假设检验课堂练习题

合集下载

练习八(假设检验)--1_答案卷

练习八(假设检验)--1_答案卷
【参考答案】 A
5.设对统计假设H0 构造了显著性检验方法,则下列结论错误的是( )。
A.对不同的样本观测值,所做的统计推理结果可能不同 B.对不同的样本观测值,拒绝域不同 C.拒绝域的确定与样本观测值无关 D.对一样本观测值,可能因显著性水平的不同,而使推断结果不同
【参考答案】 B
6.在统计假设的显著性检验中,下列说法错误的是( )。
姓名
学号
5. 设 样 本 X1,X2,⋯,Xn 来 自 总 体 X ∼ N (μ,σ2) ,μ 已 知 , 要 对 σ2 作 假 设 检 验 , 统 计 假 设 为
H0:
σ2
=
σ
2,
0
H1:σ
2

σ
2 0
,









(
)。
), 给定显著水平α , 则检验的拒绝域为(
【参考答案】
空(1):
∑ χ2 =
χ2=
5.78 12
= 5.78
由于χ
2 α
2
(n −1) =
1.145
< χ2 = 5.78
< 11.070 = χ2
1−
α 2
(n) 查表所得
故接受H0 ,即认为该厂这一天生产的灯泡寿命的均方差符合要求的。
A.显著性检验的基本思想是“小概率原则”,即小概率事件在一次试验中是几乎不可能发生
B.显著性水平α 是该检验犯第一类错误的概率,即“拒真”概率 C.记显著性水平为α ,则 1− α 是该检验犯第二类错误的概率,即“受伪”概率
D.若样本值落在“拒绝域”内则拒绝原假设
【参考答案】 C

4假设检验练习题

4假设检验练习题

第四章 假设检验练习题一、单项选择题1、假设检验主要对()进行检验。

A 、总体参数B 、样本参数C 、统计量D 、样本分布2、参数估计是依据样本信息推断未知的()。

A 、总体参数B 、样本参数C 、统计量D 、样本分布3、小概率事件,是指在一次事件中几乎不可能发生的事件。

一般称之为“显著性水平”,用α表示。

显著性水平一般取值为()。

A 、5%B 、20%C 、30%D 、50%4、假设检验的依据是()。

A 、小概率原理B 、中心极限定理C 、方差分析原理D 、总体分布5、大样本情况下,当总体方差已知时,总体均值检验的统计量为()。

A 、xB 、x C、p -D 、x 6、大样本情况下,当总体方差未知时,总体均值检验的统计量为()。

A、 B、 C、p -D 、 7、小样本情况下,当总体服从正态分布,总体方差已知时,总体均值检验的统计量为()。

A 、xB 、xC 、p - D、x 8、小样本情况下,当总体服从正态分布,总体方差未知时,总体均值检验的统计量为()。

A、x B、xC 、p -D 、x 9、一种机床加工的零件尺寸绝对平均误差允许值为1.35mm 。

生产厂家现采用一种新的机床进行加工以期进一步降低误差。

为检验新机床加工的零件平均误差与旧机床相比是否有显著降低,从某于生产的零件中随机抽取50个进行检验,得到50个零件尺寸的绝对误差数据,其平均差为1.2152,标准差为0.6365749。

利用这些样本数据,在α=0.05水平下,要检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低,提出的假设应为()。

A 、H 0:μ=1.35 H 1: μ≠1.35B 、H 0:μ≤1.35 H 1: μ>1.35C 、H 0:μ≤1.35 H 1: μ>1.35D 、H 0:μ≠1.35 H 1: μ=1.3510、在大样本时,总体比例检验统计量用z 统计量,其基本形式为()。

A、xB 、x C、p -D 、x 二、多项选择题1、小概率事件,是指在一次事件中几乎不可能发生的事件。

第12章 假设检验典型例题与综合练习

第12章 假设检验典型例题与综合练习

经济数学基础 第12章 假设检验第12章 假设检验典型例题与综合练习一、典型例题1.U 检验例1某切割机在正常工作时,切割的每段金属棒长度服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm.今从一批产品中随机抽取15段进行测量,其结果为(单位:cm )10.5 10.6 10.1 10.4 10.5 10.3 10.3 10.9 10.2 10.6 10.8 10.5 10.7 10.2 10.7假设方差不变,问该切割机工作是否正常?(α=0.05)这是已知方差2σ,对正态总体的均值μ进行检验的问题,用U 检验法解:,5.10:0=μH 5.10:1≠μH选统计量n x U /0σμ-=计算得x =10.48,已知15.0=σ,n =15,计算检验量516.015/15.05.1048.10=-=U查正态分布数值表求临界值λ,因为05.0=αλ,975.021)(=-=Φαλ,得经济数学基础 第12章 假设检验λ=975.0U =1.96,因为975.0U U <,故0H 相容,即在显著水平05.0=α下可以认为该切割机工作正常.2. T 检验例1 随机抽取某班28名学生的英语考试成绩,得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,试问在显著水平05.0=α下,能否认为该班的英语成绩与全年级学生的英语平均成绩没有本质的差别这是单个正态总体),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法.解85:0=μH ,85:1≠μH选统计量n s x T /0μ-=已知80=x ,8=s ,n =28,850=μ,计算得ns x T /0μ-=31.328/88580=-=查t 分布表,05.0=α,自由度27,临界值λ=052.2)27(975.0=t .经济数学基础 第12章 假设检验由于>T 052.2)27(975.0=t ,故拒绝H ,即在显著水平05.0=α下不能认为该班的英语成绩为85分.3. x 2检验例 1 检验某电子元件可靠性指标15次,计算得指标平均值为95.0=x ,样本标准差为03.0=s ,该元件的订货合同规定其可靠性指标的标准差为0.05,假设元件可靠性指标服从正态分布.问在10.0=α下,该电子元件可靠性指标的方差是否符合合同标准?取10.0=α.这是单个正态总体),(~2σμN X ,关于方差2σ的假设检验问题,用2χ检验法.解22005.0:=σH ,22105.0:≠σH当H 为真时,统计量222)1(σχs n -=~)1(2-χn拒绝域是>2χ)1(205.0-n χ或<2χ)1(295.0-χn n =15,03.0=s ,05.00=σ,检验值22205.003.0)15(-=χ=5.04因为10.0=α,自由度14,查2χ分布表571.6)14(295.0=χ,知571.61=λ ,)14(295.012χλχ=<,所以拒绝H ,即该电子元件可靠性指标的方差不符合合同标准.经济数学基础 第12章 假设检验由于2χ分布的图形是不对称的,所以左右两个临界值是不同的.比较检验值2χ与临界值21,λλ的大小:只要满足2χ>1λ或2χ<2λ之一,就可以H ;否则接受0H .二、综合练习1.填空题1. 对总体);(~θx f X 的未知参数θ的有关命题进行检验,属于 ________问题.2. 小概率原理是指 .3.设),(~2σμN X ,当2σ已知时,检验00:μμ=H ,用 检验法,选用统计量U = ,当H 成立时,统计量服从 分布.2.单选题1.对正态总体方差的假设检验用的是( ).(A) U 检验法 (B) T 检验法 (C) 2χ检验法 (D) F 检验法2.设nx x x ,,,21 是来自正态总体),(2σμN (2σ已知)的样本,按给定的显著性水平α检验00:μμ=H (已知);1:μμ≠H 时,判断是否接受H 与( )有关.经济数学基础 第12章 假设检验(A) 样本值,显著水平α (B) 样本值,样本容量n (C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α3.在假设检验中,显著水平α表示( ). (A)P {接受00H H 假}=α (B)P {拒绝00H H 真}=α (C)P {接受0H H 真}=α (D)P {拒绝0H H 假}=α1. C 2.D 3.B3.计算题1.某手表厂生产的圆形女表表壳,在正常条件下,直径服从均值为20mm ,方差为1mm 2的正态分布,某天抽查10只表壳,测得直径为(单位:mm ):19 19.5 19.8 20 20.220.5 18.7 19.6 20 20.1问生产情况是否正常?第二天测了5只,测得直径为(单位:mm ):20.2 21.3 22.4 23.5 24.6 结论是什么?取02.0=α.2.洗衣粉包装机包出的洗衣粉重量是一个随机变量),(2σμN ,机器正常工作时,5000=μ克,有一天开机后,随机地抽取9袋洗衣粉,称得重量为(单位:g ):497 506 528 524 498经济数学基础 第12章 假设检验511 520 515 512问以05.0=α显著水平检验这天机器的工作是否正常.3.已知某化纤厂生产的纤度平日服从正态分布)048.0,405.1(2N ,某日抽取5根化纤,测得其纤度为1.32 1.55 1.36 1.40 1.44问该日生产的化纤纤度总体方差2σ是否正常?取05.0=α.三、本章作业1.由经验知某产品重量)05.0,15(~N X ,现抽取6个样品,测得重量为(单位:kg ):14.7 15.1 14.8 15.0 15.2 14.6设方差不变,问平均重量是否仍为15kg ?取05.0=α.2.某机器在正常工作时,生产的产品平均每个应为50克重,从该机器生产的一批产品中抽取9个,分别称得重量为(单位:g ):经济数学基础 第12章 假设检验52.1 50.5 51.2 49.7 49.550.5 58.7 50.5 48.3 设产品重量服从正态分布,问这批产品质量是否正常?取05.0=α3.正常人的脉搏平均72次/分,某医生测得10例慢性中毒者的脉搏为(单位:次/分)54 67 68 70 6667 70 65 69 78 设中毒者的脉搏服从正态分布,问中毒者和正常人的脉搏有无显著性差异?取05.0=α.1.可以认为平均重量仍为15kg ; 2.这批产品的质量正常; 3.没有显著差异.。

假设检验例题和习题

假设检验例题和习题

(第二版) (原假设与备择假设旳拟定)
1. 属于决策中旳假设检验
2. 不论是拒绝H0还是不拒绝H0,都必需采用 相应旳行动措施
3. 例如,某种零件旳尺寸,要求其平均长度为 10cm,不小于或不不小于10cm均属于不合 格
我们想要证明(检验)不小于或不不小于这两种 可能性中旳任何一种是否成立
4. 建立旳原假设与备择假设应为
H0: = 5
H1: 5
= 0.05
df = 10 - 1 = 9 临界值(s):
拒绝 H0
拒绝 H0
.025
.025
-2.262 0 2.262 t
8 - 20
检验统计量:
t = x 0 = 5.3 5 = 3.16
s n 0.6 10
决策:
在 = 0.05旳水平上拒绝H0
结论:
阐明该机器旳性能不好
符?( = 0.05)
统计学
(第二版)
均值旳单尾 t 检验
(计算成果)
H0: 40000 H1: < 40000 = 0.05 df = 20 - 1 = 19 临界值(s):
拒绝域
.05
-1.7291 0
t
8 - 23
检验统计量:
t = x 0
sn
= 41000 40000 = 0.894 5000 20
8 - 12
双侧检验
统计学
(第二版)
H0: = 0.081
H1: 0.081
= 0.05
n = 200
临界值(s):
拒绝 H0
拒绝 H0
.025
.025
-1.96 0 1.96 Z
8 - 13
检验统计量:

医用统计学-总体均数的估计与假设检验练习题

医用统计学-总体均数的估计与假设检验练习题

医用统计学-总体均数的估计与假设检验练习题二、是非题1.即使变量偏离正态分布,只要样本含量相当大,样本均数也近似正态分布。

()3.两次t检验都是对两样本均数的差别做统计检验,一次P<0.01,另一次0.01<P<0.05,就表明前者两样本均数差别大,后者两样本均数差别小。

()4.对两样本均数的差别做统计检验,两组数据具有方差齐性,但与正态分布相比略有偏离,样本含量都较大,因此仍可做t检验。

()三、最佳选择题2、两样本均数比较的t检验,差别有统计学意义时,P越小,说明()。

A、两样本均数差别越大B、两总体均数差别越大C、越有理由认为两总体均数不同D、越有理由认为两样本均数不同E、越有理由认为两总体均数不同3、甲乙两人分别随机数字表抽得30个(各取两位数字)随机数字作为两个样本,求得X1和S12,X2和S22,则理论上()。

A、X1=X 2B、S12= S22C、作两样本均数的t检验,必然得出无差别的结论D、作两方差齐性的F检验,必然方差齐E、由甲、乙两样本均数之差求出的总体均数的95%可信区间,很可能包括04、在参数未知的正态总体中随机抽样,∣X-μ∣≥()的概率为5%。

A、1.96σB、1.96C、2.58D、t0.05,v SE、t0.05,vsx5、某地1992年随机抽取100名健康女性,算得其血清总蛋白含量的均数为74g/L,标准差为4g/L,则其95%的参考值范围()。

A、74±4×4B、74±1.96×4C、74±2.58×4D、74±2.58×4÷10E、74±1.96×4÷106、关于以0为中心的t分布,错误的是()。

A、t分布是一簇曲线B、t分布是单峰分布C、当ν∝时,t uD、t分布以0为中心,左右对称E、相同ν时,∣t∣越大,P越大7、在两样本均数比较的t检验中,无效假设是()A、两样本均数不等B、两样本均数相等C、两总体均数不等D、两总体均数相等E、两样本均数等于总体均数8、两样本均数比较时,分别取以下检验水准,以()所取第二类错误最小。

统计学假设检验习题

统计学假设检验习题

一、单选1、如果检验的假设为0010:,:H H μμμμ≥<,则拒绝域为( )A 、 z z α>B 、z z α<-C 、A 或BD 、/2z z α<-二、多选1.下列关于假设检验的陈述正确的是( )。

A 、假设检验实质上是对原假设进行检验B 、假设检验实质上是对备选假设进行检验C 、当拒绝原假设时,只能认为肯定它的根据尚不充分,而不是认为它绝对错误D 、假设检验并不是根据样本结果简单地或直接地判断原假设和备选假设哪一个更有可能正确E 、当接受原假设时,只能认为否定它的根据尚不充分,而不是认为它绝对正确2、在假设检验中, α与β的关系是( )。

A 、在其它条件不变的情况下,增大α,必然会减少βB 、α和β不可能同时减少C 、在其它条件不变的情况下,增大α,必然会增大βD 、只能控制α不能控制βE 、增加样本容量可以同时减少α和β3、设总体为正态总体,总体方差未知,在小样本条件下,对总体均值进行如下的假设检验:01000:);(:μμμμμ≠=H H 为一已知数,1.0=α,则下列说法正确的有 ( )。

A 、),(1.0Z --∞和),(1.0+∞Z 为原假设的拒绝区域B 、),(05.0Z --∞和),(05.0+∞Z 为原假设的拒绝区域C 、),(1.0t --∞和),(1.0+∞t 为原假设的拒绝区域D 、),(05.0t --∞和),(05.0+∞t 为原假设的拒绝区域E 、若检验统计量的绝对值越大,则原假设越容易被拒绝4.某一批原材料的质量实际上是不符合生产标准,检验部门抽取1%的原材料检验,得出结论是该批原材料的质量符合生产标准,说明( ).A 、检验部门犯了第一类错误B 、检验部门犯了第二类错误C 、犯这种错误的概率是αD 、犯这种错误的概率是βE 、犯这种错误的原因是检验部门没有遵循随机原则三、判断1.假设检验是一种科学的统计决策方法,因此使用它不会犯错误.( )四、简答1.简述参数估计和假设检验的联系和区别.五、计算1、从某批食品中随机抽取12袋,测定其蛋白质的含量(%),测定结果如下: 24,26,27,23,20,28,23,24,27,25,26,23假定该食品每袋蛋白质的含量X 服从正态分布),(2σμN ,包装袋上表明蛋白质的含量为26%。

统计学假设检验练习题

例3.7.9从一大批相同型号的金属线中,随机选取10根,测得它的直径(单位:mm)为:1.23 1.24 1.26 1.29 1.20 1.32 1.23 1.23 1.29 1.28(1)如果金属线直径X~N(μ,0.042),试求平均直径μ的置信度为95%的置信区间.(2)如果金属线直径X~N(μ, σ2),σ2未知,试求平均直径μ的置信度为95%的置信区间.例3.7.10随机取某牌香烟8支,其尼古丁平均含量为3.6mg,标准差为0.9mg.试求此牌香烟尼古丁平均含量μ的95%的置信区间.(假设尼古丁含量服从正态分布).4.某种袋装食品的重量服从正态分布.某一天随机地抽取9袋检验,重量(单位:g)为510 485 505 505 490 495 520 515 490(1) 若已知总体方差σ2=8.62,求μ的置信度为90%的置信区间;(2) 若已知总体方差未知,求μ的置信度为95%的置信区间.5.为了估计在报纸上做一次广告的平均费用,抽出了20家报社作随机样本,样本的均值和标准差分别为575(元)和120(元),假定广告费用近似服从正态分布,求总体均值的95%的置信区间.6.从某一班中随机抽取了16名女生进行调查.她们平均每个星期花费13元吃零食,样本标准差为3元,求此班所有女生每个星期平均花费在吃零食上的钱数的95%的置信区间.(假设总体服从正态分布)7.一家轮胎工厂在检验轮胎质量时抽取了400条轮胎作试验,其检查结果这些轮胎的平均行驶里程是20000k m,样本标准差为6000k m.试求这家工厂的轮胎的平均行驶里程的置信区间,可靠度为95%.8.为了检验一种杂交作物的两种新处理方案,在同一地区随机地选择8块地段.在各试验地段,按两种方案处理作物,这8块地段的单位面积产量是(单位:k g)一号方案产量: 86 87 56 93 84 93 75 79二号方案产量: 80 79 58 91 77 82 74 66假设两种产量都服从正态分布,分别为N(μ1, σ2) ,N(μ2, σ2), σ2未知,求μ1-μ2的置信度为95%的置信区间.9.为了比较两种型号步枪的枪口速度,随机地取甲型子弹10发,算得枪口子弹的平均值=500(m/s), 标准差s1=1.10(m/s); 随机地取乙型子弹20发,得枪口速度平均值=496(m/s),标准差s2=1.20(m/s). 设两总体近似地服从正态分布,并且方差相等,求两总体均值之差的置信水平为95%的置信区间.10.为了估计参加业务训练的效果.某公司抽了50名参加过训练的职工进行水平测验,结果是平均得分为4.5,样本方差为 1.8;抽了60名未参加训练的职工进行水平测验,其平均得分为3.75,样本方差为2.1. 试求两个总体均值之差的95%的置信区间.(设两个总体均服从正态分布).11、风驰汽车制造厂的装配车间安装车门仍需人工操作,不同工人的装配时间不同,同一工人的装配时间也有差异,为测定安装车门所需时间,每隔一定时间抽选一个样本,共抽取了10个样本,其数据如下(单位:秒):41 43 36 26 20 21 46 39 37 211. 以置信度95%,估计安装一个车门所需平均时间的置信区间,2.若要求估计平均装配时间的误差不超过2秒,置信度为95%,应抽选多大的样本?3.若费用为200元,观察每个样本的费用为4元,置信度为95%,则允许误差限是多少?4.假设上月测定的平均时间为35秒,则a=0.05时,检验其平均时间是否有显著缩短?12、万里橡胶制品厂生产的汽车轮胎平均寿命为40,000公里,标准差为7500公里。

统计学第五版第八章课后习题答案

0.025
决策: ∵Z值落入接受域, ∴在α=0.05的显著水平上接受 H 0 。
结论:有证据表明现在生产的铁水平均含碳量与以前没有显著差 异,可以认为现在生产的铁水平均含碳量为4.55。
8.2 一种元件,要求其使用寿命不得低于700小时。现从一批这种 元件中随机抽取36件,测得其平均寿命为680小时。已知该元件寿 命服从正态分布,σ=60小时,试在显著性水平0.05下确定这批元 件是否合格。
甲法:31 34 29 32 35 38 34 30 29 32 31 26 乙法:26 24 28 29 30 29 32 26 31 29 32 28 两总体为正态总体,且方差相同。问两种方法的装配时 间有无显著差别(α =0.05)? 解: 正态总体,小样本,σ²未知但相同,独立样本t检验 H 0 : 甲 -乙 = 0 H1 : 甲 - 乙 ≠ 0
由Excel制表得:
由图可知:
已知:α = 0.05,n1 = n2=12 2 2 x甲 =31.75 x乙 =28.67 S甲=10.20 S乙 =6.06 t=1.72 t∈(-1.72,1.72)接受,否则拒绝。 t=(31.75-28.67)/(8.08* 0.41)=0.93 0.93∈(-1.72,1.72) 决策:在α = 0.05的水平上接受H 0 。 结论: 两种方法的装配时间无显著不同。
σ²≤100 H 1 : σ²>100 α= 0.05,n=9,自由度= 9 - 1 = 8, S² =215.75, x =63 采用χ²检验 临界值(s): χ² =15.5 )S 2 (9 - 1) * 215.75 2 (n - 1 17.26 15.5 检验统计量: 2 100 决策:在 a = 0.05的水平上拒绝 H 0 结论: σ²>100

假设检验练习题

假设检验练习题在统计学中,假设检验是一种常用的数据分析方法,用于通过样本数据对总体参数的假设进行验证。

通过进行假设检验,我们可以确定样本数据是否足够支持对总体参数的某种特定假设。

一、背景介绍假设检验的基本思想是:假设总体参数服从某种特定的概率分布,然后利用样本数据对这一假设进行检验。

在进行假设检验时,我们通常会提出原假设(H0)和备择假设(H1),其中原假设是我们要进行检验的假设,备择假设则是对原假设的否定或补充。

二、假设检验的步骤1. 提出假设:根据问题的需求和背景,明确原假设和备择假设。

2. 选择显著性水平:显著性水平α代表我们对假设检验结果的接受程度,通常选择0.05或0.01。

3. 计算检验统计量:根据样本数据和所选的假设检验方法,计算出相应的检验统计量。

4. 确定拒绝域:根据显著性水平和假设检验的方法,确定拒绝域的临界值。

5. 判断结论:将计算得到的检验统计量与拒绝域进行比较,根据比较结果作出结论。

三、假设检验的类型1. 单样本检验:当我们只有一个样本数据,想要对总体参数是否符合某个特定值进行判断时,可以使用单样本检验。

2. 独立样本检验:当我们有两个独立的样本数据,并且希望比较两个总体参数是否有差异时,可以使用独立样本检验。

3. 配对样本检验:当我们有两组相关的样本数据,并且希望比较两个总体参数的差异时,可以使用配对样本检验。

四、常见的假设检验方法1. t检验:用于对总体均值进行假设检验,可以进行单样本t检验、独立样本t检验和配对样本t检验。

2. 方差分析(ANOVA):用于比较多个样本均值是否有差异,适用于有两个以上样本的情况。

3. 卡方检验:用于对分类变量的比例进行假设检验,适用于两个或更多分类变量的情况。

4. 相关分析:用于检验两个变量之间是否存在线性相关性。

五、实例分析为了更好地理解假设检验的应用,我们举一个实际例子。

假设一个制药公司研发了一种新药,声称该药物的疗效显著优于市场上已有的药物。

假设检验练习题 答案

假设检验练习题1、简单回答下列问题:1)假设检验的基本步骤?答:第一步建立假设(通常建立两个假设,原假设H0 不需证明的命题,一般就是相等、无差别的结论,备择假设H1,与H0对立的命题,一般就是不相等,有差别的结论)有三类假设第二步选择检验统计量给出拒绝域的形式。

根据原假设的参数检验统计量:对于给定的显著水平样本空间可分为两部分: 拒绝域W 非拒绝域A拒绝域的形式由备择假设的形式决定H1:W为双边H1:W为单边H1:W为单边第三步:给出假设检验的显著水平第四步给出零界值C,确定拒绝域W有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。

例如:对于=0、05有的双边W为的右单边W为的右单边W为第五步根据样本观测值,计算与判断计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝, 否则接受(计算P值227页p值由统计软件直接得出时拒绝,否则接受计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)2)假设检验的两类错误及其发生的概率?答:第一类错误:当为真时拒绝,发生的概率为第二类错误:当为假时,接受发生的概率为3)假设检验结果判定的3种方式?答:1、计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝, 否则接受2、计算P值227页p值由统计软件直接得出时拒绝,否则接受3、计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受4)在六西格玛A阶段常用的假设检验有那几种?应用的对象就是什么?答:连续型(测量的数据): 单样本t检验-----比较目标均值双样本t检验-----比较两个均值方差分析-----比较两个以上均值等方差检验-----比较多个方差离散型(区分或数的数据): 卡方检验-----比较离散数2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假设检验课堂练习题
一、校篮球队百米跑成绩服从正
态,均数13.3秒,今年入队12人均
数为13.0秒,s=0.52秒,试问新队员
百米速度是否和往年一样?
三、某地健康成人红细胞检测结果如
下,试问男女间红细胞差别是否具有显著
性?

指 标 性别 人数 均数 标准差
红细胞 男 121 466.02 57.46
女 102 417.80 29.10

二、跳高成绩服从正态,甲乙两教师用
不同教法教背越式跳高,经一学期后,两组
成绩如下,试问两教师教学效果的差别是否
具有显著性?
编号 甲 组 乙组
1 2 3 4 5 6 7 8 172 175
165 169
183 181
171 172
179 164
175 174
169 166
178

四、铅球成绩服从正
态,少体校铅球组8名
女生开学初与学期末
成绩如下表,试问进步
是否具有显著性?(10
分)

编号 开学初 学期末
1 7.9 8.6
2 8.2 9.3
3 8.3 8.2
4 8.3 9.1
5 7.3 7.9
6 8.0 8.2
7 9.5 9.3
8 7.6 9.2

相关文档
最新文档