最新湘教版九年级数学上册《相似三角形的判定2》教学设计(精品教案)
初中数学初三数学上册《相似三角形的性质》教案、教学设计

一、教学目标
(一)知识与技能
1.理解相似三角形的定义及性质,掌握相似三角形的判定方法。
2.能够运用相似三角形的性质解决实际问题,如求线段长度、角度大小等。
3.学会使用相似三角形的相关定理进行证明,提高逻辑推理能力。
4.掌握相似变换的概念,了解其在现实生活中的应用。
(二)过程与方法
1.通过观察、实践、探索,引导学生发现相似三角形的性质,培养他们的观察能力和动手操作能力。
2.通过小组合作、讨论交流,培养学生的团队合作意识和解决问题的能力。
3.运用类比、归纳等数学思想,帮助学生建立知识体系,提高他们的逻辑思维能力。
4.设计丰富的例题和练习,巩固所学知识,提高学生的解题技巧。
1.重点:相似三角形的定义、性质及判定方法,相似变换的应用。
2.难点:相似三角形性质的证明过程,以及将相似三角形性质应用于解决实际问题。
(二)教学设想
1.创设情境,导入新课
-通过展示生活中常见的相似图形,如地图、照片等,引发学生对相似三角形的兴趣。
-提问方式引导学生回顾已学的全等三角形知识,为新课的学习做好铺垫。
作业要求:
1.学生应在规定时间内独立完成作业,注重作业质量,提高解题效率。
2.作业完成后,认真检查,确保答案正确、书写规范。
3.积极参与课堂讨论,与同学分享解题思路和心得。
4.遇到问题及时向老师请教,不断提高自己的数学素养。
在教学过程中,教师应关注学生的个体差异,因材施教,充分调动学生的积极性,引导他们主动参与课堂活动。同时,注重培养学生的数学思维和解决问题的能力,为他们的终身学习奠定基础。
二、学情分析
本章节的学习对象为初三学生,经过前两年的数学学习,他们已经掌握了平面几何的基本知识和技能,具备了一定的逻辑推理和问题解决能力。在此基础上,学生对相似三角形的性质这一章节内容的学习将面临以下挑战:
湘教版九年级数学上册教案 相似三角形的判定

3.4.2相似三角形的性质教学目标【知识与技能】理解掌握相似三角形对应线段(高、中线、角平分线)及相似三角形的面积、周长比与相似比之间的关系.【过程与方法】对性质定理的探究,学生经历观察——猜想——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度.【情感态度】在学习和探讨的过程中,体验从特殊到一般的认知规律.【教学重点】相似三角形性质的应用.【教学难点】相似三角形性质的应用.教学过程一、情景导入,初步认知1.什么叫相似三角形?相似比指的是什么?2.全等三角形是相似三角形吗?全等三角形的相似比是多少?3.相似三角形的判定方法有哪些?【教学说明】复习相关知识,为本节课的学习做准备.二、思考探究,获取新知1.根据相似三角形的概念可知相似三角形有哪些性质?【归纳结论】相似三角形的基本性质:相似三角形的对应角相等,对应边成比例.2.如图,△ABC和△A′B′C′是两个相似三角形,相似比为k,其中,AD、A′D′分别为BC、B′C′边上的高,那么,AD和A′D′之间有什么关系?证明:∵△ABC∽△A′B′C′,∴∠B=∠B′,又∵AD⊥BC,A′D′⊥B′C′,∴∠ADB=∠A′D′B′=90°,∴△ABD∽△A′B′D′,∴AB︰A′B′=AD︰A′D′=k.你能得到什么结论?【归纳结论】相似三角形对应边上的高的比等于相似比.3.如图,△A′B′C′和△ABC是两个相似三角形,相似比为k,求这两个三角形的角平分线A′D′与AD 的比.解:∵△A′B′C′∽△ABC,∴∠B′=∠B,∠A′B′C′=∠ABC,∵A′D′,AD分别是△A′B′C′与△ABC的角平分线,∴∠B′A′D′=∠BAD,∴△A′B′D′∽△ABD.(有两个角对应相等的两个三角形相似)∴A D A B AD AB''''==k根据上面的探究,你能得到什么结论?【归纳结论】相似三角形对应角平分线的比等于相似比.4.在上图中,如果AD、A′D′分别为BC、B′C′边上的中线,那么,AD和A′D′之间有什么关系?你能证明你的结论吗?【归纳结论】相似三角形对应边上的中线的比等于相似比.5.如图△ABC∽△A′B′C′,ABA′B′=k,AD、A′D′为高线.(1)这两个相似三角形周长比为多少?(2)这两个相似三角形面积比为多少?分析:(1)由于△ABC ∽△A′B′C′,所以AB︰A′B′=BC︰B′C′=AC︰A′C′=k.由并比的性质可知,(AB+BC+AC) ︰(A′B′+B′C′+A′C′)=k.(2)由题意可知,因为△ABD∽△A′B′D′,所以AB︰A′B′=AD︰A′D′=k.因此可得,△ABC的面积︰△A′B′C′的面积=(AD·BC)︰(A′D′·B′C′)=k2.【归纳总结】相似三角形的周长比等于相似比,面积比等于相似比的平方.【教学说明】通过这两个问题,引导学生通过合情推理,得出结论.学生可以通过合作交流,找出解决问题的方法.三、运用新知,深化理解1.见教材P86例9、P88例11、例12.2.已知△ABC∽△A′B′C′,BD和B′D′是它们的对应中线,且ACA C''=32,B′D′=4,则BD的长为____.分析:因为△ABC∽△A′B′C′,BD和B′D′是它们的对应中线,根据对应中线的比等于相似比,【答案】 63.在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为()A.8,3 B.8,6 C.4,3 D.4,6分析:根据相似三角形周长比等于相似比,面积比等于相似比的平方可得周长为8,面积为3,所以选A.【答案】 A4.已知△ABC∽△A′B′C′且S△ABC∶S△A′B′C′=1∶2,则AB∶A′B′=_____.分析:根据相似三角形面积的比等于相似比的平方可求AB∶A′B′=1∶2.【答案】 1∶25.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的12,那么边长应缩小到原来的_____.分析:根据面积比等于相似比的平方可得相似比为22,所以边长应缩小到原来的22.【答案】2 26.如图,CD是Rt△ABC的斜边AB上的高.(1)则图中有几对相似三角形;(2)若AD=9 cm,CD=6 cm,求BD;(3)若AB=25 cm,BC=15 cm,求BD.解:(1)∵CD⊥AB,∴∠ADC=∠BDC=∠ACB=90°.在△ADC和△ACB中,∠ADC=∠ACB=90°,∠A=∠A,∴△ADC∽△ACB,同理可知,△CDB∽△ACB.∴△ADC∽△CDB.所以图中有三对相似三角形.7.如图 ,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.(1)证明:∵在梯形ABCD中,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,∴△CDF∽△BGF.(2)由(1)知△CDF∽△BGF,又F是BC的中点,∴BF=FC,∴△CDF≌△BGF,∴DF=FG,CD=BG.又∵EF∥CD,AB∥CD,∴EF∥AG,得2EF=AB+BG.∴BG=2EF-AB=2×4-6=2,∴CD=BG=2cm.8.已知△ABC的三边长分别为5、12、13,与其相似的△A′B′C′的最大边长为26,求△A′B′C′的面积S.分析:由△ABC的三边长可以判断出△ABC为直角三角形,又因为△ABC∽△A′B′C′,所以△A′B′C′也是直角三角形,那么由△A′B′C′的最大边长为26,可以求出相似比,从而求出△A′B′C′的两条直角边长,再求得△A′B′C′的面积.解:设△ABC的三边依次为:BC=5,AC=12,AB=13,∵AB2=BC2+AC2,∴∠C=90°.又∵△ABC∽△A′B′C′,∴∠C′=∠C=90°.又BC=5,AC=12,∴B′C′=10,A′C′=24.∴S=12A′C′×B′C′=12×24×10=120.(2)已知:两相似三角形对应高的比为3∶10,且这两个三角形的周长差为560cm,求它们的周长.分析:(1)用同一个字母k表示出x,y,z.再根据已知条件列方程求得k的值,从而进行求解;(2)根据相似三角形周长的比等于对应高的比,求得周长比,再根据周长差进行求解.【教学说明】通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的习惯,提高分析问题和解决问题的能力.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题3.4”中第6、7、9题.教学反思本节的主要内容是导出相似三角形的性质定理,并进行初步运用,让学生经历相似三角形性质探索的过程,提高数学思考、分析和探究活动的能力,体会相似三角形中的变量与不变量,体会其中蕴涵的数学思想.。
相似三角形的判定数学教学教案5篇

相似三角形的判定数学教学教案5篇相似三角形的判定数学教学教案1教学目标(一)教学知识点1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算.(二)能力训练要求1.能根据定义判断两个三角形是否相似,训练学生的判断能力.2.能根据相似比求长度和角度,培养学生的运用能力.(三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.教学重点相似三角形的定义及运用.教学难点根据定义求线段长或角的度数.教学方法类比讨论法教具准备投影片三张第一张(记作§4.5 A)第二张(记作§4.5 B)第三张(记作§4.5 C)教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.[生]对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.[师]很好.请问相似多边形指的是哪些多边形呢?[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.[师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.相似三角形的判定数学教学教案2一、教学目标1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.2.继续渗透和培养学生对类比数学思想的认识和理解.3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.4.通过学习,了解由特殊到一般的唯物辩证法的观点.二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.2.教学难点:是了解判定定理1的证题方法与思路.四、课时安排1课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.什么叫相似三角形?什么叫相似比?2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.[讲解新课]我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们来研究能不能用较少的几个条件就能判定三角形相似呢?上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种三角形相似的判定方法.我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:问:判定两个三角形全等的方法有哪几种?答:SAS、ASA(AAS)、SSS、HL.问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的判定中应如何说?答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.(2)用类比方法找出的新命题一定要加以证明.如图5-53,在△ABC和△中,, .问:△ABC和△是否相似?分析:可采用问答式以启发学生了解证明方法.问:我们现在已经学习了哪几个判定三角形相似的方法?答:①三角形的定义,②上一节学习的预备定理.问:根据本命题条件,探讨时应采用哪种方法?为什么?答:预备定理,因为用定义条件明显不够.问:采用预备定理,必须构造出怎样的图形?答:或 .问:应如何添加辅助线,才能构造出上一问的图形?此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.(1)在△ABC边AB(或延长线)上,截取,过D作DE∥BC交AC于E.“作相似.证全等”.(2)在△ABC边AB(或延长线上)上,截取,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.(教师向学生解释清楚“或延长线”的情况)虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.,,∽ .例1 已知和中,,, .求证:∽ .此例题是判定定理的直拉应用,应使学生熟练掌握.例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.已知:如图5-54,在中,CD是斜边上的高.求证:∽∽ .该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.即∽△∽△.[小结]1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.2.判定定理1的应用以及记住例2的结论并会应用.七、布置作业教材P238中A组3、4.相似三角形的判定数学教学教案31、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。
九年级数学上册《相似三角形的判定》教案、教学设计

四、教学内容与过程
(一)导入新课,500字
1.教学活动设计:以生活中的实例作为导入,例如,展示一组相似的图形,如不同大小的三角形装饰品,并提出问题:“你们观察这些图形,它们之间有什么共同之处?”通过引导学生观察和思考,激发学生对相似三角形的兴趣。
1.教学策略:
-采用直观演示与抽象讲解相结合的方式,通过动态几何软件或实物模型,让学生直观感受相似三角形的形成和性质。
-引导学生通过自主探索、小组讨论等形式,发现并理解相似三角形的判定条件。
-设计层次分明的练习题,从基础到提高,逐步深化学生对知识点的掌握。
2.教学过程:
-导入新课:通过生活实例或几何图形,引发学生对相似三角形的好奇心,激发学习兴趣。
-小组展示:每组选取一道典型问题,进行解题思路和答案的展示,培养学生表达能力和逻辑思维能力。
4.家庭作业:
-布置适量的课后作业,涵盖相似三角形的判定方法和性质应用,要求学生在规定时间内完成,家长签字确认。
-鼓励学生在完成作业过程中,遇到问题主动向同学和老师请教,培养自主学习和解决问题的能力。
5.作业评价:
-对学生的作业进行及时批改,给予反馈,关注学生在作业中反映出的薄弱环节,进行针对性辅导。
-开展优秀作业展示活动,激发学生的学习积极性,营造良好的学习氛围。
2.学生在运用相似三角形的判定方法时,可能会出现混淆和错误,教师应针对这一问题进行针对性的讲解和练习。
3.学生的空间想象能力和逻辑思维能力存在差异,教师应充分关注这一点,设计不同难度的教学活动,使每位学生都能得到提高。
4.学生在小组合作学习中,沟通能力和团队协作能力有待提高,教师应引导学生积极参与讨论,学会倾听他人意见。
九年级数学上册《相似三角形的性质》教案、教学设计

在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。给出以下讨论题目:
1.请列举出相似三角形的性质,并尝试用简洁的语言解释每个性质。
2.请举例说明相似三角形在实际问题中的应用。
3.你认为相似三角形的性质与全等三角形的性质有哪些联系和区别?
要求学生在小组内进行充分讨论,分享各自的观点和想法。在此过程中,我会巡回指导,关注学生的讨论进度,适时给予提示和引导。
2.培养学生运用几何图形描述和分析问题的能力,提高他们的逻辑思维和推理能力。
3.引导学生将相似三角形的性质应用于实际生活,培养他们的应用意识和创新能力。
(二)教学难点
1.相似三角形性质的推导和证明,尤其是其中的比例关系和角度关系。
2.学生在解决实际问题时,如何将相似三角形的性质灵活运用。
3.培养学生合作交流能力,提高他们在团队中的参与度和贡献度。
2.相似三角形的性质:详细讲解相似三角形的性质,如对应角相等、对应边成比例等,并结合实际例子进行解释。
3.相似三角形的判定方法:介绍判定相似三角形的方法,如AA、SSS、SAS等,并通过典型例题进行讲解。
4.相似三角形的应用:展示相似三角形在实际问题中的应用,如测量、设计等,让学生体会几何知识在实际生活中的价值。
(五)总结归纳,500字
在总结归纳环节,我会从以下几个方面进行:
1.知识点回顾:引导学生回顾本节课所学的相似三角形的定义、性质、判定方法及应用。
2.学习方法总结:让学生总结自己在学习相似三角形过程中的心得体会,分享有效的学习方法。
3.情感态度与价值观:强调几何知识在实际生活中的重要性,激发学生学习几何的兴趣和热情。
1.学生对相似三角形定义的理解程度,以及对相似性质的认识和运用能力。
九年级数学上册《相似三角形》教案、教学设计

3.总结目标:
帮助学生巩固所学知识,培养他们的概括总结能力和应用意识,为后续学习打下基础。
五、作业布置
1.基础巩固题:针对本节课的基础知识,设计以下作业题,以巩固学生对相似三角形性质和判定方法的理解。
(1)判断给定三角形是否相似,并说明理由;
(2)利用相似三角形的性质,计算给定图形的边长或角度;
(3)阶段性评价:通过阶段测试,评估学生对本章节知识的掌握程度,为后续教学提供参考。
4.教学策略:
(1)注重分层教学,针对不同学生的学习需求,提供适当难度的教学内容;
(2)关注学生的情感态度,鼓励他们积极参与课堂活动,增强自信心;
(3)注重培养学生的几何直观和空间想象能力,提高他们解决几何问题的能力;
3.组织小组合作学习,让学生在讨论和交流中,提高解决问题的能力;
4.设计丰富的例题和练习题,巩固所学知识,提高学生的应用能力。
(三)情感态度与价值观
1.激发学生对数学学习的兴趣,使他们感受到数学在生活中的重要作用;
2.培养学生独立思考、勇于探究的精神,增强他们的自信心;
3.通过小组合作学习,培养学生的团队协作能力,使他们学会倾听、尊重他人意见;
3.讲解目标:
让学生掌握相似三角形的定义、判定方法和性质,为解决实际问题奠定基础。
(三)学生小组讨论
1.教学活动设计:
将学生分成小组,针对以下问题进行讨论:
(1)相似三角形在实际生活中的应用;
(2)如何利用相似三角形的性质和判定方法解决几何问题;
(3)相似三角形与其他数学知识之间的联系。
2.小组讨论:
(2)鼓励学生思考问题,勇于探索,培养解决问题的能力;
(3)作业完成后,学生需认真检查,确保答案正确;
初中数学初三数学上册《两个三角形相似的判定》教案、教学设计
a.引导学生通过观察动态变化的几何图形,发现相似三角形的特征。
b.组织学生分组讨论,让学生尝试总结相似三角形的判定方法。
c.教师总结并讲解相似三角形的判定方法,强调各个判定条件之间的联系。
3.实践应用:设计具有梯度、层次性的练习题,让学生运用相似三角形的判定方法解决问题,巩固所学知识。同时,注重以下方面:
a.练习题难度适中,使学生能够体验到解决问题的成就感。
b.精选典型案例,让学生在解决实际问题的过程中,深化对相似三角形判定方法的理解。
c.及时反馈,针对学生的错误,给予指导和纠正,帮助学生建立正确的几何思维。
4.学生互相交流解题心得,分享学习经验。
(五)总结归纳
1.教师引导学生回顾本节课所学的内容,总结相似三角形的判定方法。
2.学生分享自己的学习体会,教师给予鼓励和肯定。
3.教师强调相似三角形在实际生活中的应用,激发学生的学习兴趣。
4.教师布置课后作业,要求学生在课后巩固所学知识,为下一节课的学习做好准备。
4.课堂小结:通过师生互动,引导学生总结本节课所学的内容,巩固知识体系。
5.课后拓展:布置富有挑战性的课后作业,让学生在课后继续思考、探索相似三角形的相关问题。
6.教学评价:采用多元化的评价方式,关注学生在课堂上的表现,包括知识掌握、动手实践、合作交流等方面。
7.教学策略:
a.注重启发式教学,激发学生的思考,引导学生主动探究相似三角形的判定方法。
b.运用信息技术,如多媒体、几何画板等,增强课堂教学的直观性、生动性。
c.创设良好的学习氛围,鼓励学生提问、质疑,培养学生的批判性思维。
九年级数学《相似三角形的判定(2)》教案
由学生对判定定理二的方法进行小结,教师注意引导:(1)相似三角形的条件;(2)注意区别“夹角相等”的条件;(3)引出思考问题。学生画图时是否能联想、类比全等三角形中SSA条件下的不确定性。
【设计意图】
让学生进一步体会结论的确定性,证明的必要性,以及证明的严谨性。
且∠A=∠A`,那么能否判定这两个三角形相似?
(1)学生画图,自主展开探究活动;
(2)形成结论:
“两个三角形的两组对应边的比相等,并且它们额夹角相等,那么这两个三角形相似。”
(3)小结与思考
如果在△ABC中∠B=30°,AB=5㎝ AC=4㎝ ,在△DEF中∠E=30°EF=10㎝ ED=8㎝ ,这两个三角形一定相似吗?试着画画看?
师生以谈话交流的形式归纳本节课所学,教师用概括性的语言给一点拨,并板书。
【设计意图】
通过总结,关注学生课堂的整体感觉,使学生进一步将数学知识系统化。
板书设计
定理一的证明
练习
27.2.2相似三角形的判定
1、两个判定定理:
2、一种数学思想:
3、几点注意:
练习
教学反思
本节“课题学习”,主要是让学生多动手、多实践、多猜想、多论证、多总结。对于其中一些结论,大胆地鼓励学生进行说理甚至证明,说理证明的形式多样,可口述,可书写,可交流探讨,通过学习,进一步让学生了解规则的几何图形的几何图形的重心就是它的几何中心,体会数学和物理学科之间的联系。注重对学生以下各能力训练培养:学生的空间想象能力;动手操作能力;实践探究能力;猜想发现能力;说明理由逻辑推理能力。
活动3 验证假设,获得定论
问题1:怎样证明这个命题是正确的呢?
九年级数学《相似三角形(2)》教案
三部五环”教学模式设计 《27.2相似三角形(2)》教学设计
教 材 义务教育课程标准实验教科书(人教版)《数学》九年级下册第二十七章《相似》第二小节第二课时
设计理念 从学生已有的生活经验和认知基础出发,让学生主动地进行学习。通过动手操作、实践探究、猜想论证、合作交流等方式使学生理解相似三角形的判定方法:“三组对应边的比相等的两个三角形相似。”“ 两组对应边的比相等且它们的夹角相等的两个三角形相似。”应用相似三角形的判定解决问题。整个教学设计流程突出以学定教,体现“设计问题化,过程活动化,活动练习化,练习要点化,要点目标化,目标课标化”的要求,将教学过程设计为有一定梯次的递进式活动序列。通过学生观察猜想,动手操作,实践探索,推理论证,获得经验技巧,形成技能。
学情分析 教学对象是九年级学生,在学习本节前,学生已经掌握了图形的全等和全等三角形的判定方法和三角形相似判定预备定理等有关知识。在学生获得了对图形的基本认知理解,积累了初步的理性思辨及推理论证经验,但思维水平仍以经验型为主,理论型思维尚处于萌芽阶段,动手探究、实践认知的能力还未完善培养形成,因此,在推理论证方面须坚持遵循“特殊——一般——特殊”规律,注重对学生动手实践的指导、推理论证的严谨及创新精神的培养。
知识背 景分析 本节教材属于人教版九年级下册第二十七章《相似》第二节《相似三角形》的第二节课,隶属《全日制义务教育数学课程标准(实验稿)》中的“空间与图形”领域。相似三角形的判定是初中几何中重要的知识,是证明角相等,线段相等和线段成比例及图形的面积与周长的计算中常用的解决问题方法。本节是建立在图形的全等和全等三角形、相似三角形判定预备定理等有关知识的基础上,进一步探究相似三角形的比较简单的判定方法,以学生的实际操作为基础,感知三角形相似的条件,类比于全等三角形的判定方法,在进一步探究三角形相似的条件,得到结论,进而进行推理论证,得到判定方法。通过本节的学习,学生对相似三角形的理解更透彻,对本章的学习产生浓厚情趣,为以后学习奠定基础,提高学生的推理论证和逻辑思维能力。 教 学 目 标 知识与技能 1、掌握三组对应边的比相等的两个三角形相似的判定定理; 2、掌握两组对应边的比相等且它们的夹角相等的两个三角形相似的判定定理。 3、会运用“三组对应边的比相等的两个三角形相似”及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的方法进行简单推理。 过程与方法
湘教版-数学-九年级上册-3.4.1 第1课时 利用平行判定三角形相似2 教案
利用平行判定三角形相似教学目标1.了解相似三角形的判定方法,即平行于三角形一边的直线与其他两边相交,截得的三角形与原三角形相似.2.会用上述方法判定两个三角形相似.重点难点重点:用“平行于三角形一边的直线与其他两边相交,截得的三角形与原三角形相似.相似三角形的定义及相似比”判定两个三角形相似.难点:上述判定方法的推理过程.教学过程一.预习导学预习教材P77—P78的内容,完成下列问题.1.怎样的图形是相似的?2.三角形相似的概念与性质?3.三角形全等与相似的关系.二.探究新知在八年级上册,我们已经探讨了两个三角形全等的条件,下面我们来探讨两个三角形相似的条件.设计意图:通过老师的叙述,激发学生的求知欲,引导学生主动探索的兴趣,引入新课学习.出示课题:相似三角形的判定(一) 相似三角形的判定定理之引理的学习动脑筋:如图,在△ABC中,D 为AB上任意一点. 过点D作BC的平行线DE,交AC于点E.(1)△ADE与△ABC的三个角分别相等吗?(2)分别度量△ADE 与△ABC 的边长,它们的边长是否对应成比例?(3)△ADE 与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?(教师提示:要说明两个三角形相似,现在我们只要找到满足相似三角形定义的条件,就能说明两个三角形相似,这是我们思考这个问题的方向.)方法与过程:通过学生独立阅读,领悟出说明三角形相似要满足的条件是什么?如何寻找条件是关键.回顾相似三角形的定义,指出三角形相似的两个条件:(1)三角对应相等.(2)三边对应成比例.让学生思考寻找解题的方法.小结:由此得到以下结论:平行于三角形一边的直线与其他两边相交,截得的三角形与原三角形相似.例1 如图,在△ABC 中,已知点D,E分别是AB,AC边的中点.求证:△ADE ∽△ABC(说明:学生利用上述结论,自主学习解答,教师巡视观察,指正.)例2 如图,点D为△ABC的边AB的中点,过点D作DE∥BC,交边AC于点E.延长DE至点F ,使DE=EF.求证:△CFE∽△ABC.(说明:老师巡视,学生讨论完成.)三.知识梳理以”本节课我们学到了什么?”启发学生谈谈本节课的收获.1.本节课重点有掌握的知识是什么?2. 在学习的过程中你的困惑是什么?3.你对自己本节课的表现满意的地方在哪里?(说明:学生独立总结出本节知识点,小组内讨论交流,互相补充完善,教师及时给与指导,形成正确的知识归纳.)四.当堂检测1.如图,在Rt△ABC中,∠C = 90°.正方形EFCD的三个顶点E.F.D分别在边AB,BC,AC 上.已知AC= 7.5,BC= 5,求正方形的边长.2.如图,已知点O在四边形ABCD 的对角线AC上,OE∥BC,OF∥CD. 试判断四边形AEOF与四边形ABCD是否相似,并说明理由.教学反思在探究式教学中教师是学生学习的组织者.引导者.合作者.共同研究者,鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新,哪怕是微小的进步或幼稚的想法都给予热情的赞扬.备课时思考得更多的是学生的突破,上课时教师只在关键处点拨,在不足时补充.教师与学生平等地交流,创设民主.和谐的学习氛围,促进教学相长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4.1 相似三角的判定(2)
教学目标
1.使学生了解相似三角形的判定定理1.
2.会用相似三角形的判定定理1判定两三角形相似.
重点难点
重点:会用相似三角形的判定定理1判定两三角形相似.
难点:理解判定定理的推理过程.
教学设计
一.预习导学
预习教材P79—P80的内容,完成下列问题.
1.平行线分线段成比例定理: .
2.相似三角形的判定定理之引理是: .
二.探究新知
(一)相似三角形的判定定理1的学习
动脑筋
任意画△ABC 和△A B C
''',使∠A=∠A',∠B=∠B'.
(1)∠C =∠C'吗?
(2)分别度量这两个三角形的边长,它们是否对应成比例?(3)把你的结果与同学交流,你们的结论相同吗?由此你有什么发现?
过程与方法:教师出示问题,学生阅读课本79页的证明后,讨论得出结论:
相似三角形的判定定理1:两角分别相等的两个三角形相似.
例1 如图,在△ABC 中,∠C=90°.从点D分别作边AB,BC的垂线,垂足分别为点E,F,DF与AB交于点H.
求证:△DEH∽△BCA.
例2 如图,在Rt△ABC 与Rt△DEF中,∠C=90°,∠F = 90°.若∠A =∠D,AB = 5,BC = 4,DE = 3,
求EF的长.
设计意图:通过两个例题的学习,巩固对三角形的判定定理1的理解与掌握,提高几何问题的分析能力.解决能力以及表达能力,从而有效提高课堂效率与质量.
对应练习:
1.如图,点E为平行四边形ABCD的边BC延长线上一点,连接AE,
交CD于点F.请指出图中有几对相似三角形,并说明理由.
2. 如图,AB⊥BD,ED⊥BD,点C是线段BD 的中点,且AC⊥CE. 已知ED= 1,BD= 4,
求AB的长.
三.知识梳理
以”本节课我们学到了什么?”启发学生谈谈本节课的收获.
1.本节课重点有掌握的知识是什么?
2. 在学习的过程中你的困惑是什么?
3.你对自己本节课的表现满意的地方在哪里?
(说明:学生独立总结出本节知识点,小组内讨论交流,互相补充完善,教师及时给与指导,形成正确的知识归纳.)
四.当堂检测
1.在△ABC 与△DEF 中,∠A=390,∠B=610,∠E=390,∠F=800, 则△DEF ∽△ABC.
2.证明:顶角相等的两个等腰三角形相似.
已知:
求证:
3.如图所示,在锐角△ABC 中,AD ,BE 分别是边BC ,AC 上的
高,
求证:BC AC BE AD
A
B C
D E
五.教学反思
在探究式教学中教师是学生学习的组织者.引导者.合作者.共同研究者,鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新,哪怕是微小的进步或幼稚的想法都给予热情的赞扬.备课时思考得更多的是学生的突破,上课时教师只在关键处点拨,在不足时补充.。