中考模拟数学试卷(4)

合集下载

天津中考数学模拟试卷(04)

天津中考数学模拟试卷(04)

天津中考数学模拟试卷(04)一.选择题(共12小题,满分36分,每小题3分)1.(3分)(2021秋•永春县期末)有理数a、b在数轴上的对应点的位置如图所示,则下列式子正确的是()A.ab>0B.a+b<0C.a+b>0D.a﹣b>02.(3分)(2022•新抚区模拟)sin 30°等于()A.B.C.D.3.(3分)(2022•东方一模)电影《长津湖》讲述了参加抗美援朝战争的志愿军战士在长津湖战役中不畏严寒、保家卫国的故事,让无数影迷感动落泪.电影获得了巨大成功,并以5770000000元取得中国电影票房冠军.其中5770000000用科学记数法表示为()A.57.7×108B.5.77×108C.5.77×109D.5.77×1010 4.(3分)(2021秋•东台市期末)第24届冬季奥林匹克运动会将于2022年2月4日在北京开幕,下列四个图标分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.5.(3分)(2022•江汉区模拟)如图所示几何体的左视图是()A.B.C.D.6.(3分)(2021秋•海口期末)如图,在数轴上点A和点B之间的整数是()A.1和2B.2和3C.3和4D.4和57.(3分)(2022春•青田县校级月考)用加减法解方程组时,要使方程组中同一个未知数的系数相等或互为相反数,必须适当变形.以下四种变形中正确的是()①②③④A.①②B.②③C.①③D.②④8.(3分)(2021春•罗湖区期末)如图,在平行四边形ABCD中,AB≠BC,点F是BC上一点,AE平分∠F AD并交CD于点E,且AE⊥EF,垂足为点E,有如下结论:①DE=CE,②AF=CF+AD,③S△AEF=S△CEF+S△DEA,④AB=BF,其中正确的是()A.①④B.①②③C.②③④D.①②③④9.(3分)(2021秋•汉阳区期末)下列等式恒成立的是()A.B.C.=D.10.(3分)(2021秋•东港区校级期末)如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,tan B=,则k的值为()A.﹣6B.﹣1C.﹣3D.﹣411.(3分)(2021•临沂二模)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.①如果x=﹣1是方程的根,则△ABC是等腰三角形;②如果方程有两个相等的实数根,则△ABC是等边三角形;③如果△ABC是等边三角形,则这个一元二次方程的根为﹣1和2.其中正确的是()A.①B.①③C.①②D.②③12.(3分)(2022•和平区校级模拟)对于反比例函数y=,下列说法正确的是()A.图象经过点(﹣2,﹣3)B.图象位于第一、三象限C.当x>0时,y随x的增大而减小D.当x<0时,y随x的增大而增大二.填空题(共6小题,满分18分,每小题3分)13.(3分)(2021秋•皇姑区期末)已知多项式2x2+3kxy﹣y2﹣15xy+10中不含xy项,则k =.14.(3分)(2021•即墨区一模)计算:+(﹣3)0﹣2﹣1﹣2﹣1﹣cos60°=.15.(3分)(2021秋•潍坊期末)小明制作了5张卡片,上面分别写了一个条件:①AB=BC;②AB⊥BC;③AD=BC;④AC⊥BD;⑤AC=BD,从中随机抽取一张卡片,能判定▱ABCD是菱形的概率为.16.(3分)(2021秋•钢城区期末)将直线y=﹣2x向上平移2个单位,得到一个一次函数的图象,这个一次函数的表达式是.17.(3分)正比例函数y=﹣2x的图象位于第象限;一次函数y=2x+6的图象分布在第象限.18.(3分)(2021秋•中原区校级期末)已知某函数的图象经过A(3,2),B(﹣2,﹣3)两点,下面有四个推断:①若此函数的图象为直线,则此函数的图象与直线y=x平行;②若此函数的图象为双曲线,则(﹣6,﹣1)也在此函数的图象上;③若此函数的图象为抛物线,且开口向下,则此函数图象一定与y轴的负半轴相交;④若此函数的图象为抛物线,且开口向上,则此函数图象对称轴在直线x=左侧,所有合理推断的序号是.三.解答题(共7小题,满分66分)19.(8分)(2018春•广水市期末)对非负实数x“四舍五入”到个位的值记为[x].即当n 为非负整数时,若n﹣≤x<n+,则[x]=n.如:[2.9]=3;[2.4]=2;……根据以上材料,解决下列问题:(1)填空[1.8]=,[]=;(2)若[2x+1]=4,则x的取值范围是;(3)求满足[x]=x﹣1的所有非负实数x的值.20.(8分)(2012•市南区模拟)某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出该校初一学生总数;(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?21.(10分)已知P是正方形ABCD内一点,△PBC是等边三角形,若△P AD的外接圆半径是a,求正方形ABCD的边长.22.(10分)(2021•未央区校级开学)如图,一艘轮船原计划从A地直接航行到B地,两地间的距离AB为200km.后来了解到在两地之间的某一海域有暗礁,为了避开暗礁,轮船从A地出发后,就沿与水平线成30°角的方向航行,到达C地后再沿与水平线成45°角的方向继续航行直到B地.请问轮船这样航行的路程比原计划的路程远了多少?(要求在结果化简后再代入参考数据运算,最终结果精确到1km;参考数据:≈1.73,≈1.41).23.(10分)(2021秋•细河区期末)今年3月,德宏瑞丽受疫情影响,采取了“封城措施”封城期间,某公司安排大、小货车共20辆,分别从A、B两地运送320吨物资到德宏瑞丽,支援瑞丽抗击疫情,每辆大货车装25吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资,已知这两种货车的运费如表:A地(元/辆)B地(元/辆)目的地车型大货车9001000小货车500700要安排上述装好物资的20辆货车中的12辆从A地出发,其余从B地出发.(1)这20辆货车中,大货车、小货车各有多少辆?(设未知数避开x,y)(2)设从A地出发的大货车有x辆(大货车不少于5辆)这20辆货车的总运费为y元,求总运费y的最小值.24.(10分)(2022•成都模拟)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.(1)b=,c=;(2)若点D为第四象限内抛物线上的一个动点,过点D作DE∥y轴交BC于点E,过点D作DF⊥BC于点F,过点F作FG⊥y轴于点G,求出DE+FG的最大值及此时点D 的坐标;(3)若点P是该抛物线对称轴上的一点,点Q为坐标平面内一点,那么在抛物线上且位于x轴上方是否存在点M,使四边形OMPQ为正方形?若存在,请直接写出点M的坐标;若不存在,请说明理由.25.(10分)(2022•四会市一模)如图,已知二次函数y=x2+bx+c经过A,B两点,BC⊥x 轴于点C,且点A(﹣1,0),C(4,0),AC=BC.(1)求抛物线的解析式;(2)点E是线段AB上一动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段EF的长度最大时,求点E的坐标及S△ABF;(3)点P是抛物线对称轴上的一个动点,是否存在这样的P点,使△ABP成为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.。

2024年辽宁省大连市中考数学模拟试卷(4月份)(含解析)

2024年辽宁省大连市中考数学模拟试卷(4月份)(含解析)

2024年辽宁省大连市中考数学模拟试卷(4月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.2024年元旦假期,全国文化和旅游市场平稳有序.经文化和旅游部数据中心测算,元旦假期3天,全国国内旅游出游1.35亿人次,同比增长155.3%,数据“1.35亿”用科学记数法表示为( )A. 1.35×108B. 1.35×107C. 0.135×108D. 13.5×1072.如图所示的几何体是由6个大小相同的小正方体组成的,从左面观察该几何体,看到的形状图为( )A.B.C.D.3.如图图案中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.4.下列运算中正确的是( )=a2 D. a5+a5=2a5A. a3⋅a2=a6B. (a3)4=a7C. a6a35.若关于x的方程x2+bx+36=0有两个相等的实数根,则b的值是( )A. 12B. −12C. ±12D. ±66.若一次函数y=kx+b的图象如图所示,则下列说法正确的是( )A. k>0B. b=2C. y随x的增大而增大D. 当x=3时,y=07.我市为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行,∠BCD=60°,∠BAC=50°,当∠MAC为度时,AM//BE.( )A. 15B. 65C. 70D. 1158.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是( )A. 8B. 7C. 4D. 39.明代的数学著作《算法统宗》中有这样一个问题“隔墙听得客分银,不知人数不知银,七两分之少四两,五两分之多半斤.”其大意为:有一群人分银子,如果每人分七两,则还差四两,如果每人分五两,则还多半斤(注:明代1斤=16两,故有“半斤八两”这个成语).设共有x两银子,则可列方程为( )A. 7x−4=5x+8B. x−47=x+85C. 7x+4=5x−8D. x+47=x−8510.如图,在四边形ABCD中,对角线AC与BD交于点E,过点E作EF⊥BC于点F,AC=5,∠CAB=90°,按以下步骤作图:分别以点A,F为圆心,大于12AF的长为半径作弧,两弧交于点P,Q,作直线PQ,若点B,E在直线PQ上,且AE:EC=2:3,则BC的长为( )A. 26B. 35C. 8D. 13二、填空题:本题共5小题,每小题3分,共15分。

中考数学模拟试卷(4)含答案解析

中考数学模拟试卷(4)含答案解析

中考数学模拟试卷(四)一.选择题(共9小题,满分45分,每小题5分)1.(5分)在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是()A.1 B.2 C.4 D.82.(5分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.43.(5分)若分式的值为0,则x的值等于()A.0 B.±3 C.3 D.﹣34.(5分)下列事件是随机事件的是()A.购买一张福利彩票,中奖B.在一个标准大气压下,加热到100℃,水沸腾C.有一名运动员奔跑的速度是80米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球5.(5分)下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2 6.(5分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④7.(5分)若α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,则α2﹣3β的值是()A.3 B.15 C.﹣3 D.﹣158.(5分)在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.9.(5分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.二.填空题(共6小题,满分30分,每小题5分)10.(5分)分解因式:16m2﹣4=.11.(5分)如果反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,那么请你写出一个满足条件的反比例函数解析式(只需写一个).12.(5分)一个扇形统计图,某一部分所对应扇形的圆心角为120°,则该部分在总体中所占有的百分比是%.13.(5分)元旦到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省30元,那么妈妈购买这件衣服实际花费了元.14.(5分)如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP 为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.15.(5分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三.解答题(共4小题,满分30分)16.(6分)计算:.17.(6分)解关于x的不等式组:,其中a为参数.18.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.19.(10分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.四.解答题(共4小题,满分45分)20.(10分)小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量频数百分比(单位:t)2≤x<324%3≤x<41224%4≤x<55≤x<61020%6≤x<712%7≤x<836%8≤x<924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.21.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?22.(12分)如图,⊙O半径为1,AB是⊙O的直径,C是⊙O上一点,连接AC,⊙O外的一点D 在直线AB上.(1)若AC=,OB=BD.①求证:CD是⊙O的切线.②阴影部分的面积是.(结果保留π)(2)当点C在⊙O上运动时,若CD是⊙O的切线,探究∠CDO与∠OAC的数量关系.23.(13分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.中考数学模拟试卷(四)参考答案与试题解析一.选择题(共9小题,满分45分,每小题5分)1.【解答】解:逐个代替后这四个数分别为﹣0.3428,﹣0.1328,﹣0.1438,﹣0.1423.﹣0.1328的绝对值最小,只有C符合.故选:C.2.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.3.【解答】解:∵分式的值为0,∴x2﹣9=0且x﹣3≠0,解得:x=﹣3,故选:D.4.【解答】解:A、购买一张福利彩票,中奖是随机事件;B、在一个标准大气压下,加热到100℃,水沸腾是必然事件;C、有一名运动员奔跑的速度是80米/秒是不可能事件;D、在一个仅装着白球和黑球的袋中摸球,摸出红球是不可能事件;故选:A.5.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选:D.6.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.7.【解答】解:∵α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,∴α2+3α=6,由根系数的关系可知:α+β=﹣3,∴α2﹣3β=α2+3α﹣3α﹣3β=α2+3α﹣3(α+β)=6﹣3×(﹣3)=15故选:B.8.【解答】解:甲班每人的捐款额为:,乙班每人的捐款额为:.根据(2)中所给出的信息,方程可列为:×(1+)=.故选:C.9.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,O G⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共6小题,满分30分,每小题5分)10.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)11.【解答】解:∵反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,∴k>0,∴满足条件的反比例函数解析式可以是y=.故答案为:y=(答案不唯一).12.【解答】解:该部分在总体中所占有的百分比=120°÷360°=33.3%.13.【解答】解:设这件运动服的标价为x元,则:妈妈购买这件衣服实际花费了0.8x元,∵妈妈以八折的优惠购买了一件运动服,节省30元∴可列出关于x的一元一次方程:x﹣0.8x=30解得:x=1500.8x=120故妈妈购买这件衣服实际花费了120元,故答案为120.14.【解答】解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,MN的最小值为5;∴y最小值=5.即故答案为:5.15.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三.解答题(共4小题,满分30分)16.【解答】解:原式=1﹣2+4+﹣1=4﹣.17.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.18.【解答】证明:(1)∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)∵△AFD≌△CEB,∴AD=BC,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.19.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.四.解答题(共4小题,满分45分)20.【解答】解:(1)调查的总数是:2÷4%=50(户),则6≤x<7部分调查的户数是:50×12%=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×100%=30%.故答案为:15,30%,6;补全频数分布表和频数分布直方图,如图所示:(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示.画树状图:则抽取出的2个家庭来自不同范围的概率是:=.21.【解答】解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B 到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=150,s2=120 150﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.22.【解答】(1)①证明:连接BC,OC,∵AB是直径,∴∠ACB=90°,在Rt△ANC中:BC==1,∴BC=OC=OB,∴△BOC为等边三角形,∴∠BOC=∠OBC=60°,∵OB=BD,OB=BC,∴BC=BD,∴∠ODC=∠BCD=∠OBC=30°,∴∠BOC+∠ODC=90°,∴∠OCD=180°﹣∠BOC﹣∠ODC=90°,∴CD是⊙O切线.②过C作CE⊥AB于E,∵S△ABC=•AC•BC=•AB•CE,∴CE=,∴S阴=S扇形OAC﹣S△A OC,=﹣•1•,=﹣.故答案为﹣.(2)①当AC>BC时,∵CD是⊙O的切线,∴∠OCD=90°,即∠1+∠2=90°,∵AB是O直径,∴∠ACB=90°即∠2+∠3=90°,∴∠1=∠3,∵OC=OA,∴∠OAC=∠3,∴∠OAC=∠1,∵∠4=∠1+∠ODC,∴∠4=∠DAC+∠ODC,∵OB=OC,∴∠2=∠4,∴∠2=∠OAC+∠ODC,∵∠1+∠2=90°,∴∠OAC+∠OAC+∠ODC=90°,即∠ODC+2∠OAC=90°.②当AC<BC时,同①∠OCD=90°,∴∠COD=90°﹣∠ODC,∵DA=OC,∴∠OCA=∠OAC,∵∠OAC+∠OCA+∠COD=180°,∴∠OAC+∠OAC+90°﹣∠ODC=180°,∴2∠OAC﹣∠ODC=90°,综上:2∠OAC﹣∠ODC=90°或∠ODC+2∠OAC=90°.23.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x=﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S=S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a=﹣1时,抛物线的解析式为:y=﹣x 2﹣x +2=﹣(x ﹣)2+, 有, ﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y=﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x 2﹣x ﹣2+t=0,△=1﹣4(t ﹣2)=0, t=,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x +t ,t=2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.。

上海中考数学模拟试卷(04)

上海中考数学模拟试卷(04)

上海中考数学模拟试卷(04)一.选择题(共6小题,满分24分,每小题4分)1.(4分)(2020•福田区校级开学)下列各式中没有意义的是()A.B.C.D.2.(4分)(2021秋•洪山区期末)下列各组单项式中,是同类项的是()A.5a,3ab B.﹣2x2y,3x2y C.4x2,3x D.3ab,﹣5ab2 3.(4分)(2021•陇县一模)在平面直角坐标系中,有两条抛物线关于原点中心对称,且它们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=x2+8x+m,则m的值为()A.﹣13或﹣19B.﹣13或19C.13或19D.13或﹣19 4.(4分)(2021春•芝罘区期末)小明统计了同学们5月份平均每天观看北京市“空中课堂”的时间,并绘制了统计图,如图所示.下面有四个推断:①此次调查中,小明一共调查了100名学生②此次调查中,平均每天观看时间不足30分钟的人数占总人数的10%③此次调查中,平均每天观看时间超过60分钟的人数超过调查总人数的一半④此次调查中,平均每天观看时间不足60分钟的人数少于平均每天观看时间在60﹣90分钟的人数所有合理推断的序号是()A.①②B.①④C.③④D.②③④5.(4分)(2020秋•杨浦区期末)下列命题中,正确的是()A.如果为单位向量,那么=||B.如果、都是单位向量,那么=C.如果=﹣,那么∥D.如果||=||,那么=6.(4分)已知圆O1,圆O2的半径分别是6和3,圆O1,圆O2的坐标分别为(5,0)和(﹣3,0),则两圆的位置关系是()A.相交B.外切C.内切D.外离二.填空题(共12小题,满分48分,每小题4分)7.(4分)(2022春•滨海县校级月考)若3x﹣5y=1,则103x÷105y=.8.(4分)如果f(x)=,那么f()=.9.(4分)(2022春•黄冈月考)若x<3,则=.10.(4分)(2021•海东市模拟)若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是.11.(4分)(2021秋•南川区期末)如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.12.(4分)(2021秋•泸西县期末)若关于x的一元二次方程x2﹣6x+k﹣1=0有实数根,则k的取值范围是.13.(4分)(2021秋•大洼区期末)某市民政部门举行“即开式福利彩票”销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项:奖金(元)100005000100050010050数量(个)142040100200如果花2元钱购买1张彩票,那么所得奖金不多于100元的概率是.14.(4分)直线y=kx+2经过点A(2,4),且交x轴于点B,在x轴上有一点C,若△ABC的面积为12,则C点坐标为.15.(4分)(2020春•虹口区期末)如果生产某种产品的成本y(万元)与产量x(吨)之间的关系如图所示,那么生产5吨这种产品所需的成本是万元.16.(4分)(2020秋•宜宾期末)如图,AC∥EF∥BD,若AE:EB=2:3,CD=10,则CF =.17.(4分)(2021•杨浦区三模)正八边形的中心角等于度.18.(4分)(2022春•巴州区校级月考)如图,边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M.若AQ=1,则PD=.三.解答题(共7小题,满分78分)19.(10分)(2021•青浦区二模)计算:+|﹣2|+﹣()﹣2.20.(10分)(2021春•嘉定区期末)解方程组:.21.(10分)(2021秋•颍州区校级期中)如图,在△ABC中,∠A为钝角,AB=25,AC=39,sin B=,求BC的长和tan C的值.22.(10分)(2020•绍兴)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表.4月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0mB 5.0≤x<5.1400C 5.1≤x<5.2550D x≥5.230(1)求表中m的值及图中B组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?23.(12分)(2021秋•南关区校级期末)【教材呈现】下图是华师版九年级下册数学教材第43页的部分内容.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.由圆周角定理,可以得到以下推论:90°的圆周角所对的弦是直径.(如图)【推论证明】已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°.求证:线段AB是⊙O的直径.请你结合图①写出推论的证明过程.【深入探究】如图②,点A,B,C,D均在半径为1的⊙O上,若∠ACB=90°,∠ACD =60°.则线段AD的长为.【拓展应用】如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE.若AB=,则DE的长为.24.(12分)(2022•富平县一模)如图,抛物线y=ax2+5x+c交x轴于点A(1,0)、B,交y轴于点C(0,﹣4).(1)求该抛物线的表达式;(2)若P是抛物线上x轴上方的一动点,过P作PM⊥x轴,垂足为M.是否存在P点,使得以A,P,M为顶点的三角形与△OBC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.25.(14分)(1)如图①,在四边形ABCD中,AB∥CD,点P在BC边上,∠B=∠APD =90°,求证:△ABP∽△PCD;(2)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD;(3)拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上,若∠B=∠C=∠DPE=45°,BC=8,CE=6,求DE的长.。

江苏省盐城市2023年九年级下学期中考数学模拟试卷(四)

江苏省盐城市2023年九年级下学期中考数学模拟试卷(四)

江苏省盐城市2023年九年级下学期中考数学模拟试卷(四)(满分:120分 考试时间:120分钟)一、选择题。

(本大题共8小题,每小题2分,共16分.在每小题所给的四个选项中,只有一个选项是正确的)1.-3的相反数是( ) A.31 B.31- C.-3 D.3 2.下列各式运算中结果为6a 的是( )A. 33a a +B.33)(aC.33·a a D.212a a ÷ 3.如图是由4个大小相同的正方体组合而成的几何体,其左视图是( )4.-27的立方根是( )A.3B.-3C.2D.-25.若a >b ,则下列各式中一定成立的是( )A.a -2>b -2B.a -5<b -5C.-2a >-2bD. 4a <4b6.如图,AB ∥CD ,直线l 分别交AB 、CD 于点E 、F ,∠1=58°,则∠2的度数是( )A.58°B.148°C.132°D.122°7.下面是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形。

下列推理正确的是( )A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②8.已知二次函数y =x 2+2x +a (a >0且a 为常数,当x =m 时的函数值y 1<0,则当x =m +2时的函数值y 2与0的大小关系为( )A.y 2>0B.y 2<0C.y 2=0D.不能确定二、填空題。

(本大题共10小题,每小题2分,共20分.不需要写出解答过程,请把答案直接填写在横线上)9.计算:=--014.39)(π . 10.若分式32+x 有意义,则x 的取值范围是 . 11.据探测,马里亚纳海沟的最大水深位于斐查兹海渊,水深约11000米,是地球的最深点,11000用科学记数法表示为 .12.把代数式xy 2-9x 分解因式,结果是 .13.若一次函数y =(k +5)x -2中y 随x 的增大而减小,则k 的取值范围是 .14.已知-1是关于x 的一元二次方程x 2+kx -3=0的一个根,则k = .15.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,DE 是BC 的垂直平分线,点E 是垂足。

人教版数学中考模拟试卷七套卷4(含解析)

人教版数学中考模拟试卷七套卷4(含解析)

【寒假特辑】人教版数学中考模拟试卷七套卷4(含解析)姓名:__________班级:__________学号:__________一、选择题(本大题12小题,每小题3分,共36分)1.已知|a﹣1|=2,则a的值是()A.3 B.﹣1 C.3或﹣1 D.不确定2.使代数式+有意义的整数x有()A.5个B.4个C.3个D.2个3.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5 500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米4.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A.4 B.6 C.8 D.125.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④6.为了了解石家庄市八年级男生的身高,有关部门准备对200名八年级男生的身高作调查,以下调查方案中比较合理的是()A.查阅外地200名八年级男生的身高统计资料B.测量该市一所中学200名八年级男生的身高C.测量该市两所农村中学各100名八年级男生的身高D.在该市市区内任选一所中学,农村选三所中学,每所中学用抽签的方法分别选出50名八年级男生,然后测量他们的身高7.下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)38.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列添加的条件不正确的是()A.AB=CD B.BC=AD C.∠A=∠C D.BC∥AD9.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2C.x(x﹣1)=1035 D.2x(x+1)=103510.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b2﹣4ac>0,则二次函数的图象与坐标轴的公共点的个数是2或3.其中正确的是()(根据2008武汉卷改编)A.①②B.①③C.②③D.①②③11.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°12.如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是()A.3 B.4 C.5 D.4二、填空题(本大题6小题,每小题3分,共18分)13.若2(a+3)的值与4互为相反数,则a的值为.14.改革开放后,我市农村居民人均消费水平大幅度提升,下表是2004年至2009年我市农村居民人均食品消费支出的统计表(单位:元),则这几年我市农村居民人均食品消费支出的中位数是.年份200420052006200720082009167418432048256027672786人均食品消费支出15.计算:=.16.﹣=.17.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为.18.如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共9个小题,满分66分)19.(5分)如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.20.(5分)为了丰富校园文化生活,某校计划在早间校园广播台播放“百家讲坛”的部分内容,为了了解学生的喜好,随机抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:请根据统计图提供的信息回答以下问题:(1)抽取的学生数为名;(2)该校有3000名学生,估计喜欢收听易中天《品三国》的学生有名;(3)估计该校女学生喜欢收听刘心武评《红楼梦》的约占全校学生的%.21.(6分)解不等式组:,并把解集在数轴上表示出来.22.(6分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.23.(6分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.24.(8分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系?(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?25.(8分)如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O 于点D,过D点作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(1)求证:EF为⊙O的切线;(2)若sin∠ABC=,CF=1,求⊙O的半径及EF的长.26.(10分)如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,与y轴交于点C.(1)求抛物线的解析式,并写出其对称轴;(2)把(1)中所求出的抛物线记为C1,将C1向右平移m个单位得到抛物线C2,C1与C2的在第一象限交点为M,过点M作MG⊥x轴于点G,交线段AC 于点H,连接CM,当△CMH为等腰三角形时,求抛物线向右平移的距离m和此时点M的坐标.27.(12分)如图甲,在△ABC中.∠ACB=90°.AC=4.BC=3.如果点P由点B出发沿BA方向向点A匀速运动.同时点Q由点A出发沿AC方向向点C匀速运动.它们的速度均为每秒钟1个单位长度.连接PQ,设运动时间为t秒钟(0<t<4).(1)设△APQ的面积为S,当实数t为何值时,S取得最大值?S的最大值是多少?(2)在(1)的前提下.当S取得最大值时.把此时的△APQ沿射线AC以每秒钟1个单位长度的速度平移,当点A平移至与点C重合时停止,写出平移过程中,△APQ与△ABC的重叠部分面积y与平移时间x的函数解析式,并写出对应的x的取值范围;(3)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求实数t的值.答案与试题解析一、选择题(本大题12小题,每小题3分,共36分)1.已知|a﹣1|=2,则a的值是()A.3 B.﹣1 C.3或﹣1 D.不确定【分析】先根据题意求出(a﹣1)的值,从而不难求得a的值,注意绝对值等于正数的数有两个.解:∵|a﹣1|=2∴a﹣1=±2∴a=3或a=﹣1故选C.2.使代数式+有意义的整数x有()A.5个B.4个C.3个D.2个【分析】根据被开方数是非负数,分母不能为零,可得答案.解:由题意,得x+3>0且4﹣3x≥0,解得﹣3<x≤,整数有﹣2,﹣1,0,1,故选:B.3.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5 500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.解:5 500万千米,这个数据用科学记数法可表示为5.5×107千米,故选:B.4.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A.4 B.6 C.8 D.12【分析】根据三角形内角和定理可求得∠C=∠ABC=30°,再根据圆周角定理及直角三角形的性质即可求得BD的长.解:∵∠BAC=120°,AB=AC=4∴∠C=∠ABC=30°∴∠D=30°∵BD是直径∴∠BAD=90°∴BD=2AB=8.故选C.5.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④【分析】根据点E有4种可能位置,分四种情况进行讨论,分别画出图形,依据平行线的性质以及三角形外角性质进行计算求解即可.解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.6.为了了解石家庄市八年级男生的身高,有关部门准备对200名八年级男生的身高作调查,以下调查方案中比较合理的是()A.查阅外地200名八年级男生的身高统计资料B.测量该市一所中学200名八年级男生的身高C.测量该市两所农村中学各100名八年级男生的身高D.在该市市区内任选一所中学,农村选三所中学,每所中学用抽签的方法分别选出50名八年级男生,然后测量他们的身高【分析】样本的随机性和代表性很重要.解:A,外地学生身高不能准确反映本地学生的身高,调查方案不合理.B,C 单独去取城市或农村的学生都没有代表性.相对来说D比较合理.故选D7.下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)3【分析】根据合并同类项对A进行判断;根据同底数幂的乘法对B进行判断;根据同底数幂的除法对C进行判断;根据幂的乘方对D进行判断.解:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选B.8.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列添加的条件不正确的是()A.AB=CD B.BC=AD C.∠A=∠C D.BC∥AD【分析】根据平行四边形的判定方法,逐项判断即可.解:∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC∥AD时,由两组对边分别的四边形为平行四边形可知该条件正确;故选B.9.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=1035【分析】如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选C.10.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b2﹣4ac>0,则二次函数的图象与坐标轴的公共点的个数是2或3.其中正确的是()(根据2008武汉卷改编)A.①②B.①③C.②③D.①②③【分析】根据△与0的关系,即可求出答案.解:①若a+b+c=0,则b=﹣a﹣c,∴b2﹣4ac=(a﹣c)2≥0,正确;②若b=2a+3c则△=b2﹣4ac=4a2+9c2+12ac﹣4ac=4a2+9c2+8ac=(2a+2c)2+5c2,∵a≠0∴△恒大于0,∴有两个不相等的实数根,正确;③若b2﹣4ac>0,则二次函数的图象,一定与x轴有2个交点,当与y轴交点是坐标原点时,与x轴的交点有两个,且一个交点时坐标原点,抛物线与坐标轴的交点个数是2.当与y轴有交点的时候(不是坐标原点),与坐标轴的公共点的个数是3,正确.故选D.11.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC﹣∠ADE,从而求解.解:∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC﹣∠ADE=30°.故选C.12.如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是()A.3 B.4 C.5 D.4【分析】设E点坐标为(a,b),则AO+DE=a,AB﹣BD=b,根据△ABO和△BED都是等腰直角三角形,得到EB=BD,OB=AB,再根据OB2﹣EB2=10,运用平方差公式即可得到(AO+DE)(AB﹣BD)=5,进而得到a•b=5,据此可得k=5.解:设E点坐标为(a,b),则AO+DE=a,AB﹣BD=b,∵△ABO和△BED都是等腰直角三角形,∴EB=BD,OB=AB,BD=DE,OA=AB,∵OB2﹣EB2=10,∴2AB2﹣2BD2=10,即AB2﹣BD2=5,∴(AB+BD)(AB﹣BD)=5,∴(AO+DE)(AB﹣BD)=5,∴a•b=5,∴k=5.故选:C.二、填空题(本大题6小题,每小题3分,共18分)13.若2(a+3)的值与4互为相反数,则a的值为﹣5.【分析】根据相反数的意义,可得答案.解:由题意,得2(a+3)+4=0,解得a=﹣5,故答案为:﹣5.14.改革开放后,我市农村居民人均消费水平大幅度提升,下表是2004年至2009年我市农村居民人均食品消费支出的统计表(单位:元),则这几年我市农村居民人均食品消费支出的中位数是2304元.年份200420052006200720082009167418432048256027672786人均食品消费支出【分析】原数据已经排序找到中间位置的数或中间两数的平均数即可求得中位数.解:共6个数,故中位数为:=2304元,故答案为:2304元.15.计算:=5﹣5.【分析】先把各根式化为最简二次根式,再合并同类项即可.解:原式=3﹣5+2=5﹣5.故答案为:5﹣5.16.﹣=﹣.【分析】首先将原式分解因式,进而找出最简公分母通分,进而化简求出即可.解:﹣=﹣=﹣==﹣.故答案为:﹣.17.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为(4,33).【分析】把含p的项合并,只有当p的系数为0时,不管p取何值抛物线都通过定点,可求x、y的对应值,确定定点坐标.解:y=2x2﹣px+4p+1可化为y=2x2﹣p(x﹣4)+1,分析可得:当x=4时,y=33;且与p的取值无关;故不管p取何值时都通过定点(4,33).18.如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2017的横坐标.解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(0,﹣),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.三、解答题(本大题共9个小题,满分66分)19.(5分)如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.【分析】(1)做BO⊥CD于点O,并延长到B′,使B′O=BO,连接AB即可;(2)轴对称图形沿某条直线折叠后,直线两旁的部分能完全重合.解:所作图形如下所示:20.(5分)为了丰富校园文化生活,某校计划在早间校园广播台播放“百家讲坛”的部分内容,为了了解学生的喜好,随机抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:请根据统计图提供的信息回答以下问题:(1)抽取的学生数为300名;(2)该校有3000名学生,估计喜欢收听易中天《品三国》的学生有1060名;(3)估计该校女学生喜欢收听刘心武评《红楼梦》的约占全校学生的15%.【分析】(1)男女生所有人数之和;(2)求出抽取的样本中收听品三国的学生所占的比例,乘3000即可求解;(3)听红楼梦的女生人数除以总人数.解:(1)20+10+30+15+30+38+64+42+6+45=300人;(2)×3000=1060人;(3)样本中校女学生喜欢收听刘心武评《红楼梦》的约占样本容量的百分比为45÷300=15%,故该校女学生喜欢收听刘心武评《红楼梦》的约占全校学生的15%.故答案为:300;1060;15.21.(6分)解不等式组:,并把解集在数轴上表示出来.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.解:由①得x≥4,由②得x<1,∴原不等式组无解,22.(6分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.解:(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.23.(6分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.【分析】首先由题意可得BE=,AE=,又由AE﹣BE=AB=m米,即可得﹣=m,继而可求得CE的长,又由测角仪的高度是n米,即可求得该建筑物的高度.解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.24.(8分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系?(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?【分析】(1)直接根据函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;(2)由l1上60分钟处点的坐标可知路程和时间,从而求得速度;(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;(4)结合(3)中函数图象求得t=120时s的值,做差即可求解;(5)求出函数图象的交点坐标即可求解.解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=150,s2=120150﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.25.(8分)如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O 于点D,过D点作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(1)求证:EF为⊙O的切线;(2)若sin∠ABC=,CF=1,求⊙O的半径及EF的长.【分析】(1)连接OD,只要证明OD⊥EF即可.(2)连接BD,CD,根据相似三角形的判定可得到△CDF∽△ABD∽△ADF,根据相似比及勾股定理即可求得半径及EF的值.(1)证明:连接OD;∵AB是直径,∴∠ACB=90°;∵EF∥BC,∴∠AFE=∠ACB=90°,∵OA=OD,∴∠OAD=∠ODA;又∵AD平分∠BAC,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AF,∴∠ODE=∠AFD=90°,即OD⊥EF;又∵EF过点D,∴EF是⊙O的切线.(2)解:连接BD,CD;∵AB是直径,∴∠ADB=90°,∴∠ADB=∠AFD;∵AD平分∠BAC,∴∠OAD=∠DAC,∴BD=CD;设BD=CD=a;又∵EF是⊙O的切线,∴∠CDF=∠DAC,∴∠CDF=∠OAD=∠DAC,∴△CDF∽△ABD∽△ADF,∴;∵sin∠ABC==,∴设AC=4x,AB=5x,∴a2=5x,∴在Rt△CDF中DF2=CD2﹣CF2=5x﹣1;又∵,∴5x﹣1=1×(1+4x),∴x=2,∴AB=5x=10,AC=4x=8;∵EF∥BC,∴△ABC∽△AEF,∴,,,∴在Rt△AEF中,.26.(10分)如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,与y轴交于点C.(1)求抛物线的解析式,并写出其对称轴;(2)把(1)中所求出的抛物线记为C1,将C1向右平移m个单位得到抛物线C2,C1与C2的在第一象限交点为M,过点M作MG⊥x轴于点G,交线段AC 于点H,连接CM,当△CMH为等腰三角形时,求抛物线向右平移的距离m和此时点M的坐标.【分析】(1)利用交点式求二次函数的解析式,并配方求对称轴;(2)先求直线AC的解析式,根据各自的解析式设出M(x,﹣x2++2),H (x,﹣x+2),由图得△CMH为等腰三角形时,①CM=CH,②当HC=HM时,③当CM=HM时,列式计算求出M的坐标,把M的坐标代入平移后的解析式可并得出m的值.解:(1)当x=0时,y=ax2+bx+2=2,∴抛物线经过(0,2),∵抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,设抛物线的解析式为:y=a(x﹣4)(x+1),把(0,2)代入得:2=a(0﹣4)(0+1),a=﹣,∴y=﹣(x﹣4)(x+1)=﹣x2++2=﹣(x﹣)2+,∴抛物线的解析式为:y=﹣x2++2,对称轴是:直线x=;(2)设直线AC的解析式为:y=kx+b,把A(4,0)、C(0,2)代入得:,解得:,∴直线AC的解析式为:y=﹣x+2,设M(x,﹣x2++2),H(x,﹣x+2),∵△CMH为等腰三角形,分三种情况:①当CM=CH时,∴C是MH垂直平分线上的点,∴GH+GM=4,则﹣x2++2+(﹣x+2)=4,解得:x1=0(舍),x2=2,∴M(2,3),设平移后的抛物线的解析式为:y=﹣(x﹣﹣m)2+,把M(2,3)代入得:m=1.②当HC=HM时,HM=﹣x2++2﹣(﹣x+2)=﹣x2+2x,CH2=,CH=,∴=﹣x2+2x,x1=0(舍),x2=4﹣,∴M(4﹣,﹣),设平移后的抛物线的解析式为:y=﹣(x﹣﹣m)2+,把M(4﹣,﹣),代入得:m1=0(舍),m2=5﹣2;③当CM=HM时,HM=﹣x2+2x,CM2=,则=,x=,∴M(,),设平移后的抛物线的解析式为:y=﹣(x﹣﹣m)2+,把M(,),代入得:m=0(舍);综上所述,当m=1时,M(2,3);当m=5﹣2时,M(4﹣,﹣).27.(12分)如图甲,在△ABC中.∠ACB=90°.AC=4.BC=3.如果点P由点B出发沿BA方向向点A匀速运动.同时点Q由点A出发沿AC方向向点C匀速运动.它们的速度均为每秒钟1个单位长度.连接PQ,设运动时间为t秒钟(0<t<4).2·1·c·n·j·y(1)设△APQ的面积为S,当实数t为何值时,S取得最大值?S的最大值是多少?(2)在(1)的前提下.当S取得最大值时.把此时的△APQ沿射线AC以每秒钟1个单位长度的速度平移,当点A平移至与点C重合时停止,写出平移过程中,△APQ与△ABC的重叠部分面积y与平移时间x的函数解析式,并写出对应的x的取值范围;(3)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求实数t的值.【分析】(1)过点P作PH⊥AC于H,由△APH∽△ABC,得出=,从而求出AB,再根据=,得出PH=3﹣t,则△AQP的面积为:AQ•PH=t (3﹣t),最后进行整理即可得出答案;(2)需要分类讨论,当PQ在BC的左边时,△APQ与△ABC的重叠部分面积y=S△APQ,当PQ在BC的右边时,△APQ与△ABC的重叠部分面积y=S△A′P′C;(3)连接PP′交QC于E,当四边形PQP′C为菱形时,得出△APE∽△ABC,=,求出AE=﹣t+4,再根据QE=AE﹣AQ,QE=QC得出﹣t+4=﹣t+2,再求t即可.解:(1)如答图1,过点P作PH⊥AC于H,∵∠C=90°,∴AC⊥BC,∴PH∥BC,∴△APH∽△ABC,∴=,∵AC=4cm,BC=3cm,∴AB=5cm,∴=,∴PH=3﹣t,∴△AQP的面积为:S=×AQ×PH=×t×(3﹣t)=﹣(t﹣)2+,∴当t为秒时,S最大值为cm2.(2)①当0≤x<时,y=;②如答图2,当≤x≤4时,△A′P′C∽△A′PQ,则=,即=,解得P′C=(4﹣x),则y=(4﹣x)×(4﹣x)=(4﹣x)2,综上所述,y=;(3)如答图3,连接PP′,PP′交QC于E,当四边形PQP′C为菱形时,PE垂直平分QC,即PE⊥AC,QE=EC,∴△APE∽△ABC,∴=,∴AE===﹣t+4QE=AE﹣AQ═﹣t+4﹣t=﹣t+4,QE=QC=(4﹣t)=﹣t+2,∴﹣t+4=﹣t+2,解得:t=,∵0<<4,∴当四边形PQP′C为菱形时,t的值是s.21世纪教育网–中小学教育资源及组卷应用平台版权所有@21世纪教育网。

2024年重庆市中考数学模拟试卷(预测四)

2024年重庆市中考数学模拟试卷(预测四)

2024年重庆市中考数学模拟试卷(预测四)一、单选题1.2的相反数是( )A .2B .2-C .12-D .42.下面的几何体的主视图是( )A .B .C .D . 3.如图,直线a b ∥,直线c 与直线a 、b 分别相交于A 、B 两点,AC AB ⊥于点A ,交直线b 于点C .如果138∠=︒,那么2∠的度数为( )A .52︒B .48︒C .38︒D .32︒ 4.函数k y =(k 为常数,0k ≠)的部分x 和y 的值如下表所示,则“◎”表示的数是( )A .4B .2C .1D .125.估计 ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间 6.如图,ABC V 与111A B C △位似,位似中心是点O ,且1:1:2OA OA =,若ABC V 的面积为5,则111A B C △的面积为( )A .10B .15C .20D .257.下列图案是用长度相同的火柴棒按一定规律拼搭而成的,图案①需要8根火柴棒,图案②需要15根火柴棒,图案③需要22根火柴棒,….按此规律,图案⑧需要的火柴棒的根数为( )A .50B .54C .57D .648.如图,已知AB 与O e 相切于点A ,AC 是O e 的直径,连接BC 交O e 于点D ,E 为O e 上一点,连接,EC ED ,若CED α∠=,则B ∠的度数是( )A .90α︒-B .αC .452α︒+ D .2α9.如图,E 是正方形ABCD 对角线BD 上一点,连接AE ,过点E 作EF AE ⊥,交BC 于点F .已知DE AE BF 的长为( )A .1B .2 CD .10.有n 个依次排列的算式:第1项是2a ,第2项是221a a ++,用第2项减去第1项,所得之差记为1b ,将1b 加2记为2b ,将第2项与2b 相加作为第3项,将2b 加2记为3b ,将第3项与3b 相加作为第4项,……,以此类推.某数学兴趣小组对此展开研究,得到3个结论①529b a =+;②若第6项与第5项之差为4057,则2024=a ;③当n k =时,212342k b b b b b ak k +++++=+L ;其中正确的个数是( )A .0B .1C .2D .3二、填空题11.计算:()023.142π---=.12.如图,一个正方形和一个正五边形各有一边AB ,CD 在直线l 上,且只有一个公共顶点P ,则BPC ∠的度数为.13.一个不透明的口袋中有1个黄色球和3个红色球,这些球除颜色外其余均相同从中随机摸出一个球,记下颜色后放回,搅匀后再从中随机摸出一个球,则两次都摸出红球的概率是. 14.如图,某小区有一块长为15米,宽为10米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为296m ,两块绿地之间及周边留有宽度相等的人行通道.设人行通道的宽度为x 米,则所列方程是.15.长方形ABCD 中,以点A 为圆心AD 的长为半径画弧交AB 于点E ,以DC 为直径的半圆与AB 相切,切点为E ,已知4AB =,则图中阴影部分的面积为.(结果保留π)16.如图,CN 平分ABC V 的外角ACM ∠,过点A 作CN 的垂线,垂足为点D ,B BAD ∠=∠.若9AC =,6BC =,则AD 的长为.17.关于x 的一元一次不等式组32132325x x x m -+⎧≥-⎪⎨⎪->⎩至少有3个整数解,且关于y 的分式方程3222my y y y-+=--有整数解,那么符合条件的所有整数m 的和为. 18.如果一个四位自然数M 各个数位上的数字均不为0,且前两位数字之和为5,后两位数字之和为8,则称M 为“会意数”.把四位数M 的前两位数字和后两位数字整体交换得到新的四位数M '.规定()99M M F M '-=.例如:2335M =,∵235+=,358+=,∴ 2335是“会意数”.则()3523233523351299F -==.那么“会意数”4162N =,则()F N =;已知四位自然数S abcd =是“会意数”,(4b ≤,7d ≤,且a 、b 、c 、d 均为正整数),若()F S 恰好能被8整除,则满足条件的数S 的最大值是.三、解答题19.计算:(1)()()22+--x y x x y ;(2)26934222-+-⎫⎛÷+- ⎪--⎝⎭x x x x x x . 20.如图,在Rt ABC △中,90B ??,AD 平分BAC ∠.小明在刚学完“三角形全等的判定”这节课后,想利用所学知识,推导出ABD △和ACD V 面积的比值与AB ,AC 两边比值的关系.他的思路是:过点D 作AC 的垂线,垂足为点H ,再根据三角形全等来证明ABD △和ACD V 的高相等,进一步得到ABD △和ACD V 的面积之比等于BAC ∠的两邻边边长之比.请根据小明的思路完成以下作图与填空:(1)用直尺和圆规,过点D 作AC 的垂线,垂足为点H (只保留作图痕迹).(2)证明:∵DH AC ⊥,∴90AHD B ∠=︒=∠.∵AD 平分BAC ∠,∴ ① .在ABD △和AHD V 中,B AHD BAD HAD ⎧∠=∠⎪∠=∠⎨⎪⎩② ∴ABD △≌AHD V ()AAS .∴ ③ . ∵12ABD S AB BD =⋅V , 12ACD S AC DH =⋅△, ∴ABD ACD S AB S AC=△△. 小明再进一步研究发现,只要一个三角形被其任意一内角角平分线分为两个三角形,均有此结论.请你依照题意完成下面命题:如果一个三角形满足被其任意一内角角平分线分为两个三角形,那么 ④ .21.我校在七、八年级学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .130135x ≤<,B .135140x ≤<,C .140145x ≤<,D .145150x ≤≤),下面给出了部分信息:七年级抽取的10名学生的竞赛成绩:131,134,135,138,141,147,148,148,148,150. 八年级10名学生的竞赛成绩在C 组中的数据是140,143,143,144.七、八年级抽取的学生的竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:a =______,b =______,c =______;(2)根据以上数据分析,你认为我校七、八年级中哪个年级学生竞赛成绩较好?请说明理由(一条理由即可);(3)我校七、八年级分别有780名、620学生参加了此次竞赛,请估计成绩达到140分及以上的学生共有多少名?22.山城步道是重庆的特色,市民可以在步道里面休闲、运动,享受美好生活.半山崖线步道沙坪坝段全长2000米,由甲、乙两个工程队合作完成,甲工程队修建的步道长度比乙工程队修建的步道长度的2倍少400米.(1)求甲、乙两工程队各修建步道多少米?(2)实际修建过程中,甲工程队每天比乙工程队多修5米,最终甲工程队完成任务时间是乙工程队完成任务时间的1.2倍,则甲工程队每天修建步道多少米?23.如图,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,4BC =.点D 是AB 中点,动点P ,Q 分别以每秒1个单位长度的速度同时运动,点P 从点C 出发,沿折线C D B →→运动,到达点B 时停止运动,点Q 从点B 出发,沿直线B A →运动,到达点A 时停止运动,设点P ,点Q 的运动时间为x 秒,点P ,Q 之间的距离为y .(1)请直接写出y 与x 之间的函数表达式并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数图像,并写出该函数的一条性质;(3)结合函数图像,直接写出P ,Q 两点相距大于3个单位长度时x 的值.(结果保留一位小数,误差不超过0.2).24.如图,四边形ABCD 是某公园的休闲步道.经测量,点B 在A 的正西方向,AB =米,点D 在A 的正北方向,点C 在B 的西北方向,BC =C 在D 的南偏西60︒方向上.(1)求步道AD 的长度;(精确到个位数);(2)小亮以90米/分的速度沿A B C D →→→的方向步行,小明骑自行车以300米/分的速度沿D C B A →→→的方向行驶.两人能否在4分钟内相遇?请说明理由.(参考数据:1.414 1.732)25.在平面直角坐标系中,抛物线22y ax bx =+-交x 轴于点()3,0A -,()1,0B ,交y 轴于点C .(1)求抛物线的解析式;(2)如图1,在直线AC 下方的抛物线上有一点D ,作D F y ∥轴交BC 于点F ,作D E A C ⊥于E ,求DF 的最大值及此时点D 的坐标;(3)如图2,将抛物线22y ax bx =+-沿射线CBy ',在y 轴的正半轴上有一点G ,在新抛物线y '上是否存在点P ,使得2GOP BAC ∠=∠?若存在,直接写出点P 的横坐标;若不存在,说明理由.26.在ABC V 中,AB AC =,D 是边AC 上一动点,E 是ABC V 外一点,连接BD BE ,.(1)如图1,CE AB ∥,=AD CE ,若1203ABD A ∠==︒∠,求E ∠的度数; (2)如图2,CE AB ∥,2BD BE A ABD =∠=∠,,过点D 作DF AB ⊥交于点F ,若23DE DF DBC CBE =∠=∠,,求证:AB BD CE =+;(3)如图3,AE AB =,延长AE 交BC 的延长线于点F ,BE 交AC 于点G ,点D 是直线AC 上一动点,将ABD △沿BD 翻折得HBD △,连接FH ,取FH 的中点M ,连接AM ,若2EF GC AB BC ==,,当线段AM 取得最大值时,请直接写出AM AB的值.。

广东省东莞市虎门镇成才实验学校2023年中考数学模拟试题4

广东省东莞市虎门镇成才实验学校2023年中考数学模拟试题4

数学模拟试卷(四)(满分:120分,时间:90分钟)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·云南)某地区2021年元旦的最高气温为9 ℃,最低气温为-2 ℃,那么该地区这天的最低气温比最高气温低()A .7 ℃B .-7 ℃C .11 ℃D .-11 ℃2.(2022·安徽)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A .B .C .D .3.(2022·安徽)据统计,2021年我省出版期刊总印数3 400万册,其中3 400万用科学记数法表示为()A .3.4×108B .0.34×108C .3.4×107D .34×1064.下列说法正确的是()A .掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是s 2甲=0.4,s 2乙=0.6,则甲的射击成绩较稳定C .“明天降雨的概率为12”,表示明天有半天都在降雨D .了解一批电视机的使用寿命,适合用普查的方式5.(2022·吉林长春)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是()A .a >0B .a <bC .b -1<0D .ab >06. 二次函数y =x 2的图象平移后经过点(2,0),则下列平移方法正确的是()A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位7.(2022·河池)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,下列结论中错误的是()A .AB =AD B .AC ⊥BD C .AC =BD D .∠DAC = ∠BAC第7题图 第8题图 第9题图8.(2022·海南)如图,直线m ∥n ,△ABC 是等边三角形,顶点B 在直线n 上,直线m 交AB于点E ,交AC 于点F ,若∠1=140°,则∠2的度数是()A .80°B .100°C .120°D .140°9.(2022·海南)如图,在△ABC 中,AB =AC ,以点B 为圆心,适当长为半径画弧,交BA 于点M ,交BC 于点N ,分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠ABC 的内部相交于点P ,画射线BP ,交AC 于点D ,若AD =BD ,则∠A 的度数是()A .36°B .54°C .72°D .108°10.(2022·陕西)在同一平面直角坐标系中,直线y =-x +4与y =2x +m 相交于点P (3,n ),则关于x ,y 的方程组⎩⎨⎧x +y -4=0,2x -y +m =0的解为() A .⎩⎨⎧x =-1,y =5 B .⎩⎨⎧x =1,y =3C .⎩⎨⎧x =3,y =1 D .⎩⎨⎧x =9,y =-5二、填空题:本大题共5小题,每小题3分,共15分.11.(2022·河池)若二次根式a -1有意义,则a 的取值范围是____.12.(2022·吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要_____元.(用含m 的代数式表示)13.(2022·长春)若关于x 的方程x 2+x +c =0有两个相等的实数根,则实数c 的值为____.14.(2022·海南)如图,射线AB 与⊙O 相切于点B ,经过圆心O 的射线AC 与⊙O 相交于点D ,C ,连接BC ,若∠A =40°,则∠ACB =____°.第14题图 第15题图15.(2022·陕西)如图,在菱形ABCD 中,AB =4,BD =7.若M ,N 分别是边AD ,BC 上的动点,且AM =BN ,作ME ⊥BD ,NF ⊥BD ,垂足分别为E ,F ,则ME +NF 的值为______.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(1)计算:(-3)2×3-1+(-5+2)+||-2;(2)解方程组:⎩⎨⎧2x -y =3, ①x +y =6. ②17.(2022·吉林)如图,AB=AC,∠BAD=∠CAD.求证:BD=CD.18.(原创)解方程:(1)x(x-2)=2x-4; (2)x-2 0232-1=0.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(2022·江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.20.(2022·河池)为喜迎中国共产党第二十次全国代表大会的召开,某中学举行党史知识竞赛.团委随机抽取了部分学生的成绩作为样本,把成绩按达标,良好,优秀,优异四个等级分别进行统计,并将所得数据绘制成如下不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次调查的样本容量是____,圆心角β=____度;(2)补全条形统计图;(3)已知红星中学共有1 200名学生,估计此次竞赛该校获优异等级的学生人数为多少?(4)若在这次竞赛中有A ,B ,C ,D 四人成绩均为满分,现从中抽取2人代表学校参加县级比赛.请用列表或画树状图的方法求出恰好抽到A ,C 两人同时参赛的概率.21.(2022·滨州)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(2021·湘潭)如图,四边形ABCD 为矩形,E 为BC 边中点,连接AE ,以AD 为直径的⊙O交AE 于点F ,连接OC ,FC ,OC 交⊙O 于点G .(1)若∠COD =60°,AD =6,求DG ︵的长;(2)求证:四边形AOCE 是平行四边形;(3)求证:CF 是⊙O 的切线.23.(2022·牡丹江、鸡西)如图,已知抛物线y=1a(x-2)(x+a)(a>0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题:①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年中考模拟数学试卷(4)
一、选择题(本大题共12小题,每小题4分,满分48分,在每小题给出的四
个选项中,只有一项是符合题目要求的.)
1.若a与1互为相反数,则| a+1| 等于( )
A.–1 B.0 C.1 D.2 2.下列计算正确的是( )
A.b2•b3=b6 B.(-a2)3=a6 C.(ab)2=ab2
D.(-a)6÷(-a)3=-a3
3.下列四个图形中,既是轴对称图形又是中心对称图形的有( )
A.4个B.3个C.2个D.1个
4.方程x2+2x﹣3=0的根的情况是()
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有无实数根
5.如图1 是一个三视图,则此三视图所对应的直观图是( )
6.大量事实证明,环境污染治理刻不容缓,全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学计数法表示为( )
A.1.42×105B.1.42×104C.142×103D.0.142×106 7.永州市各县区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:34,35,36,34,36,37,37,36,37,37(单位℃).则这组数据的中位数和众数分别是()
A.36,37 B.37,36 C.36.5,37 D.37,36.5
8.
如图一把打开的雨伞可近似的看成一个圆锥,伞骨(面料下方能够把面料撑起来的支架)末端各点所在圆的直径AC长为12分米,伞骨AB长为9分米,那么制作这样的一把雨伞至少需要绸布面料为()
A.36π平方分米B.54π平方分米C.27π 平方分米D.128π平方分米9.如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为()
A.4cm2 B.2 cm2 C.3 cm2 D.2 cm2
10.小亮家与姥姥家相距24km.小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图像如图所示.根据图像得到下列结论,其中错误的是( ) A.小亮骑自行车的平均速度是12km/h
B.妈妈比小亮提前0.5小时到达姥姥家
C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮
11.如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中:①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.正确结论的个数为()
A.1个B.2个C.3个D.4个
12.下列图形都是由同样大小的五角星按一定规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,……,则第⑥个图形的五角星个数为( )
★★
★★
★★★★
★★
★★
★★★★
★★★★★★
★★★★
★★

图①图②图③
A.60 个B.64个C.66个D.72个
二、填空题(本大题共8小题,每小题4分,满分32分.)
13.若分式有意义,则x应满足____________.
14.甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.
15.如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直线分别交直线b于B、C 两点.若∠1=42°,则∠2的度数是.
16.已知一个正比例函数的图像与一个反比例函数的图像的一个交点坐标为(1,2),则另一个交点坐标是.
17.如图,△ABC中,E、F分别是AB、AC上的两点,且,若△AEF的面积为2,则四边形EBCF的面积为_________.
18.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠ACP= _________.
19.若关于x的不等式组有实数解,则a的取值范围是.
20.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是;当点B的横坐标为4n(n为正整数)时,m=(用含n的代数式表示).
三、解答题(本大题共7小题,满分70分,解答应写出文字说明、证明过程或演算步骤)21.(8分)(1)计算:6tan30°-│﹣│+(﹣1)xx+
(2)先化简,再求值:(1+
1
a2-1

a
3(a+1)
,其中a=4.
22.(8分)如图,一艘货轮在A处发现其北偏东45°方向有一海盗船,立即向位于正东方向B处的海警舰发出求救信号,并向海警舰靠拢,海警舰立即沿正西方向对货轮实施救援,此时距货轮200海里,并测得海盗船位于海警舰北偏西60°方向的C处.
(1)求海盗船所在C处距货轮航线AB的距离.
(2)若货轮以45海里/时的速度向A处沿正东方向海警舰靠拢,海盗以50海里/时的速度
由C处沿正南方向对货轮进行拦截:问海警舰的速度应为多少时才能抢在海盗之前去救货轮(结果保留根号).
23.(10分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5求菱形ADCF的面积.
24.(10分)xx年4月23日是第20个世界读书日,永州市各学校积极开展读书活动.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.
根据图中提供的信息,解答下列问题:
(1)补全频数分布直方图;
(2)求扇形统计图中m的值和“E”组对应的圆心角的度数;
(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.
A
B
D C
F
E
25.(10分)如图,Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,E 是
BC 的中点,连结DE 、OE .
(1)判断DE 与⊙O 的位置关系并说明理由;
(2)求证:;
(3)若tan C =,DE =2,求AD 的长.
26.(12分)如图,已知抛物线与x 轴相交于A 、B .两点,与y 轴相交于点C ,若已知A
点的坐标为A (-2,0).
求抛物线的解析式及它的对称轴方程;
求点C 的坐标,连接AC 、BC ,并求线段BC 所在直线的解析式;
试判断△AOC 与△COB 是否相似?并说明理由;
在抛物线的对称轴上是否存在点Q ,使△ACQ 为等腰三角形,若存在,求出符合条件
的Q 点坐标;若不存在,请说明理由. B A C
O x
y
27.(12分)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,,将这副直角三角板按如图(1)所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上,现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.
(1)如图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=
度;
(2)如图(3),当三角板DEF运动过程中,当EF经过点C时,求FC的长;
(3)在三角板DEF运动过程中,设,两块三角板重叠部分的面积为,求与的函数解析
式,并求出对应的取值范围.
图(1) 图(2) 图(3)
25406 633E 挾23704 5C98 岘s37099 90EB 郫y36206 8D6E 赮23258 5ADA 嫚21834 554A 啊33358 824E 艎/]27723 6C4B 汋24959 617F 慿40587 9E8B 麋。

相关文档
最新文档