2018届高三数学(文)高考总复习检测 (三十一) 数列求和 含解析
【高考复习】2018年高考数学 数列 综合题专项练习(含答案)

2018年高考数学 数列 综合题专项练习一、选择题:1.在等差数列{a n }中,S n 为其前n 项和,若34825a a a ++=,则9S =( ) A.60 B.75 C.90 D.1052.已知数列{a n }为等差数列,其前n 项和为S n ,7825a a -=,则11S 为( ) A.110 B.55 C.50 D.不能确定3.若数列{a n },{b n }的通项公式分别为a a n n ∙-=+2016)1(,nb n n 2017)1(2+-+=,且n n b a <,对任意*∈N n 恒成立,则实数a 的取值范围是( )A.)21,1[- B.[-1,1) C.[-2,1) D.)23,2[- 二、填空题:4.已知等差数列{a n }的公差d ≠0,若a 21+a 2=1,a 22+a 3=1,则a 1=________.5.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 . 三、解答题:6.已知等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+32. (1)求数列{a n }的通项公式及其前n 项和; (2)设b n =nS n,求证:数列{b n }中任意不同的三项都不可能成等比数列.7.已知数列{a n }的前n 项和1n n S a λ=+,其中λ错误!未找到引用源。
0. (1)证明{a n }是等比数列,并求其通项公式. (2)若53132S =,求λ.8.已知数列{a n }的前n 项和为S n ,a 1=1,且3S n =a n+1﹣1. (1)求数列{a n }的通项公式;(2)设等差数列{b n }的前n 项和为T n ,a 2=b 2,T 4=1+S 3,求的值.9.已知各项都为正数的数列{a n }满足a 1=1,211(21)20n n n n a a a a ++---=.(1)求23,a a ;(2)求{}n a 的通项公式.10.已知数列{a n }中,a 1=4,a n =a n ﹣1+2n ﹣1+3(n ≥2,n ∈N *).(1)证明数列{a n ﹣2n}是等差数列,并求{a n }的通项公式;(2)设b n =,求b n 的前n 和S n .11.已知{a n }是各项均为正数的等比数列,且a 1+ a 2 =6, a 1a 2= a 3 (1)求数列{a n }通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n 。
【高三数学试题精选】2018高考数学(文 )数列一轮复习题有解析

2018高考数学(文 )数列一轮复习题有解析
5 05限时规范特训
A级基础达标
1.[2018 绵阳调研卷]已知数列{an}满足a1=1,an+1=2an n 为正奇数 an+1 n为正偶数,则其前6项之和是( )
A.16 B.20
c.33 D.120
解析a2=2a1=2,a3=a2+1=3,a4=2a3=6,a5=a4+1=7,a6=2a5=14,所以S6=1+2+3+6+7+14=33,选c
答案c
2.已知数列{an}的前n项和Sn满足Sn+S=Sn+,且a1=1,那么a10=( )
A 1
B 9
c 10 D 55
解析a10=S10-S9=(S1+S9)-S9=S1=a1=1,故选A
答案A
3.已知数列{an}的前n项和为Sn,对任意的n∈N*有Sn=23an -23,且1 S 12,则的值为( )
A.2 B.2或4
c.3或4 D.6
解析本题考查等比数列的前n项和,考查考生对数列知识的综合运用能力,属于中档题.首先要根据Sn=23an-23,推出数列{an}是等比数列并求出其通项式,然后用前n项和式表达出Sn,再对选项中的值逐一进行验证.
∵a1=23a1-23,∴a1=-2∵an+1=Sn+1-Sn=23(an+1-an),∴an+1=-2an,数列{an}是以-2为首项,-2为比的等比数列,∴an=(-2)n,Sn=23(-2)n-23逐一检验即可知=4或2。
2018届高考数学二轮复习二项式定理在数列求和中的应用学案含答案(全国通用)

2018广东高考数学一轮二项式定理在数列求和中的应用一, 二项式定理和杨辉三角介绍:1,二项式定理: ()n n n n r n r r n n n n n n n a b C a b C a b C a b C a b C a b ---+=+++++001112220其中rn C 叫做二项式系数。
2,杨辉三角:二, 重要组合恒等式:(1),r r r n n n C C C ---+=111 证明:()!()!()!()!!()!r r n n n n C C r n r r n r -----+=+----1111111=()!![()]!()!!()!r n n n r n r C r n r r n r -+-==--1(证 毕) (2),()r r r r r r r r n n C C C C C n r +++-++++=>1121证明(数学归纳法):当n r =+1时 上式 左边=1 右边是r r C ++=111,所以是正确的。
假设上式对()n k k r =>正确 即r r r r r r r r k k C C C C C +++-++++=1121那么就有r r r r r r r r r r k k kk C C C C C C C +++-+++++=+1121 再有组合不等式(1)可得r r r r r r r r r k k k C C C C C C +++-++++++=11211故综上所述 对于所有大于r 的正整数n (2)式都是成立的。
三, 一元n 次多项式根与系数的关系对于多项式n n n n n x a xa x a x a ---++++=121210 若,,n x x x x 123 是它的n 个根则有一下等式成立: ()n a x x x -=+++11121()n n a x x x x x x --=+++22121311()i i i k k k a x x x -=∑121 (所有i 个不同的根的乘积的和)()n n a a a a -=1231四, 应用举例为了方便应用,(2)式也可以写成()r r r r r r r r r n r n C C C C C n r ++++-+++++=>1121当r=1,2,3,4的时候上式也就是: ()!n n n ++++=+112312 ()()()!!n n n n n +++++=++1113611223 ()()()()()!!n n n n n n n ++++++=+++1114101212334()()()()()()()!!n n n n n n n n n +++++++=++++111515123123445 例一:求数列n a n =2 的前n 项和。
高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
2018届高三数学(文)高考总复习课时跟踪检测 (三十) 等比数列及其前n项和 Word版含解析

课时跟踪检测 (三十) 等比数列及其前n 项和一抓基础,多练小题做到眼疾手快1.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选D 由等比数列的性质得,a 3·a 9=a 26≠0,因此a 3,a 6,a 9一定成等比数列,选D .2.在正项等比数列{a n }中,a 1=1,前n 项和为S n ,且-a 3,a 2,a 4成等差数列,则S 7的值为( )A .125B .126C .127D .128解析:选C 设{a n }的公比为q ,则2a 2=a 4-a 3,又a 1=1,∴2q =q 3-q 2,解得q =2或q =-1,∵a n >0,∴q >0,∴q =2,∴S 7=1-271-2=127.3.(2016·石家庄质检)已知数列{a n }的前n 项和为S n ,若S n =2a n -4(n ∈N *),则a n =( ) A .2n +1B .2nC .2n -1D .2n -2解析:选A 依题意,a n +1=S n +1-S n =2a n +1-4-(2a n -4),则a n +1=2a n ,令n =1,则S 1=2a 1-4,即a 1=4,∴数列{a n }是以4为首项,2为公比的等比数列,∴a n =4×2n -1=2n +1,故选A .4.在等比数列{a n }中,若a 1·a 5=16,a 4=8,则a 6=________. 解析:由题意得,a 2·a 4=a 1·a 5=16, ∴a 2=2,∴q 2=a 4a 2=4,∴a 6=a 4q 2=32.答案:325.在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________. 解析:∵a 5-a 1=15,a 4-a 2=6.∴⎩⎪⎨⎪⎧a 1q 4-a 1=15,a 1q 3-a 1q =6(q ≠1) 两式相除得(q 2+1)(q 2-1)q ·(q 2-1)=156,即2q 2-5q +2=0, ∴q =2或q =12,当q =2时,a 1=1; 当q =12时,a 1=-16(舍去).∴a 3=1×22=4. 答案:4二保高考,全练题型做到高考达标1.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100D .200解析:选C a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100.2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A .18B .-18C .578D .558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:选A ∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是以公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.4.(2016·河北三市第二次联考)古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为( )A .7B .8C .9D .10解析:选B 设该女子第一天织布x 尺,则x (1-25)1-2=5,得x =531,∴前n 天所织布的尺数为531(2n -1).由531(2n -1)≥30,得2n ≥187,则n 的最小值为8.5.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为( )A .-2B .2C .-3D .3解析:选B 设公比为q ,若q =1,则S 2m S m =2,与题中条件矛盾,故q ≠1.∵S 2mS m =a 1(1-q 2m )1-q a 1(1-q m )1-q =q m +1=9,∴q m =8.∴a 2m a m=a 1q2m -1a 1q m -1=q m =8=5m +1m -1,∴m =3,∴q 3=8, ∴q =2.6.(2015·湖南高考)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.解析:因为3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简,得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.答案:3n -17.(2017·海口调研)设数列{a n }的前n 项和为S n .且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=________.解析:依题意得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1=1-14n +21-14=43⎝⎛⎭⎫1-14n +2. 答案:43⎝⎛⎭⎫1-14n +28.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积数列”.若各项均为正数的等比数列{a n }是一个“2 016积数列”,且a 1>1,则当其前n 项的乘积取最大值时n 的值为________.解析:由题可知a 1a 2a 3·…·a 2 016=a 2 016, 故a 1a 2a 3·…·a 2 015=1,由于{a n }是各项均为正数的等比数列且a 1>1,所以a 1 008=1,公比0<q <1,所以a 1 007>1且0<a 1 009<1,故当数列{a n }的前n 项的乘积取最大值时n 的值为1 007或1 008.答案:1 007或1 0089.(2017·兰州诊断性测试)在公差不为零的等差数列{a n }中,a 1=1,a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2a n ,T n =b 1+b 2+…+b n ,求T n . 解:(1)设等差数列{a n }的公差为d ,则依题意有⎩⎪⎨⎪⎧a 1=1,(a 1+3d )2=(a 1+d )(a 1+7d ),解得d =1或d =0(舍去), ∴a n =1+(n -1)=n . (2)由(1)得a n =n , ∴b n =2n , ∴b n +1b n=2,∴{b n }是首项为2,公比为2的等比数列, ∴T n =2(1-2n )1-2=2n +1-2.10.(2016·云南统测)设等比数列{a n }的前n 项和为S n ,a 1+a 2+a 3=26,S 6=728. (1)求数列{a n }的通项公式;(2)求证:S 2n +1-S n S n +2=4×3n .解:(1)设等比数列{a n }的公比为q ,由728≠2×26得,S 6≠2S 3,∴q ≠1.由已知得⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=26,S 6=a 1(1-q 6)1-q=728,解得⎩⎪⎨⎪⎧a 1=2,q =3.∴a n =2×3n -1.(2)证明:由(1)可得S n =2×(1-3n )1-3=3n-1.∴S n +1=3n +1-1,S n +2=3n +2-1.∴S 2n +1-S n S n +2=(3n +1-1)2-(3n -1)(3n +2-1)=4×3n . 三上台阶,自主选做志在冲刺名校1.设{a n }是各项为正数的无穷数列,A i 是边长为a i ,a i +1的矩形的面积(i =1,2,…),则{A n }为等比数列的充要条件是( )A .{a n }是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列,且公比相同 解析:选D ∵A i =a i a i +1,若{A n }为等比数列,则A n +1A n =a n +1a n +2a n a n +1=a n +2a n为常数,即A 2A 1=a 3a 1,A 3A 2=a 4a 2,….∴a 1,a 3,a 5,…,a 2n -1,…和a 2,a 4,…,a 2n ,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q ,则A n +1A n =a n +2a n =q ,从而{A n }为等比数列.2.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). ∵a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2),∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n ,则a n +1=-2a n +5×3n ,∴a n +1-3n +1=-2(a n -3n ).又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1,即a n =2×(-2)n -1+3n .。
【高三数学试题精选】2018高考理科数学数列总复习题(含答案)

c.640 D.641
解析由已知SnSn-1-Sn-1Sn=2SnSn-1可得,Sn-Sn-1=2,∴{Sn}是以1为首项,2为差的等差数列,故Sn=2n-1,Sn=(2n-1)2,∴a81=S81-S80=1612-1592=640,故选c
答案c
5.(2018年长沙模拟)已知函数f(x)是定义在(0,+∞)上的单调函数,且对任意的正数x,都有f(x )=f(x)+f(),若数列{an}的前n项和为Sn,且满足f(Sn+2)-f(an)=f(3)(n∈N*),则an为( )
∴an=4+b,n=1,3 4n-1,n≥2
综上可知当b=-1时,an=3 4n-1;
当b≠-1时,an=4+b,n=1,3 4n-1,n≥2xb1
11.已知数列{an}满足a1=1,an=an-1+3n-2(n≥2).
(1)求a2,a3;
(2)求数列{an}的通项式.
解析(1)由已知{an}满足a1=1,an=an-1+3n-2(n≥2),
A.2n-1 B.n
c.2n-1 D32n-1
解析由题意知f(Sn+2)=f(an)+f(3)(n∈N*),∴Sn+2=3an,Sn-1+2=3an-1(n≥2),两式相减得,2an=3an-1(n≥2),又n=1时,S1+2=3a1=a1+2,∴a1=1,∴数列{an}是首项为1,比为32的等比数列,∴an=32n-1
当n=1时,1=a1=3×12-12=1,
∴数列{an}的通项式an=3n2-n2
12.(能力提升)(2018年合肥质检)已知数列{an}满足a1=1,2n-1an=an-1(n∈N,n≥2).
(1)求数列{an}的通项式;
(2)这个数列从第几项开始及其以后各项均小于11 000?
高考数学历年(2018-2022)真题按知识点分类(数列求和)练习(附答案)
高考数学历年(2018-2022)真题按知识点分类(数列求和)练习一、单选题1.(2021ꞏ浙江ꞏ统考高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S <<二、填空题2.(2020ꞏ江苏ꞏ统考高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.三、解答题3.(2022ꞏ全国ꞏ统考高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列. (1)求{}n a 的通项公式; (2)证明:121112na a a +++< . 4.(2022ꞏ全国ꞏ统考高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈Nln(1)n ++>+ .5.(2022ꞏ天津ꞏ统考高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nkk k k k a a b +=⎡⎤--⎣⎦∑.6.(2021ꞏ全国ꞏ统考高考真题)设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 7.(2021ꞏ天津ꞏ统考高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式; (II )记2*1,n n nc b b n N =+∈, (i )证明{}22n n c c -是等比数列;(ii)证明)*nk n N =<∈ 8.(2020ꞏ全国ꞏ统考高考真题)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.9.(2020ꞏ全国ꞏ统考高考真题)设数列{an }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{an }的通项公式并加以证明; (2)求数列{2nan }的前n 项和Sn .10.(2020ꞏ天津ꞏ统考高考真题)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.11.(2019ꞏ天津ꞏ高考真题) 设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知113a b ==,23b a = ,3243b a =+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足21,,,n n n c bn ⎧⎪=⎨⎪⎩为奇数为偶数求()*112222n na c a c a c n N +++∈ .12.(2019ꞏ浙江ꞏ高考真题)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n C n *∈N证明:12+.n C C C n *++<∈N 13.(2018ꞏ浙江ꞏ高考真题)已知等比数列{an }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{bn }满足b 1=1,数列{(bn +1−bn )an }的前n 项和为2n 2+n . (Ⅰ)求q 的值;(Ⅱ)求数列{bn }的通项公式.14.(2019ꞏ天津ꞏ高考真题)设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,1,,2,k k n kk n c c b n +⎧<<==⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()*221i ini a c n =∈∑N .15.(2018ꞏ天津ꞏ高考真题)设{an }是等差数列,其前n 项和为Sn (n ∈N*);{bn }是等比数列,公比大于0,其前n 项和为Tn (n ∈N*).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (Ⅰ)求Sn 和Tn ;(Ⅱ)若Sn +(T 1+T 2+…+Tn )=an +4bn ,求正整数n 的值.16.(2018ꞏ天津ꞏ高考真题)设{}n a 是等比数列,公比大于0,其前n 项和为()*n S n N ∈,{}n b 是等差数列.已知11a =,322a a =+,435a b b =+,5462a b b =+.(I )求{}n a 和{}n b 的通项公式; (II )设数列{}n S 的前n 项和为()*n T n N∈,(i )求n T ;(ii )证明()()()()22*122122n nk k k k T b b n N k k n ++=+=-∈+++∑.四、双空题17.(2021ꞏ全国ꞏ统考高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n 次,那么1nk k S ==∑______2dm .参考答案1.A【要点分析】显然可知,10032S >,利用倒数法得到21111124n n a a +⎛⎫==-⎪⎪⎭,再放12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【过程详解】因为)111,N n a a n *+==∈,所以0n a >,10032S >.由211111124n n n a a a ++⎛⎫=⇒==-⎪⎪⎭2111122n a +⎛⎫∴<+⇒⎪⎪⎭12<11122n n -+≤+=,当且仅当1n =时取等号,12412(1)311n n nn a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.2.4【要点分析】结合等差数列和等比数列前n 项和公式的特点,分别求得{}{},n n a b 的公差和公比,由此求得d q +.【过程详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据题意1q ≠. 等差数列{}n a 的前n 项和公式为()2111222n n n d d P na d n a n -⎛⎫=+=+- ⎪⎝⎭, 等比数列{}n b 的前n 项和公式为()1111111n n n b q b bQ q qq q-==-+---, 依题意n n n S P Q =+,即22111212211nn b bd d n n n a n q q q ⎛⎫-+-=+--+ ⎪--⎝⎭, 通过对比系数可知111212211dd a q b q⎧=⎪⎪⎪-=-⎪⎨⎪=⎪⎪=-⎪-⎩⇒112021d a q b =⎧⎪=⎪⎨=⎪⎪=⎩,故4d q +=.故答案为:4【名师点睛】本小题主要考查等差数列和等比数列的前n 项和公式,属于中档题. 3.(1)()12n n n a +=(2)见解析【要点分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111nn a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=;(2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭ ,进而证得. 【过程详解】(1)∵11a =,∴111S a ==∴,111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=∴,()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯ ()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--, 显然对于1n =也成立,∴{}n a 的通项公式()12n n n a +=;(2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦4.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【要点分析】(1)求出()f x ',讨论其符号后可得()f x 的单调性.(2)设()e e 1ax x h x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-<的*n ∈N 恒成立,结合裂项相消法可证题设中的不等式.【过程详解】(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x '<,当0x >时,()0f x ¢>, 故()f x 的减区间为(),0∞-,增区间为()0,∞+.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-, 则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->, 因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x '>, 故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾. 若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-, 下证:对任意0x >,总有()ln 1x x +<成立, 证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++, 故()S x 在()0,∞+上为减函数,故()()00S x S <=即()ln 1x x +<成立. 由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤, 故()0h x '≤总成立,即()h x 在()0,∞+上为减函数, 所以()()00h x h <=.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,∞+上为减函数,所以()()00h x h <=. 综上,12a ≤. (3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立, 令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n ∈N ,有整理得到:()ln 1ln n n +-<()ln 2ln1ln 3ln 2ln 1ln n n >-+-+++- ()ln 1n =+,故不等式成立.【名师点睛】思路名师点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.5.(1)121,2n n n a n b -=-= (2)证明见解析(3)1(62)489n n +-+【要点分析】(1)利用等差等比数列的通项公式进行基本量运算即可得解; (2)由等比数列的性质及通项与前n 项和的关系结合要点分析法即可得证;(3)先求得212221212122(1)(1)k k k k k k k k a a b a a b ---+⎡⎤⎡⎤--+--⎣⎦⎣⎦,进而由并项求和可得114nk n k T k +==⋅∑,再结合错位相减法可得解.【过程详解】(1)设{}n a 公差为d ,{}n b 公比为q ,则11(1),n n n a n d b q -=+-=,由22331a b a b -=-=可得2112121d q d q d q +-=⎧⇒==⎨+-=⎩(0d q ==舍去), 所以121,2n n n a n b -=-=;(2)证明:因为120,n n b b +=≠所以要证1111()n n n n n n n S a b S b S b +++++=-, 即证111()2n n n n n n n S a b S b S b ++++=⋅-,即证1112n n n n S a S S ++++=-, 即证11n n n a S S ++=-,而11n n n a S S ++=-显然成立,所以1111()n n n n n n n S a b S b S b +++++=⋅-⋅;(3)因为212221212122(1)(1)k kk k k k k k a a b a a b ---+⎡⎤⎡⎤--+--⎣⎦⎣⎦2221(4143)2[41(41)]224k k k k k k k k --=-+-⨯++--⨯=⋅,所以211(1)nkk k k k a a b +=⎡⎤--⎣⎦∑2122212121221[((1))((1))]nk kk k k k k k k a a b a a b ---+==--+--∑ 124nk k k ==⋅∑,设124nkn k T k ==⋅∑所以2324446424nn T n =⨯+⨯+⨯+⋅⋅⋅+⨯,则2341244446424n n n T +⨯+⨯+⨯+⋅⋅⋅+⨯=,作差得()2341124(14)3244444242414n nn n n T n n ++⨯--=++++⋅⋅⋅+-⋅=-⨯-()126483n n +--=, 所以1(62)489n n n T +-+=,所以211(1)nkk k k k a a b +=⎡⎤--=⎣⎦∑1(62)489n n +-+. 6.(1)11()3n n a -=,3n n n b =;(2)证明见解析.【要点分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【过程详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++ ,012111111223333-⎛⎫=++++ ⎪⎝⎭ n n S , 230121123111112333323333n n nn S n T -⎛⎫⎛⎫-=++++-++++=⎪ ⎪⎝⎭⎝⎭ 012111012222333---++++111233---+n n n n .设0121111101212222Γ3333------=++++ n n n , ⑧则1231111012112222Γ33333-----=++++ n n n . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭- n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n n T . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++ ,①231112133333n n n n nT +-=++++ ,② ①-②得23121111333333n n n n T +=++++- 1111(11133(11323313n n n n n n ++-=-=---, 所以31(1)4323n n n nT =--⋅,所以2n n S T -=3131(1(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法设()231()1-=++++=- n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='- n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n nn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁. (2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.7.(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【要点分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224n n n c c =⋅-,结合等比数列的定义即可得证;(ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得112n n k k k-==<,结合错位相减法即可得证. 【过程详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去),所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n n n n nn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22n n c c -是等比数列;(ii )由题意知,()()22122222121414242222n nn n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n -==,所以112nn k k k k -==<, 设10121112322222nn k n k k n T --===+++⋅⋅⋅+∑, 则123112322222n nn T =+++⋅⋅⋅+,两式相减得21111111122121222222212nn n n n nn n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫=-<⎪⎭【名师点睛】关键点名师点睛:最后一问考查数列不等式的证明,因为nk =错位相减法即可得证.8.(1)2-;(2)1(13)(2)9nn n S -+-=. 【要点分析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论; (2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论.【过程详解】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-= , 1,2q q ≠∴=- ;(2)设{}n na 的前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++- ,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+- ,②①-②得,2131(2)(2)(2)(2)n n n S n -=+-+-++---1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--, 1(13)(2)9nn n S -+-∴=. 【名师点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.9.(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【要点分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可. 【过程详解】(1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n ∈N ,都有21n a n =+成立; [方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+. [方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=. 由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯, (111)4(1)(2)333n n nn n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯++-⨯⎢⎥⎣⎦ ,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+. [方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n n S a a a a =++++ ()()()()2132431n n b b b b b b b b +=-+-+-++- 11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122n n n pn q p S S ----=+⋅,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n nx x f x x x x x x x-=++++=≠- ,()121211(1)()1231(1)nn n n x x nx n x f x x x nx x x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦' , 所以12n b b b +++L 21122322n n -=+⋅+⋅++⋅ 1(2)12(1)2n n f n n +==+-+'⋅. 故234(2)2222nn S f =++'+++ ()1212412(1)212n n nn n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解; 方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式; 方法三:由134n n a a n +=-化简得1114333n n n n n a a n+++-=-,根据累加法即可求出数列{}n a 的通项公式; 方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式. (2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法; 方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n nx x f x x x x x x x-=++++=≠- 的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算. 10.(Ⅰ)n a n =,12n n b -=;(Ⅱ)证明见解析;(Ⅲ)465421949n n n n +--+⨯.【要点分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;(Ⅱ)利用(Ⅰ)的结论首先求得数列{}n a 前n 项和,然后利用作差法证明即可;(Ⅲ)分类讨论n 为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算211n k k c -=∑和21nk k c =∑的值,据此进一步计算数列{}n c 的前2n 项和即可.【过程详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由11a =,()5435a a a =-,可得d =1. 从而{}n a 的通项公式为n a n =. 由()15431,4b b b b ==-,又q ≠0,可得2440q q -+=,解得q =2,从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=, 故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++,从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<.(Ⅲ)当n 为奇数时,()111232(32)222(2)2n n n n n nn n a b n c a a n n n n-+-+--===-++,当n 为偶数时,1112n n n n a n c b -+-==, 对任意的正整数n ,有222221112221212121k k nnnk k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑,和223111211352321444444nnk k n n k k k n n c -==---==+++++∑∑① 由①得22314111352321444444n k n n k n n c +=--=+++++∑ ②由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑ , 由于11211121221121156544144334444123414n n n n n n n n ++⎛⎫- ⎪--+⎝⎭--=-⨯--⨯=-⨯-, 从而得:21565994nk nk n c =+=-⨯∑. 因此,2212111465421949n nnnk k k nk k k n c c c n -===+=+=--+⨯∑∑∑. 所以,数列{}n c 的前2n 项和为465421949n n n n +--+⨯.【名师点睛】本题主要考查数列通项公式的求解,分组求和法,指数型裂项求和,错位相减求和等,属于中等题.11.(I )3n a n =,3nn b =;(II )22(21)369()2n n n n +*-++∈N【要点分析】(I )首先设出等差数列的公差,等比数列的公比,根据题意,列出方程组,求得33d q =⎧⎨=⎩,进而求得等差数列和等比数列的通项公式; (II )根据题中所给的n c 所满足的条件,将112222n n a c a c a c +++ 表示出来,之后应用分组求和法,结合等差数列的求和公式,以及错位相减法求和,最后求得结果. 【过程详解】(I )解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , 依题意,得23323154q d q d =+⎧⎨=+⎩,解得33d q =⎧⎨=⎩,故33(1)3n a n n =+-=,1333n nn b -=⨯=,所以,{}n a 的通项公式为3n a n =,{}n b 的通项公式为3nn b =;(II )112222n n a c a c a c +++135212142632()()n n n a a a a a b a b a b a b -=+++++++++ 123(1)[36](6312318363)2n n n n n -=⨯+⨯+⨯+⨯+⨯++⨯ 21236(13233)n n n =+⨯⨯+⨯++⨯ ,记 1213233nn T n =⨯+⨯++⨯ ①则 231313233n n T n +=⨯+⨯++⨯ ②②-①得,231233333n n n T n +=-----+⨯ 113(13)(21)333132n n n n n ++--+=-+⨯=-, 所以122112222(21)3336332n n n n n a c a c a c n T n +-++++=+=+⨯22(21)369()2n n n n N +*-++=∈.【名师点睛】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识,考查数列求和的基本方法和运算求解能力,属于中档题目. 12.(1)()21n a n =-,()1n b n n =+;(2)证明见解析.【要点分析】(1)首先求得数列{}n a 的首项和公差确定数列{}n a 的通项公式,然后结合三项成等比数列的充分必要条件整理计算即可确定数列{}n b 的通项公式;(2)结合(1)的结果对数列{}n c 的通项公式进行放缩,然后利用不等式的性质和裂项求和的方法即可证得题中的不等式.【过程详解】(1)由题意可得:1112432332a d a d a d +=⎧⎪⎨⨯+=+⎪⎩,解得:102a d =⎧⎨=⎩, 则数列{}n a 的通项公式为22n a n =- . 其前n 项和()()02212n n n S nn +-⨯==-.则()()()()1,1,12n n n n n b n n b n n b -++++++成等比数列,即: ()()()()21112n n n n n b n n b n n b ++=-+⨯+++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,据此有:()()()()()()()()2222121112121n n n n n n n n n b b n n n n n n b n n b b ++++=-++++++-+,故()()()()()22112121(1)(1)(1)(2)n n n n n n b n n n n n n n n n +--++==++++--+. (2)结合(1)中的通项公式可得:2n C ==<=<=,则)122022n C C C +++<+++= 【名师点睛】本题主要考查数列通项公式的求解,,裂项求和的方法,数列中用放缩法证明不等式的方法等知识,意在考查学生的转化能力和计算求解能力. 13.(Ⅰ)2q =;(Ⅱ)2115(43)()2n n b n -=-+⋅.【要点分析】要点分析:(Ⅰ)根据条件、等差数列的性质及等比数列的通项公式即可求解公比;(Ⅱ)先根据数列1{()}n n n b b a +-前n 项和求通项,解得1n n b b +-,再通过叠加法以及错位相减法求n b .【过程详解】过程详解:(Ⅰ)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得1820q q ⎛⎫+= ⎪⎝⎭,因为1q >,所以2q =.(Ⅱ)设()1n n n n c b b a +=-,数列{}n c 前n 项和为n S .由11,1,, 2.n nn S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(Ⅰ)可知12n n a -=,所以()111412n n n b b n -+⎛⎫-=-⋅ ⎪⎝⎭,故()21145,22n n n b b n n --⎛⎫-=-⋅≥ ⎪⎝⎭,()()()()11123221n n n n n b b b b b b b b b b ----=-+-++-+-()()23111454973222n n n n --⎛⎫⎛⎫=-⋅+-⋅++⋅+ ⎪⎪⎝⎭⎝⎭.设()22111371145,2222n n T n n -⎛⎫⎛⎫=+⋅+⋅++-⋅≥ ⎪ ⎪⎝⎭⎝⎭ ,()()2211111137494522222n n n T n n --⎛⎫⎛⎫⎛⎫=⋅+⋅++-⋅+-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以()2211111134444522222n n n T n --⎛⎫⎛⎫⎛⎫=+⋅+⋅++⋅--⋅ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,因此()211443,22n n T n n -⎛⎫=-+⋅≥ ⎪⎝⎭,又11b =,所以()2115432n n b n -⎛⎫=-+⋅ ⎪⎝⎭.名师点睛:用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.14.(Ⅰ)31n a n =+;32nn b =⨯(Ⅱ)(i )()221941n n n a c -=⨯-(ii )()1+1*1243218n n n N +⨯+⨯-∈ 【要点分析】(Ⅰ)由题意首先求得公比和公差,然后确定数列的通项公式即可;(Ⅱ)结合(Ⅰ)中的结论可得数列(){}221n n a c -的通项公式,结合所得的通项公式对所求的数列通项公式进行等价变形,结合等比数列前n 项和公式可得()*221i ini a c n =∈∑N 的值.【过程详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 依题意得()()262426262424124q d d q d d ⎧=+-=+⎪⎨=++=+⎪⎩,解得32d q =⎧⎨=⎩,故4(1)331n a n n =+-⨯=+,16232n nn b -=⨯=⨯.所以,{}n a 的通项公式为31n a n =+,{}n b 的通项公式为32nn b =⨯.(Ⅱ)(i )()()()()22211321321941n n n n n nn a c a b -=-=⨯+⨯-=⨯-.所以,数列(){}221n n a c -的通项公式为()221941n n na c -=⨯-.(ii )()2222211=1i i i i i n n i i a c a a c ==⎡⎤-⎣⎦+∑∑()222111i i i n ni i a a c ===+-∑∑ ()212312n n ⎛⎫- ⎪=+⨯ ⎪-⎝⎭()1941ni i =+⨯-∑ ()()+1414326914n n n n -=⨯+-+⨯--()1+1*1243218n n n N +=⨯+⨯-∈.【名师点睛】本题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力. 15.(Ⅰ)()12n n n S +=,21nn T =-;(Ⅱ)4. 【要点分析】(I )由题意得到关于q 的方程,解方程可得2q =,则122112nn n T -==--.结合题意可得等差数列的首项和公差为11,1a d ==,则其前n 项和()12n n n S +=. (II )由(I ),知1122 2.n n T T T n ++++=-- 据此可得2340,n n --= 解得1n =-(舍),或4n =.则n 的值为4.【过程详解】(I )设等比数列{}n b 的公比为q ,由b 1=1,b 3=b 2+2,可得220q q --=. 因为0q >,可得2q =,故12n n b -=.所以,122112nn n T -==--.设等差数列{}n a 的公差为d .由435b a a =+,可得134a d +=.由5462b a a =+,可得131316,a d +=从而11,1a d ==,故n a n =,所以,(1)2n n n S +=. (II )由(I ),有121122(12)(222)=2 2.12n nn n T T T n n n +⨯-+++=+++--=---由12()4n n n n S T T T a b ++++=+ , 可得11(1)2222n n n n n n ++++--=+, 整理得2340,n n --=解得1n =-(舍),或4n =.所以n 的值为4.名师点睛:本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.16.(Ⅰ)12n n a -=,n b n =;(Ⅱ)(i )122n n T n +=--.(ii )证明见解析.【过程详解】要点分析:(I )由题意得到关于q 的方程,解方程可得2q =,则12n n a -=.结合等差数列通项公式可得.n b n =(II )(i )由(I ),有21nn S =-,则()112122nk n n k T n +==-=--∑.(ii )因为()()()212221221k k k k k T b b k k k k ++++=-++++,裂项求和可得()()()22122122n nk k k k T b b k k n ++=+=-+++∑. 过程详解:(I )设等比数列{}n a 的公比为q.由1321,2,a a a ==+可得220q q --=.因为0q >,可得2q =,故12n n a -=.设等差数列{}n b 的公差为d ,由435a b b =+,可得13 4.b d += 由5462a b b =+,可得131316,b d += 从而11,1,b d == 故.n b n =所以数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为.n b n =(II )(i )由(I ),有122112nn n S -==--,故()()1112122122212nnnkkn n k k T n n n +==⨯-=-=-=-=---∑∑.(ii )因为()()()()()()()()1121222222212121221k k k k k k k k k k T b b k k k k k k k k k +++++--+++⋅===-++++++++, 所以()()()32432122122222222123243212n n n nk k k k T b b k k n n n ++++=+⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++++⎝⎭⎝⎭⎝⎭∑. 名师点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力. 17. 5 ()41537202n n -+-【要点分析】(1)按对折列举即可;(2)根据规律可得n S ,再根据错位相减法得结果.【过程详解】(1)由对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,所以对着三次的结果有:5312561032022⨯⨯⨯⨯,,;,共4种不同规格(单位2dm ); 故对折4次可得到如下规格:5124⨯,562⨯,53⨯,3102⨯,3204⨯,共5种不同规格;(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积成公比为12的等比数列,首项为120()2dm ,第n 次对折后的图形面积为111202n -⎛⎫⨯ ⎪⎝⎭,对于第n 此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为1n +种(证明从略),故得猜想1120(1)2n n n S -+=, 设()0121112011202120312042222nk n k n S S -=+⨯⨯⨯==++++∑L , 则121112021203120120(1)22222n nn n S -⨯⨯+=++++ , 两式作差得:()211201111124012022222n n n S -+⎛⎫=++++- ⎪⎝⎭ ()11601120122401212n n n -⎛⎫- ⎪+⎝⎭=+-- ()()112011203120360360222n n nn n -++=--=-, 因此,()()4240315372072022n n n n S -++=-=-. 故答案为:5;()41537202n n -+-. 【名师点睛】方法名师点睛:数列求和的常用方法: (1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}n n a b +结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为()0d d ≠,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.。
2018年高考数列专题复习精典版知识点大题分类选择题答案解析详解
WORD格式整理文科数列专题复习一、等差数列与等比数列1. 基本量的思想:常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。
转化为“基本量”是解决问题的基本方法。
2. 等差数列与等比数列的联系1)若数列〔a n〕是等差数列,则数列{ a a n}是等比数列,公比为a d,其中a是常数,d是’a n,的公差。
(a>0且a z 1);2)若数列a n「是等比数列,且a n - 0,则数列log a a n,是等差数列,公差为log a q , 其中a是常数且a 0, a 1 , q是^a n,的公比。
3)若{ a n}既是等差数列又是等比数列,则{ a n}是非零常数数列。
4、典型例题分析【题型1】 等差数列与等比数列的联系例1 (文16)已知{a n }是公差不为零的等差数列,a i = 1,且a i , a 3, a 9成等比数列(I )求数列{a n }的通项;(H )求数列{2 an }的前n 项和S n .解:(1)由题设知公差d 工0,+1 2d 1 8d11 +2d故{a }的通项 a = 1+ ( n — 1) x 1 = n.nn(n )由(I )知2a m=2n ,由等比数列前 n 项和公式得2(1 2n) n+1=2 -2.1"2在①中令 n = 1,可得a 1= 8 = 24 —1,.••an = 24 n (n GN ).由题意知 b 1= 8,解得d = 1, d = 0 (舍去), 2 3S m =2+2 +2 + +2 =小结与拓展:数列 a n 」是等差数列,则数列 { a a n }是等比数列,公比为 a d ,其中a 是 常数,d 是'的公差。
(a>0且a 工1).【题型2】 与“前n 项和Sn 与通项nn已知数列{a }的前三项与数列{b }的前三项对应相同, 对任意的n GN *都成立,数列{b n + 1 — b n }是等差数列.例21a n= 8nan ”、常用求通项公式的结合1223 n且 a + 2a + 2 a + + 2 求数列{a n }与{b n }的通项公式。
2018高考分类汇总数列
设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (Ⅰ)求S n 和T n ;(Ⅱ)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.(I )解:设等比数列{}n b 的公比为q ,由b 1=1,b 3=b 2+2,可得220q q --=. 因为0q >,可得2q =,故12n n b -=.所以122112nn n T -==--. 设等差数列{}n a 的公差为d .由435b a a =+,可得134a d +=.由5462b a a =+,可得131316,a d += 从而11,1a d ==,故n a n =,所以(1)2n n n S +=. (II )解:由(I ),知13112(222)2 2.n n n T T T n n ++++=+++-=--由12()4n n n n S T T T a b ++++=+可得11(1)2222n n n n n n ++++--=+, 整理得2340,n n --= 解得1n =-(舍),或4n =.所以n 的值为4.已知集合{}{}**|21,,|2,n A x x n n N B x x n N ==-∈==∈,将A B ⋃的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列的前n 项和,则使得112n n S a +>成立的n 的最小值为__________. 解析:{}2,4,8,16,32,64,128B =⋅⋅⋅与A 相比,元素间隔大。
所以从n S 中加了几个B 中元素考虑。
1个: 23112,3,1224n S a =+=== 2个: 45224,10,1260n S a =+===3个: 78437,30,12108n S a =+=== 4个: 12138412,94,12204n S a =+===5个: 212216521,318,12396n S a =+=== 6个: 383932638,1150,12780n S a =+===发现2138n ≤≤时n+112n S a =发生变号,以下用二分法查找:3031687,12612S a ==,所以所求n 应在2229~之间. 2526462,12492S a ==,所以所求n 应在2529~之间.2728546,12540S a ==,所以所求n 应在2527~之间.∵272812S a >,而262712a a <,所以答案为27.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 B A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.(Ⅰ)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=, 因为1q >,所以2q =.(Ⅱ)设1()n n n n c b b a +=-,数列{}n c 前n 项和为n S .由11,1,, 2.n nn S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(Ⅰ)可知12n n a -=,所以111(41)()2n n n b b n -+-=-⋅,故211(45)(),22n n n b b n n ---=-⋅≥,11123221()()()()n n n n n b b b b b b b b b b ----=-+-++-+-23111(45)()(49)()73222n n n n --=-⋅+-⋅++⋅+.设221113711()(45)(),2222n n T n n -=+⋅+⋅++-⋅≥,2211111137()(49)()(45)()22222n n n T n n --=⋅+⋅++-⋅+-⋅所以22111111344()4()(45)()22222n n n T n --=+⋅+⋅++⋅--⋅, 因此2114(43)(),22n n T n n -=-+⋅≥,又11b =,所以2115(43)()2n n b n -=-+⋅.。
2018届高三数学文一轮复习夯基提能作业本:第六章 数
第四节数列求和A组基础题组1.数列{a n}的通项公式是a n=,前n项和为9,则n等于( )A.9B.99C.10D.1002.已知数列{a n}满足a n+1=+,且a1=,则该数列的前2016项的和等于( )A.1509B.3018C.1512D.20163.在数列{a n}中,a1=1,a2=2,a n+2-a n=1+(-1)n,那么S100的值为( )A.2500B.2600C.2700D.28004.已知数列{a n}的前n项和S n=n2-6n,则{|a n|}的前n项和T n=( )A.6n-n2B.n2-6n+18C. D.5.设数列{a n}的前n项和为S n.若S2=4,a n+1=2S n+1,n∈N*,则a1= ,S5= .6.(2015课标Ⅱ,16,5分)设S n是数列{a n}的前n项和,且a1=-1,a n+1=S n S n+1,则S n= .7.对于数列{a n},定义数列{a n+1-a n}为数列{a n}的“差数列”,若a1=2,{a n}的“差数列”的通项为2n,则数列{a n}的前n项和S n= .8.已知等比数列{a n}的前n项和为S n,且满足S n=3n+k.(1)求k的值及数列{a n}的通项公式;(2)若数列{b n}满足n=a n b n,求数列{b n}的前n项和T n.9.正项数列{a n}的前n项和S n满足:-(n2+n-1)S n-(n2+n)=0.(1)求数列{a n}的通项公式a n;(2)令b n=,数列{b n}的前n项和为T n.证明:对于任意的n∈N*,都有T n<.B组提升题组10.在数列{a n}中,a n=,若{a n}的前n项和S n=,则n=( )A.3B.4C.5D.611.数列{a n}的通项公式为a n=ncos,其前n项和为S n,则S2015等于( )A.1002B.-1004C.1006D.-100812.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2015的值为( )A.2015B.2013C.1008D.100713.(2016江西八校联考)在数列{a n}中,已知a1=1,a n+1+(-1)n a n=cos(n+1)π],记S n为数列{a n}的前n项和,则S2015= .14.(2017安徽师大附中模拟)用x]表示不超过x的最大整数,例如3]=3,1.2]=1,-1.3]=-2.已知数列{a n}满足a1=1,a n+1=+a n,则= .15.在数列{a n}中,a2=4,a3=15,若S n为{a n}的前n项和,且数列{a n+n}是等比数列,则S n= .16.(2015安徽,18,12分)已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.17.已知{a n}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.(1)求{a n}的通项公式;(2)求数列的前n项和.答案全解全析A组基础题组1.B ∵a n==-,∴S n=a1+a2+…+a n=(-)+(-)+…+(-)+(-)=-1,令-1=9,得n=99,故选B.2.C 因为a1=,a n+1=+,所以a2=1,从而a3=,a4=1,……,可得a n=故数列的前2016项的和S2016=1008×=1512.3.B 当n为奇数时,a n+2-a n=0⇒a n=1,当n为偶数时,a n+2-a n=2⇒a n=n,故a n=于是S100=50+=2600.4.C 由S n=n2-6n知{a n}是等差数列,且首项为-5,公差为2.∴a n=-5+(n-1)×2=2n-7,∴n≤3时,a n<0;n>3时,a n>0,易得T n=5.答案1;121解析由a n+1=2S n+1,得a2=2S1+1,即S2-a1=2a1+1,又S2=4,∴4-a1=2a1+1,解得a1=1.又a n+1=S n+1-S n,∴S n+1-S n=2S n+1,即S n+1=3S n+1,则S n+1+=3,又S1+=,∴是首项为,公比为3的等比数列,∴S n+=×3n-1,即S n=,∴S5==121.6.答案-解析∵a n+1=S n+1-S n,a n+1=S n S n+1,∴S n+1-S n=S n+1S n,又由a1=-1,知S n≠0,∴-=1,∴是等差数列,且公差为-1,而==-1,∴=-1+(n-1)×(-1)=-n,∴S n=-.7.答案2n+1-2解析由题意知a n+1-a n=2n,∴当n≥2时,a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=2n-1+2n-2+…+22+2+2=+2=2n-2+2=2n,又a1=2满足上式,∴a n=2n(n∈N*),∴S n==2n+1-2.8.解析(1)当n≥2时,由a n=S n-S n-1=3n+k-3n-1-k=2·3n-1,得等比数列{a n}的公比q=3,首项为2.∴a1=S1=3+k=2,数列{a n}的通项公式为a n=2·3n-1,∴k=-1.(2)由n=a n b n,可得b n=,即b n=·.∴T n=×,∴T n=×,∴T n=×,∴T n=×.9.解析(1)由-(n2+n-1)S n-(n2+n)=0,得S n-(n2+n)]·(S n+1)=0.由于{a n}是正项数列,所以S n>0,S n=n2+n.于是a1=S1=2,n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.a1=2适合上式,故数列{a n}的通项公式为a n=2n.(2)证明:由于a n=2n,b n=,所以b n==×-.所以T n=×1-+-+-+…+-+-=×<×1+=.B组提升题组10.D 由a n==1-得S n=n-=n-,S n==n-,将各选项中的值代入验证得n=6.11.D 由题意得a1=0,a2=-2,a3=0,a4=4,a5=0,a6=-6,a7=0,a8=8,a9=0,a10=-10,……,所以数列{a n}的奇数项都为0,a2,a6,a10,…是以-2为首项,-4为公差的等差数列,a4,a8,…是以4为首项,4为公差的等差数列,所以S2015=1008×0+(-2)×504+×(-4)+4×503+×4=-1008. 12.C n≥2时,a n+2S n-1=n,∴a n+1+2S n=n+1,两式相减整理得,a n+1+a n=1(n≥2)①,n=2时,a2+2a1=2,又a1=1,∴a2=0,∴a2+a1=1,∴当n=1时符合①式,所以a n+1+a n=1(n∈N*),且n是奇数时,a n=1,n是偶数时,a n=0,所以S2015=1008.13.答案-1006解析由a1=1,a n+1+(-1)n a n=cos(n+1)π],得a2=a1+cos2π=1+1=2,a3=-a2+cos3π=-2-1=-3,a4=a3+cos4π=-3+1=-2,a5=-a4+cos5π=2-1=1,……,由此可知,数列{a n}是以4为周期的周期数列,且a1+a2+a3+a4=-2,所以S2015=503×(a1+a2+a3+a4)+a2013+a2014+a2015=503×(-2)+a1+a2+a3=-1006.14.答案2015解析∵a 1=1,a n+1=+a n>1,∴==-,∴=-,∴++…+=++…+=1-∈(0,1).又=1-,∴++…+=2016-,∴=2015.15.答案3n--1解析∵{a n+n}是等比数列,∴数列{a n+n}的公比q====3,则{a n+n}的通项为a n+n=(a2+2)·3n-2=6·3n-2=2·3n-1,则a n=2·3n-1-n,∴S n=-=3n--1.16.解析(1)由题设知a1·a4=a2·a3=8,又a1+a4=9,可解得或(舍去).由a4=a1q3得q=2,故a n=a1q n-1=2n-1.(2)S n==2n-1,又b n===-,所以T n=b1+b2+…+b n=++…+=-=1-. 17.解析(1)方程x2-5x+6=0的两根分别为2,3,由题意得a2=2,a4=3.设数列{a n}的公差为d,则a4-a2=2d,故d=,从而a1=.所以{a n}的通项公式为a n=n+1.(2)设的前n项和为S n,由(1)知=,则S n=++…++,S n=++…++.两式相减得S n=+-=+-.所以S n=2-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测 (三十一) 数列求和 一抓基础,多练小题做到眼疾手快 1.已知等差数列{an}的前n项和为Sn,若S3=9,S5=25,则S7=( ) A.41 B.48 C.49 D.56 解析:选C 设Sn=An2+Bn,
由题知, S3=9A+3B=9,S5=25A+5B=25,解得A=1,B=0, ∴S7=49. 2.数列{1+2n-1}的前n项和为( ) A.1+2n B.2+2n C.n+2n-1 D.n+2+2n 解析:选C 由题意得an=1+2n-1,
所以Sn=n+1-2n1-2=n+2n-1. 3.(2017·江西新余三校联考)数列{an}的通项公式是an=(-1)n(2n-1),则该数列的前100项之和为( ) A.-200 B.-100 C.200 D.100 解析:选D 根据题意有S100=-1+3-5+7-9+11-…-197+199=2×50=100,故选D. 4.已知正项数列{an}满足a2n+1-6a2n=an+1an.若a1=2,则数列{an}的前n项和Sn=________. 解析:∵a2n+1-6a2n=an+1an, ∴(an+1-3an)(an+1+2an)=0, ∵an>0,∴an+1=3an, 又a1=2,∴{an}是首项为2,公比为3的等比数列,
∴Sn=21-3n1-3=3n-1. 答案:3n-1
5.(2017·广西高三适应性测试)已知数列{an}的前n项和Sn=n2,则数列1an+1-1的前n项和Tn=________. 解析:∵an= 1,n=1,n2-n-12,n≥2= 1,n=1,2n-1,n≥2, ∴an=2n-1. ∴1an+1-1=12n+12-1=141n-1n+1,
∴Tn=141-12+12-13+…+1n-1n+1 =141-1n+1=n4n+4. 答案:n4n+4 二保高考,全练题型做到高考达标 1.已知{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列1an的前5项和为( ) A.158或5 B.3116或5 C.3116 D.158 解析:选C 设{an}的公比为q,显然q≠1,由题意得91-q31-q=1-q61-q,所以1+q3=9,
得q=2,所以1an是首项为1,公比为12的等比数列,前5项和为1-1251-12=3116. 2.已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2)且b1
=a2,则|b1|+|b2|+|b3|+…+|bn|=( )
A.1-4n B.4n-1
C.1-4n3 D.4n-13 解析:选B 由已知得b1=a2=-3,q=-4, ∴bn=(-3)×(-4)n-1, ∴|bn|=3×4n-1, 即{|bn|}是以3为首项,4为公比的等比数列.
∴|b1|+|b2|+…+|bn|=31-4n1-4=4n-1. 3.(2017·江西重点中学联考)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S16等于( ) A.5 B.6 C.7 D.16 解析:选C 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数列重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0. 又因为16=2×6+4,所以这个数列的前16项之和S16=2×0+7=7.故选C.
4.已知数列{an}的通项公式是an=n2sin2n+12π,则a1+a2+a3+…+a2 018=( )
A.2 017×2 0182 B.2 018×2 0192 C.2 017×2 0172 D.2 018×2 0182 解析:选B an=n2sin2n+12π= -n2,n为奇数,n2,n为偶数, ∴a1+a2+a3+…+a2 018=-12+22-32+42-…-2 0172+2 0182=(22-12)+(42-32)+…+(2 0182-2 0172)=1+2+3+4+…+2 018=2 018×2 0192. 5.对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”,若a1=2,数列{an}的“差数列”的通项为2n,则数列{an}的前n项和Sn=( ) A.2 B.2n C.2n+1-2 D.2n-1-2 解析:选C ∵an+1-an=2n,∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2n-1
+2n-2+…+22+2+2=2-2n1-2+2=2n-2+2=2n,∴Sn=2-2n+11-2=2n+1-2.故选C. 6.在数列{an}中,若a1=2,且对任意正整数m,k,总有am+k=am+ak,则{an}的前n项和Sn=________. 解析:依题意得an+1=an+a1,即有an+1-an=a1=2,所以数列{an}是以2为首项、2
为公差的等差数列,an=2+2(n-1)=2n,Sn=n2+2n2=n(n+1). 答案:n(n+1) 7.(2016·浙江高考)设数列{an}的前n项和为Sn.若S2=4,an+1=2Sn+1,n∈N*,则a1=________,S5=________. 解析:∵an+1=2Sn+1,∴Sn+1-Sn=2Sn+1,
∴Sn+1=3Sn+1,∴Sn+1+12=3Sn+12, ∴数列Sn+12是公比为3的等比数列, ∴S2+12S1+12=3. 又S2=4,∴S1=1,∴a1=1, ∴S5+12=S1+12×34=32×34=2432, ∴S5=121. 答案:1 121 8.已知数列{an}满足a1=1,an+1·an=2n(n∈N*),则S2 017=________. 解析:∵数列{an}满足a1=1,an+1·an=2n,① ∴n=1时,a2=2,n≥2时,an·an-1=2n-1,②
∵①÷②得an+1an-1=2, ∴数列{an}的奇数项、偶数项分别成等比数列, ∴S2 017=1-21 0091-2+2×1-21 0081-2=21 010-3. 答案:21 010-3 9.已知等比数列{an}的各项均为正数,a1=1,公比为q;等差数列{bn}中,b1=3,且
{bn}的前n项和为Sn,a3+S3=27,q=S2a2. (1)求{an}与{bn}的通项公式; (2)设数列{cn}满足cn=32Sn,求{cn}的前n项和Tn. 解:(1)设数列{bn}的公差为d,∵a3+S3=27,q=S2a2, ∴q2+3d=18,6+d=q2,联立方程可求得q=3,d=3, ∴an=3n-1,bn=3n.
(2)由题意得:Sn=n3+3n2,cn=32Sn=32×23×1nn+1=1n-1n+1. ∴Tn=1-12+12-13+13-14+…+1n-1n+1 =1-1n+1=nn+1. 10.(2017·广州综合测试)已知数列{an}是等比数列,a2=4,a3+2是a2和a4的等差中项. (1)求数列{an}的通项公式; (2)设bn=2log2an-1,求数列{anbn}的前n项和Tn. 解:(1)设数列{an}的公比为q, 因为a2=4,所以a3=4q,a4=4q2. 因为a3+2是a2和a4的等差中项, 所以2(a3+2)=a2+a4. 即2(4q+2)=4+4q2, 化简得q2-2q=0. 因为公比q≠0,所以q=2. 所以an=a2qn-2=4×2n-2=2n(n∈N*). (2)因为an=2n,所以bn=2log2an-1=2n-1, 所以anbn=(2n-1)2n, 则Tn=1×2+3×22+5×23+…+(2n-3)2n-1+(2n-1)2n,① 2Tn=1×22+3×23+5×24+…+(2n-3)2n+(2n-1)·2n+1.② 由①-②得, -Tn=2+2×22+2×23+…+2×2n-(2n-1)2n+1
=2+2×41-2n-11-2-(2n-1)2n+1 =-6-(2n-3)2n+1, 所以Tn=6+(2n-3)2n+1. 三上台阶,自主选做志在冲刺名校 1.(2017·云南师大附中检测)已知数列{an}中,a1=2,a2n=an+1,a2n+1=n-an,则{an}的前100项和为________. 解析:由a1=2,a2n=an+1,a2n+1=n-an,得a2n+a2n+1=n+1,∴a1+(a2+a3)+(a4
+a5)+…+(a98+a99)=2+2+3+…+50=1 276,∵a100=1+a50=1+(1+a25)=2+(12-a12)
=14-(1+a6)=13-(1+a3)=12-(1-a1)=13,∴a1+a2+…+a100=1 276+13=1 289. 答案:1 289 2.(2017·湖南省东部六校联考)已知等比数列{an}满足2a1+a3=3a2,且a3+2是a2,a4
的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=an+log21an,Sn=b1+b2+…+bn,求使Sn-2n+1+47<0成立的n的最小值. 解:(1)设等比数列{an}的公比为q,
依题意,有 2a1+a3=3a2,a2+a4=2a3+2,即 a12+q2=3a1q, ①a1q+q3=2a1q2+4. ② 由①得q2-3q+2=0,解得q=1或q=2.