(完整版)精讲精练:全等三角形证明判定方法分类总结-培优
全等三角形判定定理精讲精练

八年级数学学案(总第节)设计老师执教老师上课班级学生姓名教学内容全等三角形判定定理精讲精练审核教学目标全面复习全等三角形及有关性质,掌握三角形全等的判定的四个方法。
能综合运用各种判定方法来证明线段和角相等。
掌握常规的作辅助线的方法。
教学重点综合运用各种判定方法来证明线段和角相等.教学难点常规的作辅助线的方法。
教学过程教学内容及学生活动时量教师活动一.新课导入1.三角形三边关系定理:。
2.三角形的内角和及推论:。
3.三角形的外和:。
4.全等三角形的性质;5.全等三角形对应元素的寻找方法;6.全等三角形的判定(四种方法)。
分别是。
注意有边边角和角角角是不能用的。
教学内容及学生活动时量教师活动二.自主学习1、下列命题中,不正确的是()(A)有两角和其中一角的对边对应相等的两个三角形全等(B)面积相等的两个直角三角形全等(C)有一边相等的两个等边三角形全等(D)有两边和其中一边上的中线对应相等的两个三角形全等。
2、如图,在∆ABC中,AB=AC,D、E、F依次是各边的中点,AD、BE、CF相交于G,那么图中的全等三角形共有()(A)5对(B)6对(C)7对(D)8对2题3题3、已知:如图,∆ABC中,∠C=90︒,,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6CM,则∆DEB的周长为()(A)4 (B)6 (C)10 (D)以上全不对三.合作交流例1已知:如图,在∆ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于H,且BH=AC,求∠HCD的度数。
例2已知:如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且∠B+∠D=180︒,求证:AE=AD+BDABDCE12AB CDEH。
第4讲.全等三角形的经典模型(二).培优

等等…腰漫画释义满分晋级阶梯4全等三角形的 经典模型(二)三角形11级特殊三角形之直角三角形 三角形10级 勾股定理与逆定理 三角形9级全等三角形的经典模型(二)OFEC BA A F COBEDHABCDO EO GFE CB A“手拉手”数学模型:⑴ ⑵ ⑶【引例】 如图,等边三角形ABE 与等边三角形AFC 共点于A ,连接BF 、CE ,求证:BF =CE 并求出∠EOB 的度数.【解析】 ∵△ABE 、△AFC 是等边三角形∴AE =AB ,AC =AF ,60∠=∠=︒EAB FAC知识互联网思路导航例题精讲题型一:“手拉手”模型3NM C B A B N CABCMN∴∠+∠=∠+∠EAB BAC FAC BAC 即∠=∠EAC BAF ∴AEC ABF △≌△ ∴BF =EC ∠=∠AEC ABF又∵AGE BGO ∠=∠ ∴60∠=∠=︒BOE EAB ∴60∠=︒EOB【例1】 如图,正方形BAFE 与正方形ACGD 共点于A ,连接BD 、CF ,求证:BD =CF 并求出∠DOH 的度数.【解析】 同引例,先证明ABD AFC △≌△∴BD =FC ,∠=∠BDA FCA ∵∠=∠DHO CHA ∴90∠=∠=︒DOH CAD【例2】 如图,已知点C 为线段AB 上一点,ACM △、BCN △是等边三角形.⑴ 求证:AN BM =.⑵ 将ACM △绕点C 按逆时针方向旋转180°,使点A 落在CB 上,请你对照原题图在图中画出符合要求的图形;⑶ 在⑵得到的图形中,结论“AN BM =”是否还成立,若成立,请证明;若不成立,请说明理由;⑷ 在⑵所得的图形中,设MA 的延长线交BN 于D ,试判断ABD △的形状,并证明你的结论.【分析】 这是一个固定后运动变化的探索题,且在一定的条件下,探究原结论的存在性(不变性); 需要画图分析、判断、猜想、推理论证.【解析】 ⑴ ∵ACM △、BCN △是等边三角形∴AC CM =,BC CN = 60ACM BCN ∠=∠=° ∴∠=∠ACN MCB在ACN △和MCB △中典题精练OHG DFECB ADNMCBA=⎧⎪∠=∠⎨⎪=⎩AC MC ACN MCB CN CB ∴ACN MCB △≌△(SAS ) ∴AN BM =⑵ 将ACM △绕点C 旋转如图:⑶ 在⑵的情况,结论AN BM =仍然成立.证明:∵60BCM NCA ∠=∠=°,CA CM =,CN CB =. ∴CAN CMB △≌△(SAS ),∴AN MB =.⑷ 如图,延长MA 交BN 于D ,则ABD △为等边三角形. 证明:∵60CAM BAD ABD ∠=∠=∠=°. ∴ABD △是等边三角形.【例3】 在ABC △中,90∠=BAC °,⊥AD BC 于D ,BF 平分∠ABC 交AD 于E ,交AC 于F .求证:AE=AF .54321A BCDE F【解析】 90∠=BAC °,390∴∠+∠=DAC °90⊥∴∠=︒AD BC ADC 90∴∠+∠=︒C DAC 3∴∠=∠C43152∠=∠+∠∠=∠+∠C ,BF 是ABC ∠的角平分线 12∴∠=∠ 45∴∠=∠ ∴=AE AF【例4】 如图,已知ABC △中,90ACB ∠=°,CD AB ⊥于D ,ABC ∠的角平分线BE 交CD 于G ,交AC 于E ,GF AB ∥交AC 于F .典题精练题型二:双垂+角平分线模型5ENMD CBA NMD CBA 求证:AF CG =.【分析】 要证AF CG =,一般想到证明这两条线段所在的三角形全等,由图形可知,不存在直接全等三角形,因此要想到添加辅助线构造全等三角形.【解析】 作EH AB ⊥于H∵12∠=∠,90ACB ∠=°∴EC EH =(角平分线定理) 又∵CD AB ⊥ ∴3A ∠=∠∵431∠=∠+∠,52A ∠=∠+∠ ∴45∠=∠ ∴CE CG = ∴CG EH =又∵GF AB ∥,90∠=∠=AHE FGC ° ∴A CFG ∠=∠∴CFG EAH △≌△(AAS ) ∴=CF EA ,∴-=-CF EF EA EF , ∴CE AF = ∴AF CG =【例5】 已知:正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交线段CB DC 、于点M N 、.求证BM DN MN +=.【解析】 延长ND 到E 使DE BM =∵四边形ABCD 是正方形 ∴AD =AB在ADE △和ABM △ =⎧⎪∠=∠⎨⎪=⎩AD AB ADE B DE BM ∴ADE ABM △≌△∴AM =AE ∠=∠BAM DAE典题精练题型三:半角模型54321HG FE DCBA54321G FE DCBADHFECBA∵45MAN ∠=︒ ∴45∠+∠=︒BAM NAD ∴45∠=∠=︒MAN EAN在AMN △和AEN △中 =⎧⎪∠=∠⎨⎪=⎩MA EA MAN EAN AN AN ∴AMN AEN △≌△ ∴MN =EN∴DE +DN =BM +DN=MN【例6】 如图,在四边形ABCD 中,180∠+∠=︒=B D AB AD ,,E 、F 分别是线段BC 、CD 上的点,且BE +FD =EF . 求证:12∠=∠EAF BAD .ABCDEF【解析】 延长FD 到H ,使DH =BE ,易证ABE ADH △≌△, 再证AEF AHF △≌△1122∴∠=∠=∠=∠EAF FAH EAH BAD【例7】 在等边三角形ABC 的两边AB 、AC 所在直线上分别有两点M 、N ,D 为三角形ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC . 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系.AM N BCDCBN M A图1 图2⑴如图1,当点M 、N 在边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; ⑵如图2,点M 、N 在边AB 、AC 上,且当DM ≠DN 时,猜想⑴问的结论还成立吗写7出你的猜想并加以证明.【解析】 ⑴如图1, BM 、NC 、MN 之间的数量关系BM +NC=MN .⑵猜想:结论仍然成立.证明:如图,延长AC 至E ,使CE=BM ,连接DE . BD=CD 且120BDC ∠=.∴ 30=∠=∠DCB DBC . 又△ABC 是等边三角形,∴90MBD NCD ECD ∠=∠=∠=. 在MBD △与ECD △中:BM CE MBD ECD BD CD =⎧⎪∠=∠⎨⎪=⎩∴MBD △≌ECD △(SAS ) . ∴DM=DE , BDM CDE ∠=∠ ∴60EDN BDC MDN ∠=∠-∠= 在△MDN 与△EDN 中:⎪⎩⎪⎨⎧=∠=∠=DN DN EDN MDN DE DM ∴MDN EDN △≌△(SAS) ∴MN NE NC BM ==+第04讲精讲:典型的旋转全等构图:“手拉手”全等模型探究; 【探究一】“手拉手”模型基本构图;如图1,若ABC ∆与ADE ∆旋转全等,则必有ABD ∆与ACE ∆为两个顶角相等的等腰三角形(即相似的等腰三角形);反之,如图2,若有两个顶角相等的等腰三角形ABD ∆与ACE ∆共顶角顶点,则必有ABC ∆与ADE ∆旋转全等;而图2正是“手拉手”模型的基本构图;图1EDBA图2EDBA【探究二】将探究一中的普通等腰三角形换成特殊的图形,例如等边三角形、等腰直角三角形、正方形,然后再探究结论如何变化;ENM DC BA图3EDCBA 图4E D CB A FG 图5ED CB A如图3、图4、图5,当两个等边三角形、等腰直角三角形、正方形共顶点时,ABC ∆与ADE ∆仍然旋转全等,并且有两个共同的结论; 结论1:ABC ∆≌ADE ∆;DE BC =;结论2:BC 与DE 所夹锐角等于两个等腰三角形的顶角;(倒角方法如下图6、图7、图8的八字模型)图6图7图8【探究三】将探究二中的特殊图形旋转后结论是否仍然成立; 如下图9、图10、图11易得探究二中的两个结论仍然成立;图9E图10图11【探究四】深化探究二中图3的结论; 如图12,可得结论1:ABC ∆≌ADE ∆;DE BC =;结论2:︒=∠=∠=∠=∠60CAE BAD COE BOD ; 结论3:如图12、图13、图14,可得三对三角形全等(ABC ∆≌ADE ∆;AHD ∆≌AGB ∆;AGC ∆≌AHE ∆)9图12图13图14结论4:如图15,连接GH ,可得AGH ∆为等边三角形;(由结论3可得AH AG =)图15NM O 图16EDC BA 结论5:BE GH ∥;(由结论4可得︒=∠=∠60BAD AGH ) 结论6:连接AO ,可得AO 平分BOE ∠;(如图16,分别作BC AM ⊥、DE AN ⊥,AM 与AN 分别是全等三角形ABC ∆与ADE ∆对应边BC 和DE 上的高,故相等)SFEDCBA MP N MH GFE DCBA N M DCBA题型一 手拉手模型 巩固练习【练习1】 如图,DA ⊥AB ,EA ⊥AC ,AD=AB ,AE=AC ,则下列正确的是( )A. ABD ACE △≌△B. ADF AES △≌△C. BMF CMS △≌△D. ADC ABE △≌△【解析】 D【练习2】 如图,正五边形ABDEF 与正五边形ACMHG 共点于A ,连接BG 、CF ,则线段BG 、CF具有什么样的数量关系并求出∠GNC 的度数. 【解析】 先证ABG AFC △≌△ 可得BG =CF ,∠=∠ACF AGB∵∠=∠NPG APC∴108∠=∠=︒GNC GAC题型二 双垂+角平分线模型 巩固练习【练习3】 已知AD 平分∠BAC ,⊥DE AB ,垂足为E ,⊥DF AC , 垂足为F ,且DB =DC ,则EB 与FC 的关系( ) A. 相等 B. EB <FC C. EB >FC D.以上都不对【解析】 A题型三 半角模型 巩固练习【练习4】 如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为 .【解析】 6【练习5】 如图,在四边形ABCD 中,180∠+∠=︒B ADC ,AB AD =,E 、F 分别是边BC 、CD 延长线上的点,且复习巩固F E DCBA FEDCBA11E H GD CBA FDEGCB A12EAF BAD =∠∠,求证:EF BE FD =-【解析】 证明:在BE 上截取BG ,使BG DF =,连接AG .∵180B ADC +=︒∠∠,180ADF ADC +=︒∠∠, ∴B ADF =∠∠. ∵AB AD =,∴ABG ADF △≌△.∴BAG DAF =∠∠,AG AF =.∴12BAG EAD DAF EAD EAF BAD +=+==∠∠∠∠∠∠.∴GAE EAF =∠∠. ∵AE AE =,∴AEG AEF △≌△. ∴EG EF =∵EG BE BG =-,∴EF BE FD =-.训练1. 如图,C 为线段AB 上一点,分别以AC 、CB 为边在AB 同侧作等边ACD △和等边BCE △,AE 交DC 于G 点,DB 交CE 于H 点,求证:GH AB ∥.【分析】 本题中,ACD △与BCE △是等边三角形,因此AC CD =,BC CE =,60ACD ECB ∠=∠=°,因为A 、C 、B 在同一条直线上,故60DCE ∠=°.这样可以得到ACE DCB △≌△,AEC DBC ∠=∠,故可以得到CEG CBH △≌△,则GC HC =,60CGH CHG ∠=∠=°,所以60ACG CGH ∠=∠=°,故GH AB ∥.【解析】 ∵ACD △和BCE △是等边三角形(已知)∴AC CD =,BC CE =(等边三角形的各边都相等)思维拓展训练(选讲)A B C DH QNM60ACD BCE ∠=∠=°(等边三角形的每个角都等于60°) ∵180ACD DCE BCE ∠+∠+∠=°∴60DCE ∠=°,120ACE DCB ∠=∠=°.在ACE △和DCB △中,=⎧⎪∠=∠⎨⎪=⎩AC DC ACE DCB CE CB∴ACE DCB △≌△(SAS )∴AEC DBC ∠=∠(全等三角形的对应角相等)在BCH △和ECG △中,60∠=∠=⎧⎪=⎨⎪∠=∠⎩BCH ECG BC CE CBH CEG °∴BCH ECG △≌△(ASA )∴CH CG =(全等三角形的对应边相等) ∴CGH CHG ∠=∠(等边对等角)∵180GCH GHC CGH ∠+∠+∠=°(三角形内角和定理) ∴60GHC CGH ∠=∠=°.∴60ACG CGH ∠=∠=°(等量代换) ∴GH AB ∥(内错角相等,两直线平行)训练2. 条件:正方形ABCD ,M 在CB 延长线上,N 在DC 延长线上,45MAN ∠=︒.结论:⑴ MN DN BM =-;⑵ AH AB =.【解析】 ⑴在CD 上取一点Q ,使DQ =BM先证AMB AQD △≌△可得AM =AQ再证AMN AQN △≌△ ∴MN =NQ∴DN DQ DN BM NQ MN -=-==⑵可证△ANH ≌△AND ,∴AH=AD=AB训练3. 如图,在Rt ABC △中,锐角ACB ∠的平分线交对边于E ,又交斜边的高AD 于O ,过O引OF BC ∥,交AB 于F ,请问AE 与BF 相等吗理由是什么A B M C H ND13ABCDO EOO 12ABCD E F FEDCBA21543G O54321G FE DC BA【解析】 相等.理由如下:如图,过E 作EG BC ⊥于G ∵EC 平分ACB ∠,∴12∠=∠ ∵90EAC ∠=°,AD BC ⊥∴1490∠+∠=°,2390∠+∠=° ∴34∠=∠ ∵35∠=∠, ∴45∠=∠ ∴AE AO =∵EC 平分ACB ∠,EA AC ⊥,EG BC ⊥ ∴EA EG =,∴AO EG =,∵FO BC ∥∴AFO B ∠=∠,90BDA FOA ∠=∠=° ∴BEG FAO ∠=∠∴AFO EBG △≌△(AAS ) ∴AF BE =∴AF EF BE EF -=- ∴AE BF =.训练4. 如图,△ABD 为等腰直角三角形,45∠=︒MAN ,求证:以BM 、MN 、DN 为边的三角形是直角三角形.【解析】 过B 作BD 的垂线并取BQ =ND ,连接AQ 、QM先证∴=AQB AND AQ AN △≌△, 再证∴=AQM ANM MN QM △≌△∴以BM 、MN 、DN 为边的三角形是直角三角形.测试1. 如图,等腰直角△ADB 与等腰直角△AEC 共点于A ,连接BE 、CD ,则线段BE 、CD 具有什么样的数量关系和位置关系【解析】 先证明ABE ADC △≌△∴BE =CD ,再类似例1倒角即可得到BE ⊥CD课后测N M DBA测试2. 如图,△ABD 为等腰直角三角形,45∠=︒MAN ,求证:以BM 、MN 、DN 为边的三角形是直角三角形.【解析】 过B 作BD 的垂线并取BQ =ND ,连接AQ 、QM先证∴=AQB AND AQ AN △≌△, 再证∴=AQM ANM MN QM △≌△∴以BM 、MN 、DN 为边的三角形是直角三角形.N M DBA第十五种品格:创新学会变通,变则通一天早上,一位贫困的牧师,为了转移哭闹不止的儿子的注意力,将一幅色彩缤纷的世界地图,撕成许多细小的碎片,丢在地上,许诺说:“小约翰,你如果能拼起这些碎片,我就给你二角五分钱。
全等三角形证明判定方法分类总结【范本模板】

全等三角形(一)SSS【知识要点】1.全等图形定义:两个能够重合的图形称为全等图形. 2.全等图形的性质:(1)全等图形的形状和大小都相同,对应边相等,对应角相等 (2)全等图形的面积相等3.全等三角形:两个能够完全重合的三角形称为全等三角形(1)表示方法:两个三角形全等用符号“≌”来表示,读作“全等于” 如DEF ABC ∆∆与全等,记作ABC ∆≌DEF ∆(2)符号“≌”的含义:“∽”表示形状相同,“="表示大小相等,合起来就是形状相同,大小也相等,这就是全等.(3)两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.(4)证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS ”. 【典型例题】例1.如图,ABC ∆≌ADC ∆,点B 与点D 是对应点,=∠BAC 且︒=∠20B ,1=∆ABC S ,求ACD D CAD ∠∠∠,,的度数ACD ∆的面积.例2.如图,ABC ∆≌DEF ∆,cm CE cm BC A 5,9,50==︒=∠,求EDF∠的度数及CF 的长.例3.如图,已知:AB=AD ,AC=AE ,BC=DE ,求证:CAD BAE ∠=∠例4.如图AB=DE,BC=EF ,AD=CF ,求证:(1)ABC ∆≌DEF ∆(2)AB//DE ,BC//EF例5.如图,在,90︒=∠∆C ABC 中D 、E 分别为AC 、AB 上的点,且BE=BC ,DE=DC ,求证:(1)AB DE ⊥;(2)BD 平分ABC ∠【巩固练习】1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形;④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )A 、①④B 、①②C 、②③D 、③④2.如图,ABD ∆≌CDB ∆,且AB 和CD 是对应边,下面四个结论中 不正确的是( )A 、CDB ABD ∆∆和的面积相等 B 、CDB ABD ∆∆和的周长相等C 、CBD C ABD A ∠+∠=∠+∠ D 、AD//BC 且AD=BC3.如图,ABC ∆≌BAD ∆,A 和 B 以及C 和D 分别是对应点,如果︒=∠︒=∠35,60ABD C ,则BAD ∠的度数为( )A 、︒85B 、︒35C 、︒60D 、︒804.如图,ABC ∆≌DEF ∆,AD=8,BE=2,则AE 等于( ) A 、6 B 、5 C 、4 D 、35.如图,要使ACD ∆≌BCE ∆,则下列条件能满足的是( ) A 、AC=BC ,AD=CE,BD=BE B 、AD=BD,AC=CE ,BE=BD C 、DC=EC ,AC=BC ,BE=AD D 、AD=BE,AC=DC,BC=EC6.如图,ABE ∆≌DCF ∆,点A 和点D、点E 和点F 分别是对应点,则AB=,=∠A,AE= ,CE= ,AB//,若BC AE ⊥,则DF 与BC 的关系是 .7.如图,ABC ∆≌AED ∆,若=∠︒=∠︒=∠︒=∠BAC C EAB B 则,45,30,40 ,=∠D ,=∠DAC .8.如图,若AB=AC,BE=CD ,AE=AD ,则ABE ∆ ACD ∆,所以=∠AEB ,=∠BAE ,=∠BAD .9.如图,ABC ∆≌DEF ∆,︒=∠90C ,则下列说法错误的是( )D第3题图第4题图第5题图B第6题图第7题图第8题图第9题题图A 、互余与F C ∠∠B 、互补与FC ∠∠C 、互余与E A ∠∠D 互余与D B ∠∠ 10.如图,ACF ∆≌DBE ∆,cm CD cm AD ACF E 5.2,9,110,30==︒=∠︒=∠,求D ∠的度数及BC 的长.11.如图,在ABD ABC ∆∆与中,AC=BD ,AD=BC,求证:ABC ∆≌ABD ∆全等三角形(一)作业1.如图,ABC ∆≌CDA ∆,AC=7cm ,AB=5cm 。
上海杨浦高级中学八年级数学上册第十二章《全等三角形》知识点总结(培优练)

一、选择题1.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .1B解析:B【分析】 先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC ∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键. 2.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .7C解析:C【分析】 先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.3.如图,AB =AC ,AD =AE ,∠A =105°,∠D =25°,则∠ABE 等于( )A .65°B .60°C .55°D .50°D解析:D【分析】 依据SAS 即可得判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠D =∠E =25°,由三角形内角和定理可求出答案.【详解】解:在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠D =∠E ,∵∠D =25°,∴∠E =25°,∴∠ABE =180°﹣∠A ﹣∠E =180°﹣105°﹣25°=50°.故选:D .【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,熟练掌握全等三角形的判定与性质是解题的关键.4.如图,在Rt ABC △中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,且DE 所在直线是AB 的垂直平分线,垂足为E .若3DE =,则BC 的长为( ).A .6B .7C .8D .9D解析:D【分析】 由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【详解】解:∵DE 垂直平分AB ,∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB ,∵∠C=90°,∴3∠EAD=90°,∴∠EAD=30°,∵∠AED=90°,∴DA=BD=2DE ,∵AD 平分∠CAB ,DE ⊥AB ,CD ⊥AC ,∴CD=DE=3,∴DA=BD=6,∴BC=BD+CD=6+3=9,故选:D .【点睛】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.5.如图,AC 与DB 相交于E ,且BE CE =,如果添加一个条件还不能判定ABE △≌DCE ,则添加的这个条件是( ).A .AC DB =B .A D ∠=∠C .B C ∠=∠D .AB DC = D解析:D【分析】 根据全等三角形的判定定理,对每个选项分别分析、解答出即可.【详解】根据题意:BE=CE ,∠AEB=∠DEC ,∴只需要添加对顶角的邻边,即AE=DE (由AC=BD 也可以得到),或任意一组对应角,即∠A=∠D ,∠B=∠C ,∴选项A 、B 、C 可以判定,选项D 不能判定,故选:D .【点睛】此题考查全等三角形的判定定理,熟记判定定理并熟练应用是解题的关键.6.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为( )A .50°B .65°C .70°D .80°A解析:A【分析】 根据题意可证明ABE ACD ≅,即得到B C ∠=∠.再利用三角形外角的性质,可求出DME ∠,继而求出BMD ∠.根据题意ABE ACD ≅(SAS ),∴30B C ∠=∠=︒∵DME B BDC ∠=∠+∠,BDC C A ∠=∠+∠∴307030130DME B A C ∠=∠+∠+∠=︒+︒+︒=︒∴180********BMD DME ∠=︒-∠=︒-︒=︒故选A .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质.利用三角形外角的性质求出DME B A C ∠=∠+∠+∠是解答本题的关键.7.如图,在△ABC 中,点E 和F 分别是AC ,BC 上一点,EF ∥AB ,∠BCA 的平分线交AB 于点D ,∠MAC 是△ABC 的外角,若∠MAC =α,∠EFC =β,∠ADC =γ,则α、β、γ三者间的数量关系是( )A .β=α+γB .β=2γ﹣αC .β=α+2γD .β=2α﹣2γB解析:B【分析】 根据平行线的性质得到∠B=∠EFC=β,由角平分线的定义得到∠ACB=2∠BCD ,根据∠ADC 是△BDC 的外角,得到∠ADC=∠B+∠BCD ,由三角形外角的性质得到∠MAC=∠B+∠ACB ,于是得到结果.【详解】解:∵EF ∥AB ,∠EFC=β,∴∠B=∠EFC=β,∵CD 平分∠BCA ,∴∠ACB=2∠BCD ,∵∠ADC 是△BDC 的外角,∴∠ADC=∠B+∠BCD ,∵∠ADC=γ,∴∠BCD=γ-β,∵∠MAC 是△ABC 的外角,∴∠MAC=∠B+∠ACB ,∵∠MAC=α,∴α=β+2(γ-β),∴β=2γ-α,故选:B .本题考查了三角形外角的性质,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.8.如图,C 是∠AOB 的平分线上一点,添加下列条件不能判定△AOC ≌△BOC 的是( )A .OA =OBB .AC =BC C .∠A =∠BD .∠1=∠2B解析:B【分析】 根据题意可以得到∠AOC=∠BOC ,OC=OC ,然后即可判断各个选项中条件是否能判定△AOC ≌△BOC ,从而可以解答本题.【详解】解:由已知可得,∠AOC=∠BOC ,OC=OC ,∴若添加条件OA=OB ,则△AOC ≌△BOC (SAS ),故选项A 不符合题意;若添加条件AC=BC ,则无法判断△AOC ≌△BOC ,故选项B 符合题意;若添加条件∠A=∠B ,则△AOC ≌△BOC (AAS ),故选项C 不符合题意;若添加条件∠1=∠2,则∠ACO=∠BCO ,则△AOC ≌△BOC (ASA ),故选项D 不符合题意;故选:B .【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答. 9.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒D 解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】解:A ,AB BC CA +=,不满足三边关系,不能画出三角形,故选项错误; B ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D ,可以利用直角三角形全等判定定理HL 证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的10.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b B解析:B【分析】 在线段AC 上作AF=AB ,证明△AEF ≌△AEB 可得∠AFE=∠B ,∠AEF=∠AEB ,再证明△CEF ≌△CED 可得CD=CF ,即可求得四边形ABDC 的周长.【详解】解:在线段AC 上作AF=AB ,∵AE 是BAC ∠的平分线,∴∠CAE=∠BAE ,又∵AE=AE ,∴△AEF ≌△AEB (SAS ),∴∠AFE=∠B ,∠AEF=∠AEB ,∵AB ∥CD ,∴∠D+∠B=180°,∵∠AFE+∠CFE=180°,∴∠D=∠CFE ,∵AE CE ⊥,∴∠AEF+∠CEF=90°,∠AEB+∠CED=90°,∴∠CEF=∠CED ,在△CEF 和△CED 中∵D CFE CEF CED CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CEF ≌△CED (AAS )∴CE=CF ,∴四边形ABDC 的周长=AC+AB+BD+CD=AC+AF+CF+BD=2AC+BD=2a b +,故选:B .【点睛】本题考查全等三角形的性质和判断.能正确作出辅助线构造全等三角形是解题关键.二、填空题11.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E 先证明∠CBE=∠ACD 从而证明∆ACD ≅∆CBE 进而即可求解【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ∵BE ⊥CE ∴∠BEC=∠CDA=90°解析:50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E ,先证明∠CBE=∠ACD ,从而证明∆ ACD ≅∆ CBE ,进而即可求解.【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ,∵BE ⊥CE ,∴∠BEC=∠CDA=90°,∴∠CBE+∠BCE=90°,又∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠CBE=∠ACD ,在∆ ACD 与∆ CBE 中,∵CBE ACD CEB ADC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∆ ACD ≅∆ CBE (AAS ),∴BE=CD=10,∴BCD ∆的面积=12CD∙BE=12×10×10=50, 故答案是50.【点睛】本题主要考查全等三角形的判定和性质,等腰直角三角形的性质,添加辅助线,构造“一线三垂直”模型,是解题的关键.12.如图,点D 在BC 上,DE ⊥AB 于点E ,DF ⊥BC 交AC 于点F ,BD =CF ,BE =CD .若∠AFD =145°,则∠EDF =_____. 55°【分析】由∠AFD =145°可求得∠CFD=35°证明Rt △BDE ≌△Rt △CFD 根据对应角相等推知∠BDE=∠CFD=35°进而可求出∠EDF 的值【详解】解:∵∠DFC+∠AFD=180°∠解析:55°【分析】由∠AFD =145°可求得∠CFD=35°,证明Rt △BDE ≌△Rt △CFD ,根据对应角相等推知∠BDE=∠CFD=35°,进而可求出∠EDF 的值.【详解】解:∵∠DFC+∠AFD=180°,∠AFD=145°,∴∠CFD=35°.又∵DE ⊥AB ,DF ⊥BC ,∴∠BED=∠CDF=90°,在Rt △BDE 与△Rt △CFD 中,BE CD BD CF =⎧⎨=⎩, ∴Rt △BDE ≌△Rt △CFD (HL ),∴∠BDE=∠CFD=35°,∴∠EDF =180°-90°-35°=55°.故答案是:55°.【点睛】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 13.已知点A 、E 、F 、C 在同一条直线l 上,点B 、D 在直线l 的异侧,若AB=CD ,AE=CF ,BF=DE ,则AB 与CD 的位置关系是_______.AB//CD 【分析】先利用SSS 证明△ABF ≌△CDE 然后根据全等三角形的性质得到∠DCE=∠BAF 最后根据内错角相等两直线平行即可解答【详解】解:∵AE=CF ∴AE+EF=CF+EF 即AF=EC 在解析:AB//CD【分析】先利用SSS 证明△ABF ≌△CDE ,然后根据全等三角形的性质得到∠DCE=∠BAF ,最后根据内错角相等、两直线平行即可解答.【详解】解:∵AE=CF ,∴AE+EF=CF+EF,即AF=EC在△ABF 和△CDE 中,,,,AB CD AF EC BF DE =⎧⎪=⎨⎪=⎩∴△ABF ≌△CDE (SSS ),∴∠DCE=∠BAF .∴AB//CD .故答案为:AB//CD .【点睛】本题主要考查了全等三角形的判定与性质以及平行线的判定,运用全等三角形的知识得到∠DCE=∠BAF 成为解答本题的关键.14.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.5【分析】根据角平分线的性质及垂线段最短解答【详解】根据垂线段最短可知:当PM ⊥OC 时PM 最小∵OP 平分PD=5∴PM=PD=5故答案为:5【点睛】此题考查角平分线的性质垂线段最短掌握点到直线的所有 解析:5【分析】根据角平分线的性质及垂线段最短解答.【详解】根据垂线段最短可知:当PM ⊥OC 时,PM 最小,∵OP 平分AOC ∠,PD OA ⊥,PD=5,∴PM=PD=5,故答案为:5.【点睛】此题考查角平分线的性质,垂线段最短,掌握点到直线的所有连线中垂线段最短是解题的关键.15.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.ASA 【分析】根据全等三角形的判断方法解答【详解】解:由图可知带第4块去符合角边角可以配一块与原来大小一样的三角形玻璃故答案为:4;ASA 【点睛】本题考查了全等三角形的应用是基础题熟记三角形全等的判解析:ASA【分析】根据全等三角形的判断方法解答.【详解】解:由图可知,带第4块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃. 故答案为:4;ASA【点睛】本题考查了全等三角形的应用,是基础题,熟记三角形全等的判定方法是解题的关键. 16.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.3【分析】过D 作DE ⊥BC 于EDE 即为DP 长的最小值由题意可以得到△BAD ≌△BED 从而得到DE 的长度【详解】解:如图过D 作DE ⊥BC 于EDE 即为DP 长的最小值由题意知在△BAD 和△BED 中∴△BA解析:3【分析】过D 作DE ⊥BC 于E ,DE 即为DP 长的最小值,由题意可以得到△BAD ≌△BED ,从而得到DE 的长度.【详解】解:如图,过D 作DE ⊥BC 于E ,DE 即为DP 长的最小值,由题意知在△BAD 和△BED 中,A DEB ABD EBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△BED ,∴ED=AD=3,故答案为3.【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定和性质是解题关键. 17.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.3【分析】过点D 作于点H 先证明BD 是的角平分线然后根据角平分线的性质得到当点P 运动到点H 的位置时DP 的长最小即DH 的长【详解】解:如图过点D 作于点H ∵∴∵∴∴BD 是的角平分线∵∴∵点D 是直线BC 外一解析:3【分析】过点D 作DH BC ⊥于点H ,先证明BD 是ABC ∠的角平分线,然后根据角平分线的性质得到3AD DH ==,当点P 运动到点H 的位置时,DP 的长最小,即DH 的长.【详解】解:如图,过点D 作DH BC ⊥于点H ,∵BD CD ⊥,∴90BDC ∠=︒,∵180C BDC DBC ∠+∠+∠=︒,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,∴ABD CBD ∠=∠,∴BD 是ABC ∠的角平分线,∵AD AB ⊥,DH BC ⊥,∴3AD DH ==,∵点D 是直线BC 外一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长,即DP 长的最小值是3.故答案是:3.【点睛】本题考查角平分线的性质,解题的关键是熟练运用角平分线的性质定理.18.如图,AB =8cm ,AC =5cm ,∠A =∠B ,点P 在线段AB 上以2cm/s 的速度由点A 向B 运动,同时,点Q 以x cm/s 的速度从点B 出发在射线BD 上运动,则△ACP 与△BPQ 全等时,x 的值为_____________2或【分析】由∠A =∠B 可知△ACP 与△BPQ 全等时CP 和PQ 是对应边则分AP =BQ 和AP =PB 两种情况进行讨论即可【详解】设动点的运动时间为t 秒则AP =2tBP =AB -AP =8-2tBQ =xt ∵∠解析:2或52 【分析】由∠A =∠B ,可知△ACP 与△BPQ 全等时,CP 和PQ 是对应边,则分AP =BQ 和AP =PB 两种情况进行讨论即可.【详解】设动点的运动时间为t 秒,则AP =2t ,BP =AB -AP =8-2t ,BQ =xt ,∵∠A =∠B ,∴CP 和PQ 是对应边,当△ACP 与△BPQ 全等时,①AP =BQ ,即:2t = xt ,解得:x =2,②AP =PB ,即:2t =8-2t ,解得:t =2,此时,BQ =AC ,xt =5,即:2x =5,解得:x =52故填:2或52. 【点睛】本题考查全等三角形的性质,“分类讨论”的数学思想是关键.19.如图,ABC 中,90C ∠=,AD 平分BAC ∠,若2DC =,则点D 到线段AB 的距离等于________.【分析】过D 作DE ⊥AB 于E 根据角平分线的性质得出DE=DC 即可求出答案【详解】解:过D 作DE ⊥AB 于E ∵∠C=90°AD 平分∠BACDC=2∴DE=DC=2即点D 到线段AB 的距离等于2故答案为:2解析:【分析】过D 作DE ⊥AB 于E ,根据角平分线的性质得出DE=DC ,即可求出答案.【详解】解:过D 作DE ⊥AB 于E ,∵∠C=90°,AD 平分∠BAC ,DC=2,∴DE=DC=2,即点D 到线段AB 的距离等于2,故答案为:2.【点睛】本题考查了考查了角平分线的性质,能根据角平分线的性质得出DE=DC 是解此题的关键. 20.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.AD=BD 【分析】要判定△BCD ≌△ACD 已知∠1=∠2CD是公共边具备了一边一角对应相等注意SAS 的条件;两边及夹角对相等只能选AD=BD 【详解】解:由图可知只能是AD=BD 才能组成SAS 故答案为解析:AD=BD【分析】要判定△BCD ≌△ACD ,已知∠1=∠2,CD 是公共边,具备了一边一角对应相等,注意“SAS”的条件;两边及夹角对相等,只能选AD=BD.【详解】解:由图可知,只能是AD=BD ,才能组成“SAS”,故答案为:AD=BD.【点睛】本题考查了全等的判定,掌握“SAS”的条件是两边及夹角对相等是解题的关键.三、解答题21.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.解析:见解析【分析】根据ASA 定理证明三角形全等,从而利用全等三角形的性质求解.【详解】证明:∵DE=BF ,∴DE+EF=BF+EF ;∴DF=BE ;∵AF BD ⊥,CE BD ⊥∴∠AFD=∠CEB=90°∵//AD CB∴∠B=∠D在Rt △ADF 和Rt △BCE 中B D DF BE AFD CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt △ADF ≌Rt △BCE∴AF CE =【点睛】本题考查了三角形全等的判定及性质;由DE=BF 通过等式的性质得DF=BE 在三角形全等的证明中经常用到,应注意掌握应用.22.作图题:已知∠α,线段m 、n ,请按下列步骤完成作图(不需要写作法,保留作图痕迹)(1)作∠MON =∠α(2)在边OM 上截取OA =m ,在边ON 上截取OB =n .(3)作直线AB .解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)先画一条射线ON ,以∠α的顶点为圆心,任意长度为半径画弧,交∠α的两个边于两个点,这两个点的距离记为a ,接着以点O 为圆心,同样的长度为半径画弧,交ON 于一个点,以这个点为圆心,a 为半径画弧,与刚刚画的弧有一个交点,连接这个点和点O ,得到射线OM ,即可得到∠MON =∠α;(2)以点O 为圆心,m 为半径画弧,交OM 于点A ,以点O 为圆心,n 为半径画弧,交ON 于点B ;(3)连接AB ,线段AB 所在的直线即直线AB .【详解】解:(1)如图所示,(2)如图所示,(3)如图所示,【点睛】本题考查尺规作图,解题的关键是掌握作已知角度的方法,截取线段和画直线的方法. 23.OAB 和ODE 均为等腰三角形,且AOB DOE β∠=∠=,OA OB =,OD OE =,连接AD 、BE ,它们所在的直线交于点F .(1)观察发现:如图1,当60β︒=时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______;(2)探究证明:如图2,当90β︒=时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______,根据图2证明你的猜想;(3)拓展推广:当β为任意角时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______.(用含β的式子表示)解析:(1)AD BE =,60°;(2)AD BE =,90°,理由见解析;(3)AD BE =,β【分析】(1)设AF 交BD 于G ,证明AOD BOE ≌△△,推出AD BE =,OAD OBE ∠=∠,得到60AFB AOB ∠=∠=︒;(2)证明AOD BOE ≌△△,推出AD BE =,OAD OBE ∠=∠,根据OFA DFB ∠=∠及三角形内角和定理即可证得90AFB AOB ∠=∠=︒;(3)根据(1)与(2)直接得到结论.【详解】(1)证明:设AF 交BO 于G ,∵60AOB DOE ∠=∠=︒,∴AOB BOD DOE BOD ∠-∠=∠-∠,即AOD BOE ∠=∠,∵OA OB =,OD OE =,∴AOD BOE ≌△△,∴AD BE =,OAD OBE ∠=∠,∵OGA FGB ∠=∠,∴180180OGA OAD FGB OBE ∠-∠=∠--∠︒-︒,∴60AFB AOB ∠=∠=︒, 故答案为:AD BE =,60°;(2)AD BE =,90°证明:设AF 交BO 于G ,∵90AOB DOE ︒∠=∠=,∴AOB BOD DOE BOD ∠+∠=∠+∠,即AOD BOE ∠=∠,∵OA OB =,OD OE =,∴AOD BOE ≌△△,∴AD BE =,OAD OBE ∠=∠,∵OGA DGB ∠=∠,∴90AFB AOB ∠=∠=︒;故答案为:AD BE =,90°;(3)证明:由(1)与(2)可得AD BE =,AFB AOB β∠=∠=故答案为:AD BE =,β.【点睛】此题考查全等三角形的判定及性质,等腰三角形的性质,熟练掌握全等三角形的判定及性质是解题的关键.24.如图,AB ⊥CB ,DC ⊥CB , E 、F 在 BC 上,AF=DE ,BE=CF ,求证:AB =DC .解析:见解析【分析】由BE =CF 得BF =CE ,由AB ⊥CB ,DC ⊥CB 得到∠ABF =∠DCE =90°,然后根据“HL ”可判断Rt ABF ≌Rt DCE ,则AB =DC 即可.【详解】证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,∵AB ⊥CB ,DC ⊥CB ,∴∠ABF =∠DCE =90°,∵在Rt ABF 和Rt DCE 中,AF DE BF CE =⎧⎨=⎩, ∴Rt ABF ≌Rt DCE (HL ),∴AB =DC .【点睛】本题考查了直角三角形的判定与性质:有一组直角边和斜边对应相等的两直角三角形全等;全等三角形的对应角相等,对应边相等.25.求证:全等三角形对应边上的中线相等.(根据图形写出已知,求证并完成证明)解析:见解析【分析】利用SAS 证明ABD ≌A B D '''△,即可证得结论.【详解】 解:已知:如图,ABC ≌A B C ''',AD 和A D ''分别是BC 和B C ''上的中线,求证:AD =A D ''.证明:∵ABC ≌A B C ''', ∴AB =A B '',∠B =∠B ',BC =B C '',∵AD 、A D ''是 BC 和B C ''上的中线,∴BD =12BC ,12B D B C ''''=, ∴BD =B D '',∴在ABD 与A B D '''△中 AB A B B B BD B D =⎧⎪∠=∠⎨⎪=''''⎩'∴ABD ≌A B D '''△(SAS ),∴AD =A D ''.【点睛】本题考查了全等三角形的判定与性质,证明线段相等的问题,基本的思路是转化成三角形全等.26.如图,BD //GE ,150AFG ∠=∠=︒,AQ 平分FAC ∠,交BD 的延长线于点Q ,交DE 于点H ,15Q ∠=︒,求CAQ ∠的度数.解析:∠CAQ =65°【分析】先根据三角形外角和定理求出∠EHQ 的度数,再根据平行的性质和判定证明DE ∥AF ,可以求出∠FAQ 的度数,再由角平分线的性质即可得出结果.【详解】解:∵∠EHQ 是△DHQ 的外角,∴∠EHQ =∠1+∠Q =65°,∵BD ∥GE ,∴∠E =∠1=50°,∵∠AFG =∠1=50°,∴∠E =∠AFG ,∴DE ∥AF ,∴∠FAQ =∠EHQ =65° ,∵AQ 平分∠FAC ,∴ ∠CAQ =∠FAQ =65°.【点睛】本题考查角平分线的性质,平行线的性质和判定,解题的关键是熟练运用这些性质定理进行求解.27.如图,BC ⊥AD 于C ,EF ⊥AD 于F ,AB ∥DE ,分别交BC 于B ,交EF 于E ,且BC =EF .求证:AF =CD .解析:证明见解析.【分析】由BC⊥AD,EF⊥AD得∠EFD=∠BCA=90°,由AB∥DE,得∠D=∠A,又BC=EF,从而△ABC≌△DEF,则AC=FD, AF=CD.【详解】证明:∵BC⊥AD,EF⊥AD,∴∠EFD=∠BCA=90°∵AB∥DE,∴∠D=∠A∵BC=EF,∴△ABC≌△DEF,∴AC=FD,∴AF=CD.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.28.如图,一条河流MN旁边有两个村庄A,B,AD⊥MN于D.由于有山峰阻挡,村庄B 到河边MN的距离不能直接测量,河边恰好有一个地点C能到达A,B两个村庄,与A,B 的连接夹角为90°,且与A,B的距离也相等,测量C,D的距离为150m,请求出村庄B到河边的距离.解析:150米【分析】根据题意,判断出△ADC≌△CEB即可求解.【详解】解:如图,过点B作BE⊥MN于点E,∵∠ADC=∠ACB=90°,∴∠A=∠BCE(同角的余角相等).在△ADC与△CEB中,90ADC CEB A BCEAC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS ).∴BE =CD =150m .即村庄B 到河边的距离是150米.【点睛】本题主要考查的是全等三角形的实际应用,熟练掌握全等三角形的判定及性质是解答本题的关键.。
全等三角形证明判定方法分类总结材料44117

全等三角形(一)SSS【知识要点】1全等图形定义:两个能够重合的图形称为全等图形.2 •全等图形的性质:(1)全等图形的形状和大小都相同,对应边相等,对应角相等(2)全等图形的面积相等3 •全等三角形:两个能够完全重合的三角形称为全等三角形(1)表示方法:两个三角形全等用符号“也”来表示,读作“全等于”如ABC与DEF全等,记作ABC也DEF(2)符号“也”的含义:“s”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等.(3)两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.(4)证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.A 50 , BC 9cm,CE 5cm,求EDF 的度数及CF 的长.例3.如图,已知:AB=AD AC=AE BC=DE 求证:BAE CADDC 4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边” 或“SSS.如图,在ABC和DEF 中例4.如图AB=DE BC=EF AD=CF 求证:(1)ABC 也DEF(2)AB//DE , BC//EFABC也DEF【典型例题】例1.如图,ABC也ADC,点B与点D是对应点,BAC 26 ,且B 20 , S ABC 1,求CAD , D, ACD的度数及ACD的面积.例 2 . 女口图,ABC 也DEF ,例5.如图,在ABC中C 90 , D E分别为 AC AB上的点,且BE=BC DE=DC C 60 , ABD 35,贝U BAD的度数为(求证:(1)DE AB ;(2) BD平分ABC(角平分线的相关证明及性质)D【巩固练习】1 •下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形;④若两个图形是全等图形,则它们的大小一定相同,其中正确的是()A、①④ B 、①② C 、②③ D 、③④2 .如图,ABD也CDB,且AB和CD是对应边,下面四个结论中不正确的是()A、ABD和CDB的面积相等B、ABD和CDB的周长相等C、 A ABD C CBDD AD//BC 且AD=BC3 •如图,ABC也BAD , A和B以及C和D分别是对应点,如果A、85C 604 .如图,B 、35D 、80ABC 也DEF , AD=8 BE=2 则AE等于(BCE,则下列条件能满足的是()第5题图第6题图BA 、AC=BC AD=CE BD=BEB 、AD=BD AC=CE BE=BDC 、DC=EC AC=BC BE=AD D 、AD=BE AC=DC BC=EC6 .如图,ABE也DCF ,点A和点D、点E和点F分别是对应点,则AB= _________ ,A __________ , AE= ___________ , CE= ___________ , AB// _________ ,若AE BC,贝U DF与BC的关系是__________________ .7 •如图,ABC 也AED,若B 40, EAB 30, C 45,则BAC,DACDE8.ACDA F EB C第9题题图D C口图,若AB=A CBE=CDAE=AD|贝8题图E—ACD,所以AEB BA E7题图 ,BAD11.如图,在 ABC 与 ABD 中,AC=BD AD=BC 求证: ABC 也 ABD全等三角形(一)作业1.如图, ABC 也 CDA , AC=7cm AB=5cm.,则 AD 的长是( )9.如图, ABC 也 DEF C 90,则下列说法错误的是(C 与F 互余 F 互补 A 与E 互余 D 互余第1題图10 .如图,ACF 也 DBE , E 30,ACF 110, AD9cm,CD 2.5cm,第已题图求 D 的度数及BC 的长. D2 .如图,ABC 也 DCE ,A 48 , E 62,点B 、C E 在同一直线上,则 ACD 的度数为( )A 、48B 、38C 、110D 、623 .如图,ABC 也 DEF , AF=2cm,CF=5cm 则 AD= ___________ABE 也ACD,A 100 ,B 25,求 BDC 的度数.5 .如图,已知, AB=DE BC=EF AF=CD 求证:AB//CD4 .如图,A、7cm B 、5cm C 、8cm D 、无法确定A6. 如图,已知AB=EF BC=DE AD=CF 求证:① ABC也FED② AB//EFD文案大全7.如图, 已知AB=AD AC=AE BC=DE 求证:BAD CAEE【知识要点】全等三角形(二) AD=AE /仁/ 2,由此你能得出哪些结论?给出证明定义:SAS两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS,几何表示【例3】如图已知:AE=AF AB=AC / A=60°,Z B=24°,求/ BOE的度数.如图,在ABC和DEF中,AB DEB E ABC 也DEF (SAS) BC EF【典型例题】【例4】如图,B, C, D在同一条直线上,△ ABC △ ADE是等边三角形, 求证:① CE=AC+D;②/ ECD=60 .【例1】已知:如图, AB=AC AD=AE 求证:BE=CD.【例5】如图,已知△ ABC △ BDE均为等边三角形。
全等三角形证明题培优(38题)(方法)

全等三角形证明题(经典38题)(方法)1.(方法:巧做辅助线)如图,在△ABC中,∠B=2∠C,AD⊥BC于D,求证:CD=BD+AB.2.(方法:巧做辅助线)如图所示,在△ABC中,AB=AC,在AB上取一点E,在AC延长线上取一点F,使BE=CF,EF交BC于G.求证:EG=FG。
3.(方法:巧做辅助线)如图,已知AC=BD,AD⊥AC,BC⊥BD,求证:AD=BC.4.图,∠B=∠E,∠C=∠D,BC=DE,M为CD中点,求证:AM⊥CD.5.(方法:巧做辅助线)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF。
求证:(1)AE=BF;(2)AE⊥BF。
6.(方法:巧做辅助线)如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连D E交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.7.(方法:火眼金睛找条件)如图所示,∠BAC=∠DAE=90°,M是BE的中点,AB=AC,AD=AE,求证:(1)CD=2AM,(2)AM⊥CD.8.(方法:火眼金睛找条件)已知:如图,点C为线段AB上一点,△ACM, △CBN都是等边三角形,AN交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形9.(方法:火眼金睛找条件)如图,在△ABC中,AD平分∠BAC,E为BC的中点,过点E 作EF∥AD交AB于点G,交CA的延长线于点F.求证:BG=CF.FDE CBA(2)10.(方法:巧做辅助线)如图,AB=AE,∠ABC=∠AED,BC=ED,点F 是CD 的中点, 求证:AF ⊥CD.11.(方法:巧做辅助线)如图,在正方形ABCD 中,M 、N 分别是BC 、CD 上的点,∠MAN=45°. 求证:MB+ND=MN .12.(方法:巧做辅助线)已知:如图,ABCD 是正方形,∠FAD=∠FAE .求证:BE+DF=AE .13.(方法:火眼金睛找条件)如图E 为正方形ABCD 边BC 的中点,F 为DC 的中点,BF 与AE 有何关系?请解释你的结论。
(完整版)全等三角形的性质及判定
全等三角形第1节全等三角形的性质和判定【知识梳理】1、全等图形:能够完全重合的两个图形就是全等图形.2、全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.3、全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.4、全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.【诊断自测】1、如果ΔABC≌ΔDBC,则AB的对应边是_____,AC的对应边是_____,∠DBC的对应角是_____,∠DCB的对应角是_____.2、如图,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.3、如果△ABC和△DEF这两个三角形全等,点C和点E,点B和点D分别是对应点,则另一组对应点是,对应边是,对应角是,表示这两个三角形全等的式子是.【考点突破】类型一:全等形例1、由同一张底片冲洗出来的两张五寸照片的图案_____全等图案,而由同一张底片冲洗出来的五寸照片和七寸照片____全等图形。
(填“是”或者“不是”)类型二:全三角形的定义和性质例2、如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A.∠B B.∠A C.∠EMF D.∠AFB例3、如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠BAC:∠ABC:∠BCA=28:5:3,则∠α的度数为()A.90°B.85°C.80°D.75°类型三:全等三角形的判定(SSS)例4、用直尺和圆规作一个角等于己知角的作图痕迹如图所示,则作图的依据是()A.SSS B.SAS C.ASA D.AAS例5、已知:如图2-1,△RPQ中,RP=RQ,M为PQ的中点.求证:RM平分∠PRQ.分析:要证RM平分∠PRQ,即∠PRM=______,只要证______≌______证明:∵ M 为PQ 的中点(已知),∴______=______在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知 ∴______≌______( ).∴ ∠PRM =______(______).即RM .例6.已知:如图,AD =BC .AC =BD .试证明:∠CAD =∠DBC .类型四:全等三角形的判定(SAS )例7. 已知:如图3-1,AB 、CD 相交于O 点,AO =CO ,OD =OB .求证:∠D =∠B .分析:要证∠D =∠B ,只要证______≌______证明:在△AOD 与△COB 中,⎪⎩⎪⎨⎧=∠=∠=),______(),______(______),(OD CO AO∴ △AOD ≌△______ ( ).∴ ∠D =∠B (______).例8、小红家有一个小口瓶(如图所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了.她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,你知道这是为什么吗?请说明理由.(木条的厚度不计)例9、如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.类型五:全等三角形的判定(AAS和ASA)例10、某同学把一块三角形的玻璃打碎成了3块,现要到玻璃店去配一块完全一样的玻璃,同学小明知道只要带③去就行了,你知道其中的道理是()A.SAS B.SSA C.ASA D.HL例11. 如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的图形是例12、已知:如图,PM=PN,∠M=∠N.求证:AM=BN.分析:∵PM =PN ,∴ 要证AM =BN ,只要证PA =______,只要证______≌______.证明:在△______与△______中,⎪⎩⎪⎨⎧∠=∠=∠=∠),______(______),______(______),______(______ ∴ △______≌△______ ( ).∴PA =______ ( ).∵PM =PN ( ),∴PM -______=PN -______,即AM =______.例13、已知:AB ⊥AE ,AD ⊥AC ,∠E=∠B ,DE=CB .求证:AD=AC ..例14、如图,在△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE 于点E .AD ⊥CE 于点D .求证:△DEC ≌△CDA .类型六:全等三角形的判定(HL ) 例15.已知在△ABC 和△DEF 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( )A.AB=D E,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF例16、如图所示,在△ABC中,∠C=90°,DE⊥AB于点D,BD=BC,若AC=6,则AE+DE=_____【易错精选】1、如图所示,△ABC≌△DEC,则不能得到的结论是()A.AB=DE B.∠A=∠D C.BC=CD D.∠ACD=∠BCE2、如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为()A.22 B.24 C.26 D.283、如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=__________度A CBED【精华提炼】判定三角形全等的基本思路:SAS SS HLSSS →⎧⎪→⎨⎪→⎩找夹角已知两边 找直角 找另一边 AAS ASA SA AASSAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASA AA AAS →⎧⎨→⎩找两角的夹边已知两角 找任意一边 备注:寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的图形归纳起来有以下几种典型形式:⑴ 平移全等型⑵ 对称全等型⑶ 旋转全等型【本节训练】训练【1】如图,E为线段BC上一点,AB⊥BC,△ABE≌△ECD,判断AE与DE的关系,并证明你的结论.训练【2】如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.训练【3】已知图中的两个三角形全等,则∠1等于度.【训练4】.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.基础巩固一、选择题1、下列说法:①有两条直角边对应相等的两个直角三角形全等;②有斜边对应相等的两个等腰直角三角形全等;③有一条直角边和斜边上的高对应相等的两个直角三角形全等;④有一条边相等的两个等腰直角三角形全等.其中正确的有().A、1个B、2个C、3个D、4个2、如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与△ABC全等,这样的三角形最多可以画出 [ ].A.2个 B.4个 C.6个 D.8个3、下列说法正确的是()A、全等三角形是指周长和面积都一样的三角形;B、全等三角形的周长和面积都一样 ;C、全等三角形是指形状相同的两个三角形;D、全等三角形的边都相等4、下列两个三角形中,一定全等的是()A. 两个等边三角形B. 有一个角是40°,腰相等的两个等腰三角形C. 有一条边相等,有一个内角相等的两个等腰三角形D. 有一个角是100°,底相等的两个等腰三角形5、如图,△ABC与△BDE都是等边三角形,AB<BD,若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为 ( )A.AE=CD B.AE>CD C.AE<CD D.无法确定6、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°二、填空题6、如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与B E相交于点F,若BF=AC,则∠ABC=_______7、如图,等腰直角三角形ABC的直角顶点B在直线PQ上,AD⊥PQ于D,CE⊥PQ 于E,且AD=2cm,DB=4cm,则梯形ADEC的面积是 _____.A8、(动手操作实验题)如图所示是小明自制对顶角的“小仪器”示意图:(1)将直角三角板ABC的AC边延长且使AC固定;(2)另一个三角板CDE•的直角顶点与前一个三角板直角顶点重合;(3)延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少?三、简答题9、如图,已知AB=AC,∠1=∠2,AD=AE,求证:∠C=∠B.10、如图,在△ABC中,AD是∠BAC的平分线,DE、DF分别是△ABD和△ACD的高线,求证:AD⊥EF。
全等三角形经典培优题型(含答案)
全等三角形的提高拓展训练全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.全等三角形证明经典题1已知:AB=4,AC=2,D是BC中点,AD是整数,求AD2已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠23已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC4已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA5已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE6 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E 在AD上。
全等三角形判定四种方法学习总结
三角形全等一.理解和掌握全等三角形判定方法1——“边边边”(SSS )图2-1 图2-2 图2-3 1.已知:如图2-1,△RPQ 中,RP =RQ ,M 为PQ 的中点. 求证:RM 平分∠PRQ .分析:要证RM 平分∠PRQ ,即∠PRM =______, 只要证______≌______证明:∵ M 为PQ 的中点(已知), ∴______=______在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知∴______≌______( ). ∴ ∠PRM =______(______). 即RM .2.已知:如图2-2,AB =DE ,AC =DF ,BE =CF . 求证:∠A =∠D .分析:要证∠A =∠D ,只要证______≌______. 证明:∵BE =CF ( ), ∴BC =______.在△ABC 和△DEF 中,⎪⎩⎪⎨⎧===______,______,______,AC BC AB ∴______≌______( ). ∴ ∠A =∠D (______).3.如图2-3,CE =DE ,EA =EB ,CA =DB , 求证:△ABC ≌△BAD .证明:∵CE =DE ,EA =EB ,∴______+______=______+______, 即______=______. 在△ABC 和△BAD 中, =______(已知),⎪⎩⎪⎨⎧===),______(______),______(______),______(______已证已知 ∴△ABC ≌△BAD ( ).练习4.已知:如图2-4,AD =BC .AC =BD .试证明:∠CAD =∠DBC .如图2-45.“三月三,放风筝”.图2-5是小明制作的风筝,他根据DE =DF ,EH =FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.图2-5二.理解和掌握全等三角形判定方法2——“边角边”(SAS)图3-1 图3-21.已知:如图3-1,AB 、CD 相交于O 点,AO =CO ,OD =OB . 求证:∠D =∠B .分析:要证∠D =∠B ,只要证______≌______ 证明:在△AOD 与△COB 中,⎪⎩⎪⎨⎧=∠=∠=),______(),______(______),(OD CO AO∴ △AOD ≌△______ ( ). ∴ ∠D =∠B (______).2.已知:如图3-2,AB ∥CD ,AB =CD .求证:AD ∥BC . 分析:要证AD ∥BC ,只要证∠______=∠______, 又需证______≌______. 证明:∵ AB ∥CD ( ), ∴ ∠______=∠______ ( ), 在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ). ∴ ∠______=∠______ ( ). ∴ ______∥______( ).练习4.已知:如图3-3,AB =AC ,∠BAD =∠CAD . 求证:∠B =∠C .图3-35.已知:如图3-4,AB=AC,BE=CD.求证:∠B=∠C.图3-46.已知:如图3-5,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3-57.如图3-6,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图3-6三.理解和掌握全等三角形判定方法3——“角边角”(ASA),判定方法4——“角角边”(AAS)图4-12.已知:如图4-1,PM =PN ,∠M =∠N .求证:AM =BN . 分析:∵PM =PN ,∴ 要证AM =BN ,只要证P A =______, 只要证______≌______.证明:在△______与△______中,⎪⎩⎪⎨⎧∠=∠=∠=∠),______(______),______(______),______(______∴ △______≌△______ ( ). ∴P A =______ ( ). ∵PM =PN ( ),∴PM -______=PN -______,即AM =______.3.已知:如图4-2,AC BD .求证:OA =OB ,OC =OD . 分析:要证OA =OB ,OC =OD ,只要证______≌______. 证明:∵ AC ∥BD ,∴ ∠C =______. 在△______与△______中,⎪⎩⎪⎨⎧==∠∠=∠),______(______),______(),______(C AOC∴______≌______ ( ). ∴ OA =OB ,OC =OD ( ).图4-2练习4.能确定△ABC ≌△DEF 的条件是 ( ) A .AB =DE ,BC =EF ,∠A =∠E B .AB =DE ,BC =EF ,∠C =∠E C .∠A =∠E ,AB =EF ,∠B =∠D D .∠A =∠D ,AB =DE ,∠B =∠E5.如图4-3,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是 ( )图4-3A .甲和乙B .乙和丙C .只有乙D .只有丙6.AD 是△ABC 的角平分线,作DE ⊥AB 于E ,DF ⊥AC 于F ,下列结论错误的是( ) A .DE =DF B .AE =AF C .BD =CD D .∠ADE =∠ADF 7.阅读下题及一位同学的解答过程:如图4-4,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,图4-4⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?8.已知:如图4-5,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.图4-59.已知:如图4-6,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.图4-610.已知:AM是ΔABC的一条中线,BE⊥AM的延长线于E,CF⊥AM于F,BC=10,BE =4.求BM、CF的长.11.填空题(1)已知:如图4-7,AB=AC,BD⊥AC于D,CE⊥AB于E.欲证明BD=CE,需证明Δ______≌△______,理由为______.(2)已知:如图4-8,AE=DF,∠A=∠D,欲证ΔACE≌ΔDBF,需要添加条件______,证明全等的理由是______;或添加条件______,证明全等的理由是______;也可以添加条件______,证明全等的理由是______.图4-7 图4-812.如图4-9,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?图4-913.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11。
(完整版)全等三角形题型总结
全等三角形的判定题型类型一、全等三角形的判定1——“边边边”例题、已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.(答案)证明:连接DC , 在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边∴△ACD ≌△BDC (SSS )∴∠CAD =∠DBC (全等三角形对应角相等)类型二、全等三角形的判定2——“边角边”例题、已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =12(AB +AD ),求证:∠B +∠D =180°.(答案)证明:在线段AE 上,截取EF =EB ,连接FC ,∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =⎧⎪∠=∠⎨⎪⎩∴△CBE 和△CFE (SAS )∴∠B =∠CFE ∵AE =12(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB ∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中(AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°. 类型三、全等三角形的判定3——“角边角”例题、已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.证明:∵MQ 和NR 是△MPN 的高, ∴∠MQN =∠MRN =90°, 又∵∠1+∠3=∠2+∠4=90°,∠3=∠4 ∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA ) ∴PM =HN类型四、全等三角形的判定4——“角角边”例题、已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB 于E 、F .当∠EDF 绕D 点旋转到DE ⊥AC 于E 时(如图1),易证12DEF CEF ABC S S S +=△△△;当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.解:图2成立; 证明图2:过点D 作DM AC DN BC ⊥⊥,则90DME DNF MDN ∠=∠=∠=°在△AMD 和△DNB 中,AMD=DNB=90A B AD BD ∠∠︒⎧⎪∠=∠⎨⎪=⎩∴△AMD ≌△DNB (AAS )∴DM =DN∵∠MDE +∠EDN =∠NDF +∠EDN =90°,∴∠ MDE =∠NDF在△DME 与△DNF 中,90EMD FDN DM DN MDE NDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△DME ≌△DNF (ASA )∴DME DNF S S =△△∴DEF CEF DMCN DECF S =S =S S .+△△四边形四边形可知ABC DMCN 1S =S 2△四边形,∴12DEF CEF ABC S S S +=△△△类型五、直角三角形全等的判定——“HL ”下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( ) (2)有两边和其中一边上的高对应相等的两个三角形全等.( ) (3)有两边和第三边上的高对应相等的两个三角形全等.( )(答案)(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AH 为第三边上的高,如下图:1、已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF.求证:AB ∥DC.(答案与解析)证明:∵DE ⊥AC ,BF ⊥AC ,∴在Rt △ADE 与Rt △CBF 中.AD BC DE BF ⎧⎨⎩=,=∴Rt △ADE ≌Rt △CBF (HL ) ∴AE =CF ,DE =BF∴AE +EF =CF +EF ,即AF =CE在Rt △CDE 与Rt △ABF 中,DE BFDEC BFA EC FA =⎧⎪∠=∠⎨⎪=⎩∴Rt △CDE ≌Rt △ABF (SAS )∴∠DCE =∠BAF ∴AB ∥DC. (点评)从已知条件只能先证出Rt △ADE ≌Rt △CBF ,从结论又需证Rt△CDE ≌Rt △ABF.我们可以从已知和结论向中间推进,证出题目.2、如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线, 过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D. (1)求证:AE =CD ;(2)若AC =12cm ,求BD 的长.(答案与解析)(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,∴△DBC ≌△ECA (AAS ).∴AE =CD . (2)解:由(1)得AE =CD ,AC =BC ,∴△CDB ≌△AEC (HL ) ∴BD =EC =12BC =12AC ,且AC =12. ∴BD =6cm .(点评)三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等.角的平分线的性质及判定1、如图,AD 是∠BAC 的平分线,DE ⊥AB ,交AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC.求证:BE =CF.(答案)证明:∵DE ⊥AE ,DF ⊥AC ,AD 是∠BAC 的平分线, ∴DE =DF ,∠BED =∠DFC =90°在Rt △BDE 与Rt △CDF 中,DB DCDE DF =⎧⎨=⎩,∴Rt △BDE ≌Rt △CDF (HL ) ∴BE =CF2、如图,AC=DB ,△PAC 与△PBD 的面积相等.求证:OP 平分∠AOB .(答案与解析)证明:作PM ⊥OA 于M ,PN ⊥OB 于N12PAC S AC PM =△∵,12PBD S BD PN =△,且PAC S =△PBD S △ ∴ 12AC PM 12BD PN =又∵AC =BD ∴PM =PN又∵PM⊥OA,PN⊥OB ∴OP平分∠AOB(点评)观察已知条件中提到的三角形△PAC与△PBD,显然与全等无关,而面积相等、底边相等,于是自然想到可得两三角形的高线相等,联系到角平分线判定定理可得.跟三角形的高结合的题目,有时候用面积会取得意想不到的效果.3、如图,DC∥AB,∠BAD和∠ADC的平分线相交于E,过E的直线分别交DC、AB于C、B两点. 求证:AD=AB+DC.(答案)证明:在线段AD上取AF=AB,连接EF,∵AE是∠BAD的角平分线,∴∠1=∠2,∵AF=AB AE=AE,∴△ABE≌△AFE,∴∠B=∠AFE由CD∥AB又可得∠C+∠B=180°,∴∠AFE+∠C=180°,又∵∠DFE+∠AFE=180°,∴∠C=∠DFE,∵DE是∠ADC的平分线,∴∠3=∠4,又∵DE=DE,∴△CDE≌△FDE,∴DF=DC,∵AD=DF+AF,∴AD=AB+DC.类型一、全等三角形的性质和判定如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.(答案)证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB与△EAC中,DAB EACAB ACB C∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB≌△EAC (SAS)∴BD=CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:1、在ΔABC中,AB=AC.求证:∠B=∠C(答案)证明:过点A作AD⊥BC在Rt△ABD与Rt△ACD中AB AC AD AD=⎧⎨=⎩∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C.(2).倍长中线法:1、已知:如图所示,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.(答案)证明:延长CE至F使EF=CE,连接BF.∵EC为中线,∴AE=BE.在△AEC与△BEF中,,,,AE BEAEC BEFCE EF=⎧⎪∠=∠⎨⎪=⎩∴△AEC≌△BEF(SAS).∴AC=BF,∠A=∠FBE.(全等三角形对应边、角相等)又∵∠ACB=∠ABC,∠DBC=∠ACB+∠A,∠FBC=∠ABC+∠A.∴AC=AB,∠DBC=∠FBC.∴AB=BF.又∵BC为△ADC的中线,∴AB=BD.即BF=BD.在△FCB与△DCB中,,,,BF BDFBC DBC BC BC=⎧⎪∠=∠⎨⎪=⎩∴△FCB≌△DCB(SAS).∴CF=CD.即CD=2CE.2、若三角形的两边长分别为5和7, 则第三边的中线长x的取值范围是( )A.1 <x<6B.5 <x<7C.2 <x<12D.无法确定(答案)A ;提示:倍长中线构造全等三角形,7-5<2x<7+5,所以选A选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:如图,AD 是ABC ∆的角平分线,H ,G 分别在AC ,AB 上,且HD =BD. (1)求证:∠B 与∠AHD 互补;(2)若∠B +2∠DGA =180°,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明.(答案)证明:(1)在AB 上取一点M, 使得AM =AH, 连接DM.∵ ∠CAD =∠BAD, AD =AD, ∴ △AHD ≌△AMD. ∴ HD =MD, ∠AHD =∠AMD. ∵ HD =DB, ∴ DB = MD. ∴ ∠DMB =∠B.∵ ∠AMD +∠DMB =180︒,∴ ∠AHD +∠B =180︒. 即 ∠B 与∠AHD 互补. (2)由(1)∠AHD =∠AMD, HD =MD, ∠AHD +∠B =180︒.∵ ∠B +2∠DGA =180︒,∴ ∠AHD =2∠DGA. ∴ ∠AMD =2∠DGM.∵ ∠AMD =∠DGM +∠GDM. ∴ 2∠DGM =∠DGM +∠GDM. ∴ ∠DGM =∠GDM. ∴ MD =MG.∴ HD = MG.∵ AG = AM +MG, ∴ AG = AH +HD. (3).利用截长(或补短)法作构造全等三角形:1、如图,AD 是△ABC 的角平分线,AB >AC,求证:AB -AC >BD -DC (答案)证明:在AB 上截取AE =AC,连结DE∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD在△AED 与△ACD 中⎪⎩⎪⎨⎧=∠=∠=AD AD CAD BAD ACAE∴△AED ≌△ADC (SAS )∴DE =DC 在△BED 中,BE >BD -DC即AB -AE >BD -DC ∴AB -AC >BD -DCM G HDCBAEDC BA2、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.(答案与解析)证明:∵AB>AC,则在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).在△AMC和△AME中,()()()AC AECAM EAMAM AM=⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边,∴△AMC≌△AME(SAS).∴MC=ME(全等三角形的对应边相等).又∵BE=AB-AE,∴BE=AB-AC,∴MB-MC<AB-AC.(点评)因为AB>AC,所以可在AB上截取线段AE=AC,这时BE=AB-AC,如果连接EM,在△BME中,显然有MB-ME<BE.这表明只要证明ME=MC,则结论成立.充分利用角平分线的对称性,截长补短是关键.(4).在角的平分线上取一点向角的两边作垂线段.1、如图所示,已知E为正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠FAE.求证:AF=AD+CF.(答案与解析)证明:作ME⊥AF于M,连接EF.∵四边形ABCD为正方形,∴∠C=∠D=∠EMA=90°.又∵∠DAE=∠FAE,∴AE为∠FAD的平分线,∴ME=DE.在Rt△AME与Rt△ADE中,()()AE AEDE ME=⎧⎨=⎩公用边,已证,∴Rt△AME≌Rt△ADE(HL).∴AD=AM(全等三角形对应边相等).又∵E为CD中点,∴DE=EC.∴ME=EC.在Rt△EMF与Rt△ECF中,()(ME CEEF EF=⎧⎨=⎩已证,公用边),∴Rt△EMF≌Rt△ECF(HL).∴MF=FC(全等三角形对应边相等).由图可知:AF=AM+MF,∴AF=AD+FC(等量代换).(点评)与角平分线有关的辅助线:在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段. 四边形ABCD为正方形,则∠D=90°.而∠DAE=∠FAE说明AE为∠FAD的平分线,按常规过角平分线上的点作出到角两边的距离,而E到AD的距离已有,只需作E到AF的距离EM即可,由角平分线性质可知ME=DE.AE=AE.Rt△AME与Rt△ADE全等有AD=AM.而题中要证AF=AD+CF.根据图知AF=AM+MF.故只需证MF=FC即可.从而把证AF=AD+CF转化为证两条线段相等的问题.2、如图所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,12AE BD=,求证:BD是∠ABC的平分线.(答案与解析)证明:延长AE和BC,交于点F,∵AC⊥BC,BE⊥AE,∠ADE=∠BDC(对顶角相等),∴∠EAD+∠ADE=∠CBD+∠BDC.即∠EAD=∠CBD.在Rt△ACF和Rt△BCD中.所以Rt△ACF≌Rt△BCD(ASA).则AF=BD(全等三角形对应边相等).∵AE=BD,∴AE=AF,即AE=EF.在Rt△BEA和Rt△BEF中,则Rt△BEA≌Rt△BEF(SAS).所以∠ABE=∠FBE(全等三角形对应角相等),即BD是∠ABC的平分线.(点评)如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决.平时练习中多积累一些辅助线的添加方法.类型三、全等三角形动态型问题解决动态几何问题时要善于抓住以下几点:(1)变化前的结论及说理过程对变化后的结论及说理过程起着至关重要的作用;(2)图形在变化过程中,哪些关系发生了变化,哪些关系没有发生变化;原来的线段之间、角之间的位置与数量关系是否还存在是解题的关键;(3)几种变化图形之间,证明思路存在内在联系,都可模仿与借鉴原有的结论与过程,其结论有时变化,有时不发生变化1、已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD 为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B不重合),如图1,求证:CF=BD(2)当点D 运动到线段BC 的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.(答案)证明:(1)∵正方形ADEF ∴AD =AF ,∠DAF =90°∴∠DAF -∠DAC =∠BAC -∠DAC ,即∠BAD =∠CAF在△ABD 和△ACF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACF (SAS ) ∴BD =CF(2)当点D 运动到线段BC 的延长线上时,仍有BD =CF此时∠DAF +∠DAC =∠BAC +∠DAC ,即∠BAD =∠CAF在△ABD 和△ACF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACF (SAS ) ∴BD =CF2、如图(1),△ABC 中,BC =AC ,△CDE 中,CE =CD ,现把两个三角形的C 点重合,且使∠BCA =∠ECD ,连接BE ,AD .求证:BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?(答案)证明:∵∠BCA =∠ECD , ∴∠BCA -∠ECA =∠ECD -∠ECA ,即∠BCE =∠ACD在△ADC 与△BEC 中ACD=BCE AC BC CD CE =⎧⎪∠∠⎨⎪=⎩∴△ADC ≌△BEC(SAS) ∴BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等,因为还是可以通过SAS 证明△ADC ≌△BEC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形(一)SSS【知识要点】1.全等图形定义:两个能够重合的图形称为全等图形. 2.全等图形的性质:(1)全等图形的形状和大小都相同,对应边相等,对应角相等 (2)全等图形的面积相等3.全等三角形:两个能够完全重合的三角形称为全等三角形(1)表示方法:两个三角形全等用符号“≌”来表示,读作“全等于” 如DEF ABC ∆∆与全等,记作ABC ∆≌DEF ∆(2)符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等.(3)两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.(4)证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS ”.如图,在ABC ∆和DEF ∆中⎪⎩⎪⎨⎧===DF AC EF BC DEABABC ∆∴≌DEF ∆【典型例题】例1.如图,ABC ∆≌ADC ∆,点B 与点D 是对应点,︒=∠26BAC ,且︒=∠20B ,1=∆ABC S ,求ACD D CAD ∠∠∠,,的度数及ACD ∆的面积.例2.如图,ABC ∆≌DEF∆,cm CE cm BC A 5,9,50==︒=∠,求EDF ∠的度数及CF 的长.例3.如图,已知:AB=AD ,AC=AE ,BC=DE ,求证:CAD BAE ∠=∠例4.如图AB=DE ,BC=EF ,AD=CF ,求证:(1)ABC ∆≌DEF ∆ (2)AB//DE ,BC//EFA D例5.如图,在,90︒=∠∆C ABC 中D 、E 分别为AC 、AB 上的点,且BE=BC ,DE=DC ,求证:(1)AB DE ⊥;(2)BD 平分ABC ∠ (角平分线的相关证明及性质)【巩固练习】1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形;④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )A 、①④B 、①②C 、②③D 、③④2.如图,ABD ∆≌CDB ∆,且AB 和CD 是对应边,下面四个结论中 不正确的是( )A 、CDB ABD ∆∆和的面积相等 B 、CDB ABD ∆∆和的周长相等C 、CBD C ABD A ∠+∠=∠+∠ D 、AD//BC 且AD=BC3.如图,ABC ∆≌BAD ∆,A 和 B 以及C 和D 分别是对应点,如果︒=∠︒=∠35,60ABD C ,则BAD ∠的度数为( )A 、︒85B 、︒35C 、︒60D 、︒804.如图,ABC ∆≌DEF ∆,AD=8,BE=2,则AE 等于( )A 、6B 、5C 、4D 、35.如图,要使ACD ∆≌BCE ∆,则下列条件能满足的是( ) A 、AC=BC ,AD=CE ,BD=BE B 、AD=BD ,AC=CE ,BE=BD C 、DC=EC ,AC=BC ,BE=AD D 、AD=BE ,AC=DC ,BC=EC6.如图,ABE ∆≌DCF ∆,点A 和点D 、点E 和点F 分别是对应点,则AB= ,=∠A ,AE= ,CE= ,AB// ,若BC AE ⊥,则DF 与BC 的关系是 .7.如图,ABC ∆≌AED ∆,若=∠︒=∠︒=∠︒=∠BAC C EAB B 则,45,30,40 ,=∠D ,=∠DAC .8,AE=AD ,则ABE ∆ACD ∆,所以=∠AEB,D 第3题图第4题图第5题图B第6题图第8题图 第9题题图=∠BAE ,=∠BAD .9.如图,ABC ∆≌DEF ∆,︒=∠90C ,则下列说法错误的是( ) A 、互余与F C ∠∠ B 、互补与F C ∠∠C 、互余与E A ∠∠D 、互余与D B ∠∠10.如图,ACF ∆≌DBE ∆,cm CD cm AD ACF E 5.2,9,110,30==︒=∠︒=∠,求D ∠的度数及BC 的长.11.如图,在ABD ABC ∆∆与中,AC=BD ,AD=BC ,求证:ABC ∆≌ABD ∆全等三角形(一)作业1.如图,ABC ∆≌CDA ∆,AC=7cm ,AB=5cm.,则AD 的长是( )A 、7cmB 、5cmC 、8cmD 、无法确定2.如图,ABC ∆≌DCE ∆,︒=∠︒=∠62,48E A ,点B 、C 、E 在同一直线上,则ACD ∠的度数为( )A 、︒48B 、︒38C 、︒110D 、︒623.如图,ABC ∆≌DEF ∆,AF=2cm,CF=5cm ,则AD= .4.如图,ABE ∆≌ACD ∆,︒=∠︒=∠25,100B A ,求BDC ∠的度数.5.如图,已知,AB=DE ,BC=EF ,AF=CD ,求证:AB//CDAEAD CAB CDEAF6.如图,已知AB=EF ,BC=DE ,AD=CF , 求证:①ABC ∆≌FED ∆②AB//EF7.如图,已知AB=AD ,AC=AE ,BC=DE ,求证:CAE BAD ∠=∠FE全等三角形(二)【知识要点】定义:SAS两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS ”,几何表示如图,在ABC ∆和DEF ∆中,ABC EF BC E B DEAB ∆∴⎪⎩⎪⎨⎧=∠=∠=≌)(SAS DEF ∆【典型例题】【例1】 已知:如图,AB=AC ,AD=AE ,求证:BE=CD.【例2】 如图,已知:点D 、E 在BC 上,且BD=CE ,AD=AE ,∠1=∠2,由此你能得出哪些结论?给出证明.【例3】 如图已知:AE=AF ,AB=AC ,∠A=60°,∠B=24°,求∠BOE 的度数.【例4】 如图,B ,C ,D 在同一条直线上,△ABC ,△ADE 是等边三角形, 求证:①CE=AC+DC ; ②∠ECD=60°.【例5】如图,已知△ABC 、△BDE 均为等边三角形。
求证:BD +CD=AD 。
C AD B EC DABCE.【巩固练习】1.在△ABC 和△C B A '''中,若AB=B A '',AC=C A '',还要加一个角的条件,使△ABC ≌△C B A ''',那么你加的条件是( )A .∠A=∠A ' B.∠B=∠B ' C.∠C=∠C ' D.∠A=∠B ' 2.下列各组条件中,能判断△ABC ≌△DEF 的是( ) A .AB=DE ,BC=EF ;CA=CD B.CA=CD ;∠C=∠F ;AC=EFC .CA=CD ;∠B=∠E D.AB=DE ;BC=EF ,两个三角形周长相等 3.阅读理解题:如图:已知AC ,BD 相交于O ,OA=OB ,OC=OD.那么△AOD 与△BOC 全等吗?请说明理由.△ABC 与△BAD 全等吗?请说明理由.小明的解答:21∠=∠ AOD ≌△BOC而△BAD=△AOD+△ADB △ABC=△BOC+△ 所以△ABC ≌△BAD(1)你认为小明的解答有无错误;(2)如有错误给出正确解答;4.如图,点C 是AB 中点,CD ∥BE ,且CD=BE ,试探究AD 与CE 的关系。
5.如图,AE 是,BAC 的平分线∠AB=AC(1)若D 是AE 上任意一点,则△ABD ≌△ACD ,说明理由. (2)若D 是AE 反向延长线上一点,结论还成立吗?请说明理由. 6.如图,已知AB=AC ,EB=EC ,请说明BD=CD 的理由DOA=OB OD=OC全等三角形(二)作业1.如图,已知AB=AC ,AD=AE ,BF=CF ,求证:BDF ∆≌CEF ∆。
2.如图,△ABC ,△BDF 为等腰直角三角形。
求证:(1)CF=AD ;(2)CE ⊥AD 。
3.如图,AB=AC ,AD=AE ,BE 和CD 相交于点O ,AO 的延长线交BC 于点F 。
求证:BF=FC 。
4.已知:如图1,AD ∥BC ,AE=CF ,AD=BC ,E 、F 在直线AC 上,求证:DE ∥BF 。
5. 如图,已知AB ⊥AC ,AD ⊥AE ,AB=AC ,AD=AE , 求证:(1)BE=DC ,(2)BE ⊥DC.6、已知,如图A 、F 、C 、D 四点在一直线上,AF=CD ,AB//DE ,且AB=DE ,求证:(1)△ABC ≌△DEF (2)∠CBF=∠FECAB CE D FA C E FAD E CB F O 1 2DCABE FD ABQCPE7、已知:如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:BD=CE8、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG,(1)观察猜想BE与DG之间的大小关系,并证明你的结论。
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程,若不存在,说明理由。
9、已知:如图,AD是BC上的中线 ,且DF=DE.求证:BE∥CF.10、已知C为AB上一点,△ACN和△BCM是正三角形.求证:(1)AM=BN(2)求∠AFN大小。
11、已知如图,F在正方形ABCD的边BC边上,E在AB的延长线上,FB=EB,AF交CE于G,求∠AGC的度数.12、如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC 的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.CNMBAEDFFDACE BFDACGEB全等三角形(三)ASA【知识要点】ASA如图,在ABC∆与DEF ∆中EB DE AB D A ∠=∠=∠=∠ ∴)(ASA DEF ABC ∆≅∆ASA 公理推论(AAS 公理):有两角和其中一角的对边对应相等的两个三角形全等.【典型例题】 【例1】下列条件不可推得ABC ∆和'''C B A ∆全等的条件是( ) A 、 AB=A 'B ','A A ∠=∠,'C C ∠=∠B 、 AB= A 'B ',AC=A 'C ',BC='B C 'C 、 AB= A 'B ',AC=A 'C ','B B ∠=∠ D 、 AB= A 'B ','A A ∠=∠,'B B ∠=∠【例2】已知如图,DE AB DE AB D A //,,=∠=∠,求证:BC=EF【例3】如图,AB=AC ,C B ∠=∠,求证:AD=AE【例4】已知如图,43,21∠=∠∠=∠,点P 在AB 上,可以得出PC=PD 吗?试证明之.【例5】如图,321∠=∠=∠,AC=AE ,求证:DE=BCADA B【例6】如图,21,∠=∠∠=∠D A ,AC ,BD 相交于O , 求证:①AB=CD ②OA=OD【巩固练习】1.如图,AB//CD ,AF//DE ,BE=CF ,求证:AB=CD2.如图,AD//BC ,O 为AC 中点,过点O 的直线分别交AD ,BC 于点M ,N ,求证:AM=CN3.求证:两个全等三角形ABC 与A 'B 'C '的角平分线AD 、A 'D '相等4.如图,AB ,CD 相交于O ,E ,F 分别在AD ,BC 上,若FOB EOD ∆≅∆,求证:COF AOE ∆≅∆5.如图,AB//CD ,AD//BC ,求证:AB=CD6.已知,如图AB=DB ,21,∠=∠∠=∠E C ,求证:AC=DEAD'B D'C 'CBA BD全等三角形(三)作业1.已知,如图,CD AF D A =∠=∠∠=∠,21,,求证:AB=DE2.如图,已知CAD BAE ADE AED ∠=∠∠=∠,,求证:BE=CD3.已知如图,AB=AD ,CAE BAD D B ∠=∠∠=∠,,求证:AC=AE4.已知如图,在ABC ∆中,AD 平分BC AD BAC ⊥∠,,求证:ABD ACD ∆≅∆5.已知如图,cm AC ABD DCA DBC ACB 10,,=∠=∠∠=∠,求BD 的长(要求写出完整的过程)6、如图ABC △中,∠B =∠C ,D ,E ,F 分别在AB,BC,AC 上,且BD=CE,∠DEF=∠B 求证:ED=EFCEA D ECBF7、 (1)如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?8、已知:如图 , AD 为CE 的垂直平分线 , EF ∥BC.求证:△EDN ≌△CDN ≌△EMN .9、 已知:如图 , AB=AC , AD=AE , 求证:△OBD ≌△OCE10、已知:如图 , AB=CD , AD=BC ,O 为BD 中点 , 过O 作直线分别与DA 、BC 的延长线交于E 、F .求证:OE=OF11、如图在△ABC 和△DBC 中 , ∠1=∠2 , ∠3=∠4 , P 是BC 上任意一点.求证:PA=PD.12、已知 :如图 , 四边形 ABCD 中 , AD ∥BC , F 是AB 的中点 , DF 交CB 延长线 于E , CE=CD . 求证:∠ADE=∠EDC .13、已知:如图 , OA=OE , OB=OF , 直线FA 与BE 交于C , AB 和EF 交于O ,求证:∠1=∠2.AG FC BD E(图1)全等三角形(四)强化训练1、如图,△ABC 是等边三角形,点D 、E 、F 分别是线段AB 、BC 、CA 上的点, (1)若AD BE CF ==,问△DEF 是等边三角形吗?试证明你的结论; (2)若△DEF 是等边三角形,问AD BE CF ==成立吗?试证明你的结论.2、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )3、△ABC 中,∠A=90°,AB=AC ,D 为BC 中点,E 、F 分别在AC 、AB 上,且DE ⊥DF ,试判断DE 、DF 的数量关系,并说明理由.4、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G .(1)求证:BF AC =;(2)求证:12CE BF =;5、 如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=o,.将BOC△绕点C 按顺时针方向旋转60o得ADC △,连接OD . (1)求证:COD △是等边三角形;(2)当150α=o时,试判断AOD △的形状,并说明理由;(3)探究:当α为多少度时,AOD △是等腰三角形?BDA E F C H GB A BCDO110o α7、过等腰直角三角形直角顶点A 作直线AM 平行于斜边BC ,在AM 上取点D ,使BD=BC ,且DB 与AC 所在直线交于E ,求证:CD=CE 。