初三中考模拟测试题数学试卷一、选择题(本题共32分,每小题4分) 1.32-的相反数是 A .23- B .23 C .32-D .322.清明小长假本市150家景区接待游客约5245000人,数字5245000用科学记数法表示为 A .3105.245⨯B .6105.245⨯C .7100.5245⨯D .3105245⨯3.正五边形的每个内角等于 A .72°B .108°C .54°D .36°4.为了解居民用水情况,晓娜在某小区随机抽查了10户家庭的月用水量,结果如下表:则这10户家庭的月用水量的平均数和众数分别是 A .7.8,9B .7.8,3C .4.5,9D .4.5,35.将二次函数1822--=x x y 化成k h x a y +-=2)(的形式,结果为 A .1)2(22--=x y B . 32)4(22+-=x y C .9)2(22--=x y D .33)4(22--=x y6.如图,△ABC 内接于⊙O ,BA =BC ,∠ACB =25°,AD 为⊙O 的直径,则∠DAC 的度数是 A .25D .50°7.转盘上有六个全等的区域,颜色分布如图所示,若指针固定不动,转动转盘, 当转盘停止后,则指针对准红色区域的概率是 A .21 B .31 C .41 D .618.如图,边长为1的正方形ABCD 中有两个动点P ,Q ,点P 从点B 出发沿BD 作匀速运动,到达点D 后停止;同时点Q 从点B 出发,沿折线BC →CD 作匀速运动,P ,Q 两个点的速度都为每秒1个单位,如果其中一点停止运动,则另一点也停止运动.设P ,Q 两点的运动时间为x 秒,两点之间的距离为y ,下列图象中,能表示y 与x 的函数关系的图象大致是红 黄蓝 红蓝 蓝二、填空题(本题共16分,每小题4分)9.分解因式:ax ax 163-=_______________.10.如图,CD AB //,AC 与BD 相交于点O ,3=AB , 若3:1:=BD BO ,则CD 等于_____.11.如图所示,小明同学在距离某建筑物6米的点A 处测得条幅两端B 点、C 点的仰角分别为60°和30°,则条幅的高度BC 为米(结果可以保留根号). 12.在平面直角坐标系xOy 中,已知直线l :x y =,作1A (1,0)关于xy =的对称点1B ,将点1B 向右水平平移2个单位得到点2A ;再作2A 关于x y =的对称点2B ,将点2B 向右水平平移2个单位得到点3A ;….请继续操作并探究:点3A 的坐标是,点2014B 的坐标是.三、解答题(本题共30分,每小题5分)13.02014130tan 3512)(-︒+--.14.解方程:xx x -=+--53153. 15.如图,在△ABC 和△ADE 中,AC AB =,AE AD =,DAE BAC ∠=∠,点C 在DE 上. 求证:(1)△ABD ≌△ACE ;(2)ADC BDA ∠=∠.16.已知:23=y x ,求代数式yx yx 3294+-的值.17.如图,一次函数21+=kx y 的图象与x 轴交于点B (0 2-,),与函数xmy =2(0>x )的图象交于点A (a 1,). (1)求k 和m 的值; (2)将函数xmy =2(0x >)的图象沿y 轴向下平移3个单位后交x轴于点C .若点D 是平移后函数图象上一点,且△BCD 的面积是3,直接写出点D 的坐标.BBDCC18.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台. (1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案? 四、解答题(本题共20分,每小题5分)19.如图,在四边形A B C D 中,2AB =,︒=∠=∠60C A ,DB AB ⊥于点B ,45DBC ∠=︒,求BC 的长.20.为响应推进中小学生素质教育的号召,某校决定在下午15点至16点开设以下选修课:音乐史、管乐、篮球、健美操、油画.为了解同学们的选课情况,某班数学兴趣小组从全校三个年级中各调查一个班级,根据相关数据,绘制如下统计图.(1)请根据以上信息,直接补全条形统计图和扇形统计图;(2)若初一年级有180人,请估算初一年级中有多少学生选修音乐史? (3)若该校共有学生540人,请估算全校有多少学生选修篮球课? 21.如图,⊙O 是△ABC 的外接圆,AC AB =,连结CO 并延长交⊙O 的切线AP 于点P . (1)求证:BCP APC ∠=∠; (2)若53sin =∠APC ,4=BC ,求AP 的长.PA三个班级参加选修课的 初二(5)班参加各类选修课的人数统计图 人数分布统计图人数音乐史 管乐 篮球 健美操油画 课程 10 9 8 7 6 5 4 3 2 122.实验操作(1)如图1,在平面直角坐标系xOy 中,△ABC 的顶点的横、纵坐标都是整数,若将((1)求m 的值;(2)将抛物线1C :1)1(22-+-+=m x m mx y 向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,若抛物线2C 过点),(b A 2和点),(12 4+b B ,求抛物线2C 的表达式;(3)将抛物线2C 绕点(n n ,1+)旋转︒180得到抛物线3C ,若抛物线3C 与直线121+=x y 有两个交点且交点在其对称轴两侧,求n 的取值范围.24.在矩形ABCD 中,AD =12,AB =8,点F 是AD 边上一点,过点F 作∠AFE =∠DFC ,交射线AB 于点E ,交射线CB 于点G . (1) 若FG =_____CFG ∠=︒;(2) 当以F ,G ,C 为顶点的三角形是等边三角形时,画出图形并求GB 的长;(3)过点E 作EH//CF 交射线CB 于点H ,请探究:当GB 为何值时,以F ,H ,E ,C 为顶点的四边形是平行四边形.25.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义: “水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”=S ah .例如:三点坐标分别为)2,1(A ,)1,3(-B ,)2,2(-C ,则“水平底”5=a ,“铅垂高”4=h ,“矩面积”20==S ah . (1)已知点)2,1(A ,)1,3(-B ,),0(t P .①若A ,B ,P 三点的“矩面积”为12,求点P 的坐标; ②直接写出A ,B ,P 三点的“矩面积”的最小值. (2)已知点)0,4(E ,)2,0(F ,)4,(m m M ,)16,(nn N ,其中0>m ,0>n . ①若E ,F ,M 三点的“矩面积”为8,求m 的取值范围;②直接写出E ,F ,N 三点的“矩面积”的最小值及对应n 的取值范围.数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分)9.)4)(4(-+x x ax ;10.6;11.34;12.(3,2),(2013,2014). 三、解答题(本题共30分,每小题5分) 13.解:02014130tan 3512)(-︒+-- =1333532-⨯+-………………………………………4分 =6-33………………………………………5分14.解:方程两边同乘以)5(-x ,得………………………………………1分3)5(3-=-+-x x . ………………………………………2分解得25=x . ………………………………………3分 经检验:25=x 是原分式方程的解.………………………………4分所以25=x 是原方程的解.………………………………………5分15.证明:(1)DAE BAC ∠=∠ , DAC DAE DAC BAC ∠-∠=∠-∠∴.CAE BAD ∠=∠∴.…………………………1分 在△ABD 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠=AE AD EAC BAD AC AB , ……………2分 ∴△ABD ≌△ACE .………………………3分 (2)AEC ADB ∠=∠∴. AE AD = ,AEC ADC ∠=∠∴.…………………………4分 ADC BDA ∠=∠∴.…………………………5分16.解:由已知y x 32=, ………………………………………2分∴原式yy yy 3396+-=………………………………………4分21-=.………………………………………5分17.解:(1)根据题意,将点B (0 2-,)代入21+=kx y ,∴22-0+=k .………………………………………………………1分∴1=k .…………………………………………………2分∴A (3 1,).将其代入xmy =2,可得:3=m …………………3分 (2)(2 53,)或(2 3-,).………………………………………5分18.解:设该公司购进甲型显示器x 台,则购进乙型显示器()50-x 台.(1)依题意可列不等式:77000)50(20001000≤-+x x ……………2分解得:23≥x …………………………………………………………3分∴该公司至少购进甲型显示器23台. (2)依题意可列不等式:x x -≤50解得:25≤x ………………………………………………………4分 ∵23≥x∴x 为23,24,25. 答:购买方案有:①甲型显示器23台,乙型显示器27台; ②甲型显示器24台,乙型显示器26台;③甲型显示器25台,乙型显示器25台.…………5分四、解答题(本题共20分,每小题5分)19.解:过点D 作BC DE ⊥于点E . ……………………1分︒=∠=⊥60 2,A AB AB DB ,,∴3260tan =︒⨯=AB BD . ………………2分45DBC ∠=︒,BC DE ⊥,∴645sin =︒⨯==BD DE BE …………3分︒=∠︒=∠=∠9060DEC A C ,260tan =︒=∴DECE .……………………4分62+=∴BC .………………………………5分20.解:(1)条形统计图补充数据:6(图略).………………………………………1分 扇形统计图补充数据:20.……………………………2分(2)180×308=48(人).………………………………………………3分 (3)()1543030303020866=++÷⎪⎭⎫⎝⎛⨯++.……………4分 144540154=⨯(人).…………………………………………5分 21.(1)证明:连结AO 并延长交BC 于D 、⋂BC 于EAP 切⊙O 于点AAPBC BC EA AC AB ACAB PA EA //∴⊥∴=∴=⊥∴⋂⋂…………………1分 BCP APC ∠=∠∴…………………………2分(2)解:BC AE ⊥221==∴BC CD53sin ==∠PO AO APC ∴设k OP k OA 5,3==,则k OA OC 3==………………3分AP BC //∴△PAO ∽△CDO …………………………4分CO POCD PA =∴ kkPA 352=∴∴310=PA …………………………5分PE34π=⋂AB ……………………………………………………5分 五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.解:(1)∵方程01)1(22=-+-+m x m mx有两个实数根,∴0≠m 且0≥∆, ……………………1分 则有0)1(4-)1(42≥--m m m 且0≠m∴1≤m 且0≠m又∵m 为非负整数,∴1=m . ………………………………2分(2)抛物线1C :2x y =平移后,得到抛物线2C :b a x y +-=2)(,……3分 ∵抛物线2C 过),2(b A 点,b a b +-=2)2(,可得2=a ,同理:b a b +-=+2)4(12,可得3=b , …………………………4分∴2C :()322+-=x y)(或742+-=x x y . …………5分(3)将抛物线2C :3)2(2+-=x y 绕点(n n ,1+)旋转180°后得到的抛物线3C 顶点为(322-n n ,), ………………6分 当n x 2=时,11221+=+⨯=n n y , 由题意,132+>-n n ,即:4>n .……………………………7分24.解:(1)90°………………………………………………2分(2)正确画图 ………………………………………………3分四边形ABCD 是矩形, ∴∠D=90°.△FGC 是等边三角形,=60GFC ∴∠︒ . ∠DFC =∠AFE , ∴∠DFC =60° . …………4分 DC =8 ,∴331660sin =︒=DC FC .△FGC 是等边三角形, ∴GC =FC .BC=AD =12,∴GB=12.………………………………5分 (3)过点F 作FK ⊥BC 于点K 四边形ABCD 是矩形∴∠ABC =90°,AD//BC∴∠DFC =∠KCF ,∠AFG =∠KGF ∠DFC =∠AFG ∴∠KCF =∠KGF∴FG =FC ……………………………………………………………6分∴GK =CK四边形FHEC 是平行四边形∴FG =EG ……………………………………………………………7分 ∠FGK =∠EGB,∠FKG =∠EBG=90°∴△FGK ≌△EGB∴BG =GK=KC=4312=……………………………………………8分25.解:(1)由题意:.①当2>t 时,1-=t h ,则12)1(4=-t ,可得4=t ,故点P 的坐标为(0,4);……………1分当1<t 时,t h -=2,则12)2(4=-t ,可得1-=t ,故点P 的坐标为(0,1)-.…………2分②A ,B ,P 三点的“矩面积”的最小值为4. ……………………3分 (2)①∵E ,F ,M 三点的“矩面积”的最小值为8,∴⎩⎨⎧≤≤≤≤24040m m .∴210≤≤m .∵0>m ,∴210≤<m . ………………………………………………………4分②E ,F ,N 三点的“矩面积”的最小值为16,…………………………5分 n 的取值范围为84≤≤n ………………………………………………7分。

相关文档
最新文档