时间序列分析结课论文
时间序列分析学年论文

2011-2012学年09级统计学专业学年论文题目运用SAS对中国历年运动员获世界冠军数进行建模并作预报.学生姓名学号成绩运用SAS对历年中国运动员获世界冠军数进行建模并作预测摘要:本文通过选取1978年-2009年中国历年运动员获得金牌数,运用SAS统计软件进行处理分析,选取显著的系数,建立模型,对年我国2010以后运动员金牌数做出预测。
关键字 SAS AR模型参数估计平稳时间序列1、引言在自然现象和经济现象中,人们为了对某些事物或系统的运行规律探索其究竟,需要观测所要研究的某种现象,从而得到一定顺序的数据资料。
通过分析这些数据资料,对事物或系统的未来发展进行预测或控制方法,称为时间系列分析。
从统计学的内容来看,研究数据的统计方法就是时间序列分析。
就此足以看到时间序列分析的重要性及其应用的广泛性。
时间序列的统计解释是某项统计指标按时间顺序记录的指标值数列时间序列的统计意义是某一系统程序运行过程中的不用时间点的响应,是系统行为量化数据的有序客观记录,反映了系统的结构特征和运行规律。
随机时间序列分析就是利用数学的方法描述时间序列的构成因素,具体地说就是对影响时间序列的长期趋势、季节变动、循环波动进行预订和估计;进一步的,将它们从时间序列中分离后,对剩余的一项时间序列的随机波动进行分析和建模;从而实现对时间序列变化规律的认识,预测或控制未来行为。
2、SAS介绍Statisticsl Analysisi System简称SAS,可以用来分析数据和编写报告。
它是美国SAS研究所的产品,在国际上被誉为标准通用软件,在我国深受医学、农林、财经、社会科学、行政管理等众多领域的专业工作者的好评。
SAS采用积木式模型结构,其中的SAS/STAT模块是目前功能最强的多元统计分析程序集,可以作回归分析、聚类分析、判别分析、主成分分析、因子分析、典型相关分析、各种实验设计的方差分析、协方差分析以及时间序列分析。
3、平稳时间序列的基本概念时间序列的统计特征函数,时间序列{Xt,t∈Z}是按时间次序排列的随机变量序列。
时间序列分析论文-V1

时间序列分析论文-V1时间序列分析是一种能够从时间上刻画和预测数据变化趋势的方法,越来越受到许多学科的关注和应用,尤其在经济学、金融学和天气学等领域得到了广泛的应用。
本文将介绍时间序列分析的基本概念以及相关论文的研究内容和方法。
1.时间序列分析的基本概念时间序列分析是一种建立在时间轴上的数据分析方法,利用过去数据的变化趋势或周期性规律预测未来数据的变化趋势或周期性规律。
时间序列数据的主要特征是:时间是自变量,其他变量是因变量。
时间序列分析主要包括三个部分:趋势分析、季节性分析和周期性分析。
2.相关论文的研究内容和方法(1)《基于时间序列分析的气温研究》该论文主要分析了气温时间序列对于气候变化的影响。
通过对气温数据的拟合分析得到了气温的变化趋势,进一步分析了季节性和周期性对于气温的影响,并预测了未来气温的变化趋势。
该论文的方法是将时间序列分析和数据拟合结合起来,利用多项式回归对气温进行拟合,进一步分析有关因素的影响。
(2)《基于时间序列分析的经济增长预测模型研究》该论文主要研究了时间序列分析在经济增长预测中的应用。
该研究通过分析GDP的时间序列数据,利用ARIMA模型对未来经济增长进行预测。
这种模型可以利用过去的数据来预测未来的发展趋势,对于政府制定经济政策和企业的发展规划都有很大的帮助。
(3)《基于时间序列分析与神经网络的股票价格预测研究》该研究主要探讨了时间序列分析与神经网络在股票价格预测中的应用。
该研究利用时间序列对过去的股票数据进行分析,同时采用了神经网络的方法对股票价格的未来变化趋势进行预测。
该研究的方法可提高投资决策的准确性,为股票市场的短期波动提供指导。
3.总结本文介绍了时间序列分析的基本概念和相关论文的研究内容和方法,展示了时间序列分析在不同领域的应用。
随着技术的发展和数据的丰富,时间序列分析的应用将会越来越广泛,未来有望成为许多学科的重要研究方法。
时间序列分析法范文

时间序列分析法范文1.数据收集:收集时间序列数据,确保数据准确性和完整性。
2.数据可视化:绘制时间序列数据的图表,以便观察其趋势和周期性。
3.时间序列分解:将时间序列数据分解为趋势、周期和随机成分。
趋势部分表示数据的长期变化趋势,周期部分表示数据的循环变化趋势,随机部分表示数据的不规律波动。
4.数据平稳性检验:判断时间序列数据是否具有平稳性,即均值和方差是否稳定。
5.模型拟合:根据数据的特征选择适当的时间序列模型,如AR模型(自回归模型)、MA模型(移动平均模型)或ARMA模型(自回归移动平均模型)。
6.模型检验:利用统计方法对拟合好的模型进行检验,如检查残差序列是否为白噪声序列。
7.模型预测:基于拟合好的模型,对未来的时间序列数据做出预测。
时间序列分析中最常用的模型之一是ARIMA模型(自回归整合移动平均模型)。
ARIMA模型基于时间序列数据的自相关性和移动平均性来做出预测。
ARIMA模型的三个参数分别代表自回归部分的阶数(AR)、差分次数(I)和移动平均部分的阶数(MA),通过对这三个参数的选择和拟合,可以得到最优的模型。
时间序列分析还可以应用于季节性数据的预测。
季节性数据具有明显的周期性,例如每年销售额的变化或每月的气温变化。
对季节性数据进行分析时,需要使用季节性ARIMA模型(SARIMA),该模型结合了ARIMA模型和季节性变化的效应。
在金融领域,时间序列分析可用于股票市场的预测和波动性分析。
例如,可以利用时间序列分析来研究股票市场的趋势,预测未来的股价,并进行风险管理。
时间序列分析的优点包括可以从历史数据中提取有用的信息,预测未来的趋势,并进行风险管理。
它还可以帮助研究人员了解时间序列数据的动态特征和影响因素。
然而,时间序列分析也存在一些局限性,例如对数据平稳性的要求较高,数据的缺失或异常值可能会影响预测结果的准确性。
总之,时间序列分析是一种有效的统计方法,可帮助我们理解和预测随时间变化的数据。
计量经济学时间序列分析论文

时间序列期末论文安徽财经大学姓名:鲍志祥班级:093财管二班学号:20093069073企业商品价格总指数的时间序列分析摘要利用Eviews软件判断企业商品价格总指数序列为非平稳序列且为非白噪声序列,对非平稳序列进行一阶差分后得到平稳序列,分析运用一阶自回归AR(1)模型拟合时间序列,由于总指数序列值之间密切的相关关系,且历史数据对未来的发展有一定影响,利用Forecast 命令预测未来4个月的企业商品价格总指数。
关键词:Eviews;平稳序列;AR(p)模型;一阶差分理论准备:拿到一个观察值序列之后,首先要判断它的平稳性.通过平稳性检验,序列可分为平稳序列和非平稳序列两大类.对于平稳序列,由于它不具有二阶矩形平稳的性质,所以对它的统计分析要周折一些,通常要进行进一步的检验、变换或处理之后,才能确定适当的拟和模型。
如果序列平稳,建模比较容易,但并不是所有的平稳序列都值得建模。
只有那些序列值之间具有密切的相关关系,历史数据对未来的发展有一定影响的序列,才值得我们花时间去挖掘历史数据中的有效信息,用于预测序列未来的发展。
如果序列值彼此之间没有任何相关性,那就意味着该序列是一个没有任何记忆的序列,过去的行为对将来的发展没有丝毫影响,这种序列我们称之为纯随机序列。
从统计分析的角度而言,纯随机序列是没有任何分析价值的序列。
如果序列xt是均值非平稳的,对其进行d次差分后,变成了平稳的序列Δdxt,这个差分后的平稳序列的适应性模型为ARMA(p,q) ,此时就称对原始序列xt建立了ARIMA(p,d,q)模型。
问题:判断企业商品价格总指数序列的平稳性与纯随机性,处理数据并利用拟合模型,预测未来4个月的企业商品价格总指数。
表1企业商品价格总指数数据(来源:东方财富网)图1企业商品价格总指数序列{x i}的时序图由图1我们可以看出序列在上下波动比较大,大致判断不具有平稳性。
图2 序列{x i}的自相关图由图2可知,自相关图呈正弦波指数衰减,为不平稳时间序列。
时间序列分析范文

时间序列分析范文时间序列分析是一种用来分析和预测时间序列数据的统计方法。
时间序列数据是按照时间顺序排列的观测数据,如股票价格、气温变化、销售数据等。
通过时间序列分析,我们可以了解时间序列数据的趋势、季节性变化和随机波动,以便做出准确的预测和决策。
首先,我们需要收集并整理时间序列数据。
数据可以通过实地观测、统计报告、调查问卷等方式获得。
数据的质量和准确性对于分析结果的可靠性至关重要。
接下来,我们需要对数据进行预处理。
这包括检查和处理数据中的缺失值、异常值和重复值。
同时,还需要进行数据的平稳性检验,即判断时间序列数据是否具有固定的均值和方差。
如果时间序列数据不平稳,需要进行差分或其他方法将其转化为平稳时间序列。
然后,我们可以选择适当的时间序列模型来拟合数据。
常用的时间序列模型包括移动平均模型(MA)、自回归模型(AR)、自回归移动平均模型(ARMA)和自回归积分移动平均模型(ARIMA)等。
选择合适的模型可以通过观察数据自相关图和偏自相关图,以及对各个模型的性质和参数估计方法的了解。
当模型被拟合后,我们还需要进行模型的检验和评估。
这包括检查模型的残差是否为白噪声序列,即不存在相关性和异方差性;评估模型的拟合优度和预测准确性。
常用的评估指标包括均方根误差(RMSE)、平均绝对百分比误差(MAPE)等。
最后,我们可以使用时间序列模型进行预测和决策。
预测是时间序列分析的主要目的之一,可以通过模型自动完成,也可以通过直观判断和经验方法进行。
预测结果可以用于制定生产计划、调整投资策略、优化供应链等。
时间序列分析在实际应用中有着广泛的应用。
在经济领域,时间序列分析可以用于预测股票价格、GDP增长、通胀率等,帮助决策者做出合理的经济政策。
在气象学中,时间序列分析可以用于预测天气变化,帮助人们做出出行计划。
在市场营销中,时间序列分析可以用于预测销售量、市场份额等,帮助企业做出营销决策。
总而言之,时间序列分析是一种重要的统计方法,被广泛应用于各个领域。
时间序列论文

.《时间序列分析》课程论文基于ARMAX模型的财政收入与税收的时间序列分析与预测班级:13级应用统计学1班学号:*********:乐乐基于ARMAX模型的财政收入与税收的时间序列分析与预测摘要财政收入,是指政府为履行其职能、实施公共政策和提供公共物品与服务需要而筹集的一切资金的总和,是衡量一国政府财力的重要指标。
其中税收收入是国家财政收入的重要组成部分,一般占到财政收入的90%以上,是政府机器的经济基础。
本文利用《应用时间序列分析》的知识通过sas 统计软件对1978-2012年中国财政收入与税收数据进行分析,通过单位根检验,发现两者都是非平稳时间序列,并且存在协整关系,所以拟合了ARIMAX模型。
由于残差序列非白噪声,所以对残差序列又进行了进一步的拟合,最后对模型进行预测,做出预测图。
关键词:财政收入与税收 ARIMAX模型预测一、引言财政与税收关系到国家发展、民生大计。
财政收入与税收对社会资源配置、收入分配、国民经济发展、企业经济活动、居民切身利益及政府决策行为都有重大影响。
近年来,随着我国经济的持续高速发展和国家财政与税收的大幅度增长,以及我国经济体制改革的不断深化和国家对经济发展宏观调控力度的不断加大,国家也适时出台了一系列有关财政与税收管理的新规定、新政策和新的监管制度。
可以看出两者地位越来越重要,作用越来越明显。
通过本文的分析,旨在找出两者的关系,为我国财政与税收做出合理的解释,为以后的收入做出合理的预测。
二、数据分析(一)、序列平稳性检验1、时序图:图 1 原数据时序图图1中,红色为y(财政收入)序列书序图;黑色为x(税收收入)序列时序图。
从时序图中可以看出x序列、y序列均显著非平稳。
并且两者都有明显的增加趋势。
2、单位根检验:表 1 序列x的单位根检验The ARIMA ProcedureAugmented Dickey-Fuller Unit Root TestsType Lags Rho Pr<Rho Tau Pr<Tau F Pr>F表 2 序列y的单位根检验Augmented Dickey-Fuller Unit Root Tests单位根检验的原假设H0:序列为非平稳序列,如果 P> 0.05,则接受原假设,认为序列非平稳,否者序列为平稳序列。
时间序列分析与预测论文
欢迎共阅对1950-2009年的新疆社会消费品零售总额的时间序列分析与预测利用1950-2009年的新疆社会消费品零售总额(记为:save,单位:万元)的时间序列数据进行分析,建立时间序列ARIMA模型,并预测未来10年的社会消费品零售总额。
表1 1950-2009年的新疆社会消费品零售总额1953 431981954 522161955 613791956 714641957 855781958 924901959 1105261960 1190591961 1067801962 1054541963 100837 1964 105406 1965 112970 1966 121349 1967 129530 1968 122971 1969 131318 1970 132306 1971 137958 1972 143416 1973 1546761998 3275210 1999 3473958 2000 3744999 2001 4063487 2002 4428871 2003 4211680 2004 5636520 2005 6402000 2006 7332000 2007 8575000 2008 10415000 2009 11775300;proc print data=a; Run;程序说明:这段程序是录入1950年到2009年的新疆社会消费品零售总额的数据。
data a;set work.a;proc gplot data=a;plot cost*date;symbol v=dot i=join c=black l=1w=2;run;的序列图上观察的结果是相同的。
因此需要对变量lnin进行一阶差分操作并对差分后的序列进行平稳性识别,程序如下:identify var=lc(1) nlag=30esacf p=(0:8) q=(0:8) minic p=(0:6) q=(0:6);run;识别过程结果会给出三个可能不同的模型,分别对这三个模型进行估计,已得到拟合最好模型。
eviews论文—丁 时间序列
吉林财经大学信息经济学院人均国内生产总值与居民人均消费统计关系分析专业班级:统计1009班学号: ************名:**一、背景与意义消费在我国国内生产总值中的比重偏低,不利于国内需求的稳定扩大,也影响着国民经济持续较快增长和良性循环。
合理调整投资与消费的关系,适度有效提高我国的消费率,尤其是提高居民消费率,是宏观调控要解决的重要问题。
2005年下半年,本轮宏观调控的效果会表现得更加明显,投资增长率将进一步下降,经济增长率也会有所回落。
为了避免经济的硬着陆,实现国民经济的平稳发展,必须大力促进投资驱动型经济向消费驱动型经济的转变。
消费需求的驱动,对“十一五”开局至关重要,也是“十一五”期间能否实现经济增长方式转变的关键。
围绕增加城乡居民特别是中低收入居民收入和抑制收入差距,调整收入分配关系,增强居民消费能力;完善消费政策,改善消费环境,增强消费者信心,扩大居民消费;改革创新体制机制,加快经济增长方式向集约型转变,保持投资合理增长,着力优化投资结构,着力加强经济社会发展薄弱环节。
居民消费与经济增长,传统的计划经济理论认为,经济增长带来居民消费的增加,经济增长对居民消费起着决定性作用。
经济增长了才能适当增加居民消费,居民消费基金的过快增长会影响和妨碍经济发展,并以此为依据安排经济建设和制定宏观发展计划。
在计划经济向市场经济转变的过程中,我们不但取得了制度上的变革,也获得了认识和理论上的突破,那就是不仅经济增长决定着居民消费,同时居民消费对经济增长具有拉动作用,居民消费拉动作用在一定条件下可以超过投资的影响作用,决定着经济增长速度的快慢和质量的高低。
中国改革开放以来,从1979年以后我国经济发展迅速,更重要的是收入水平和消费水平获得巨大的提高,原来的低收入低消费,经济发展滞缓模式已彻底改变。
低收入低消费伴随着经济增长的滞缓和效率低下;高收入高消费伴随的是经济增长的高产出和高质量。
所以居民消费和收入对经济增长具有拉动作用。
经济学毕业论文中的时间序列分析方法
经济学毕业论文中的时间序列分析方法时间序列分析是经济学研究中常用的一种方法,用于分析经济数据中的时间变化趋势和周期性。
在经济学毕业论文中,时间序列分析方法被广泛应用于研究经济变量的发展趋势、预测未来趋势以及评估政策的效果。
本文将介绍几种常用的时间序列分析方法,并以一个具体的经济学例子来说明其应用。
一、移动平均法移动平均法是一种常见的时间序列分析方法,常用于平滑并展示时间序列的趋势。
该方法通过对观测值进行平均计算,得到移动平均值,从而消除随机波动和短期波动对趋势分析的干扰。
移动平均法可以分为简单移动平均和加权移动平均两种。
简单移动平均是对一定时间段内的数据进行求和平均,例如我们可以计算过去5年的简单移动平均来观察某个经济变量的长期趋势。
加权移动平均则是对不同时间段内的数据进行加权平均,常用于对近期数据赋予更高的权重。
二、指数平滑法指数平滑法也是常用的时间序列分析方法,用于对时间序列的趋势进行预测。
该方法基于历史数据赋予不同权重,通过不断调整权重来预测未来的趋势。
简单指数平滑是最常见的一种指数平滑法,它通过对观测值进行加权平均来估计下一个时期的值。
简单指数平滑法的核心公式如下:\[\hat{Y}_{t}=\alpha Y_{t-1}+(1-\alpha)\hat{Y}_{t-1}\]其中,\(\hat{Y}_{t}\)表示预测值, \(Y_{t-1}\)表示上一个观测值,\(\hat{Y}_{t-1}\)表示上一个时期的预测值,\(\alpha\)表示平滑系数。
三、自回归移动平均模型(ARMA)自回归移动平均模型是一种更为复杂的时间序列分析方法,用于描述时间序列变量的动态特征。
ARMA模型结合了自回归模型(AR)和移动平均模型(MA),可以更准确地描述时间序列的变化。
AR模型是指时间序列变量与其自身的滞后值之间存在相关性。
MA模型是指时间序列变量与其滞后的随机误差之间存在相关性。
ARMA模型的核心思想是通过计算滞后值和误差来建立预测模型。
时间序列期末论文
ARIMA模型在全国年底总人口预测中的应用【摘要】:人口发展与社会经济的发展是密不可分的,研究我国总人口的现状,对我国人口数进行分析和预测,有利于及时控制人口的增长,调节人口平衡,利于政府及时了解发展趋势并做出反应对策,使我国人口发展步入健康的轨道。
本文利用自回归移动平均模型(auto regressive moving average model,ARMA)及其建模原理和思路,并结合Eviews软件将ARMA模型应用于1980年——2012年我国年底总人口数据序列的分析和预测。
经检验此模型对原始数据有着较好的拟合度和较高的预测精度。
利用此模型可对我国年底总人口进行合理的预测。
【关键词】:时间序列;ARMA模型;我国年底总人口;人口预测一、引言我国是世界上人口最多的国家,2008年末中国大陆人口13.28亿,,占世界上五分之一人口,亚洲人口的三分之一。
中国人口的发展同中国社会的发展一样经过了漫长而曲折的道路。
在世纪的进程中,目前我国进入了一个全新的时代,要想在21世纪——这个充满竞争与挑战的时代中变的富强、屹立于世界民族之林,全取决于人口的问题能否顺利解决,人口现状等问题,我国必须重视并根据其趋势做出反应对策。
因此,认真分析我国当前人口现状,从中发现其变化的趋势,并对未来总人口进行短期预测,及时采取必要的政治及经济措施来解决人口发展问题,对树立未来的发展目标很有必要。
总之,人口是构成社会的主体,在我国社会主义现代化建设中,人口问题始终是极为重要的问题,而人口问题的本质是发展问题。
人口发展与社会经济的发展也是密不可分的。
基于此,我们利用时间序列中的ARMA模型对我国人口进行预测,对人口的控制起到指导作用,有利于政府采取必要的政治及经济措施来进行调控。
所以,对其进行分析和测试是非常有意义的工作。
二、模型简介自回归求和滑动平均模型(auto regressive integrated moving average model), 称为ARIMA模型,是将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值进行回归所建立的模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列分析结课论文 全国社会消费品零售总额的时间序列分析
全国社会消费品零售总额的时间序列分析 摘要 时间序列分析是经济领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济变量值。市场经济中,政府对市场变化的即时反应是各国经济工作的重点。在我国,随着市场经济的日益成熟,各级政府逐渐认识到短期计划的重要性。在要求减少对市场干预的同时,政府在经济中的作用主要体现在保证经济运行的正常轨道,由于社会消费品零售总额反映了经济运行中的一个重 2
要环节———消费,尤其是目前我国市场上的消费需求不足现象,使我国经济发展受到外需与内需两方的困扰。因此对于社会消费品零售总额预测中的研究一直具有积极意义。 本文就以以我国1952年至2011年我国社会消费品零售总额为研究对象,做时间序列分析。首先,对全国60多年来社会消费品零售总额的发展变化规律,运用SAS软件进行分析其发展趋势。再则,通过检验说明模型拟合效果的好坏,再利用模型对下一年进行预测。最后,从国家经济、政策和社会消费品零售市场发展等方面对社会消费品零售总额变化规律及未来走势进行分析。 关键字:社会消费品零售总额 SAS软件 时间序列分析 预测
一.引言 社会消费品零售总额是指各种经济类型的批发零售业、贸易业、餐饮业、制造业和其他行业对城乡居民和社会集团的消费品零售额和农民对非农民居民零售额的总和。这个指标能够反映通过各种商品流通渠道向居民和社会集团供应生活消费品来满足他们生活需求的情况,是研究人民生活、社会消费品购买力、货币流通等问题的重要指标。随着消费环境的逐步改善,人们的消费能力不断增强,人们消费能力的增强直接带动了社会消费品零售总额的发展,“十一五”期间,面对复杂多变的国内外形势,特别是为应对国际金融危机的冲击,国家出台了一系列扩大内需、促进消费等政策措施,消费品市场的稳定发展对我国缓冲金融危机起到了明显的积极作用,消费需求已经成为经济增长的重要组成部分。 中国社会消费品零售业的发展将进入参与国际化竞争的新阶段,可靠准确的数3
据体系有利于政府的宏观决策,而零售总额的数据受多种因素的影响。因此对我国社会消费品零售总额进行预测是有积极意义的。 本文利用时间序列分析方法对我国社会消费品零售总额进行分析和预测。时间序列分析是根据动态数据揭示系统动态结构的规律的统计方法。其基本思想是根据系统的有限长度的运行记录(观察数据),建立能够比较准确地反映时间序列中所包含的动态依存关系的数学模型,并借以对系统的未来行为进行预报
二.问题重述 1.1问题背景 社会消费品零售总额指企业(单位、个体户)通过交易直接售给个人、社会集团非生产、非经营用的实物商品金额,以及提供餐饮服务所取得的收入金额。个人包括城乡居民和入境人员,社会集团包括机关、社会团体、部队、学校、企事业单位、居委会或村委会等。 社会消费品零售总额由社会商品供给和有支付能力的商品需求的规模所决定,是研究居民生活水平、社会零售商品购买力、社会生产、货币流通和物价的发展变化趋势的重要资料。反映一定时期内人民物质文化生活水平的提高情况,反映社会商品购买力的实现程度,以及零售市场的规模状况。 1.2问题的提出 时间序列是指同一种现象在不同时间上的相继连续的观察值排列而成的一组数字序列。时间序列预测方法的基本思想是:预测一个现象的未来变化时,用该现象的过去行为来预测未来。即通过时间序列的历史数据就可以揭示现象随时间变化的规律,将这种规律延伸到未来的一段时间,从而对该现象的未来做出预测。对此希望建立相关的社会消费品零售总额的数学模型并来预测居民消费价格指数未来年间的走势。 社会消费品零售总额是一个具有滞后性的数据,根据社会消费品零售总额的这一个特点,我们可以运用时间序列分析的方法对我国社会消费品零售总额进行 合理拟合,但不排除有误差的存在,从而对未来的社会消费品零售总额走势做出合理的预测。
三、时间序列模型 3.1模型介绍 对于短的或简单的时间序列,可用趋势模型和季节模型加上误差来进行拟合。对于平稳时间序列,可用通用ARIMA模型及其特殊情况的自回归模型、滑动平均模型或组合-ARIMA模型等来进行拟合。所谓的ARIMA模型是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及最忌误差项的现值和滞后值进行回归所建立模型。ARIMA模型根据原来的时间序列是否平稳和回归中包含部分的不同,分为了几个类别:MA(移动平均过程)、AR(自回归过程)、ARMA(自回归移动平均过程)、ARIMA过程。当观测值多于50个时候一般都采用ARIMA模型来进行拟合。本文社会消费品零售总额收集到的数据为60个,因此采用ARIMA模型进行拟合和趋势的预测。 求和自回归移动平均(AutoRegressive Integrated Moving Average,ARIMA)模型是以序列不同时期内的相关度量为基础,进行的一种精确度较高的短期预测分析方法。该法由美国学者Box和英国统计学者Jenkins于1976年提出来的,故又被称之为Box-Jenkins模型。 4
在ARIMA模型中,变量的未来取值可以表达为过去若干个取值和随机误差的线性函数式中: 其中B是后移算子,εt为各期的随机扰动或随机误差,d为差分阶数,p和q分别表示自回归阶数和移动平均阶数,Xt为各期的观察值(t=1,2,„,k)。 3.2模型的建立步骤 对于非平稳时间序列则要先将观测到的时间序列进行差分运算,并化为平稳时间序列后,再用适当的模型去拟合这个差分序列。通常情况下,求和自回归移动平均模型的建模过程分为以下几个步骤: (1) 对原序列进行平稳性检验,若原序列为非平稳序列则通过差分消除趋势; (2) 判断序列是否具有季节性,若具有季节性的波动,则通过季节差分来消除季节性; (3 ) 进行模型识别 (4) 进行模型定阶; (5) 对模型的参数进行估计; (6) 对模型的适合性进行检验,即对残差序列进行白噪声检验,判断是否是白噪声序列; (7) 给出模型的预测结果,并画出趋势预测图。 5
3.3ARIMA(p,d,q)模型 在ARIMA模型的识别过程中,我们主要用到两个工具:自相关函数(ACF),偏自相关函数(PACF)以及它们各自的相关图。对于一个序列{Xt}来说,它的第i阶自相关系数定义为它的i阶自协方差除以它的方差,它是关于i的函数,因此我们也称之为自相关函数,通常记ACF(i)。偏自相关函数PACF(i)度量了消除中间滞后项影响后两滞后变量之间的相关关系。 自相关系数和偏自相关系数这两个统计量来识别ARIMA(p,d,q)模型的系数特点和模型的阶数。并用游程检验经过处理的序列是否为平稳化的序列。
可以利用平稳性检验、自相关函数ACF(i)和偏自相关函数PACF(i),可识别ARIMA(p,d,q)模型。具体步骤如下: 第一步,利用平稳性检验确定d的值。可运用前面学过的平稳性检验方法,检验序列是否平稳。如果不是,通过几次差分才能得到平稳序列。若经过1次差分就可实现平稳,则d就等于1,若经过2次差分就可实现平稳,则d就等于2,6
如此类推。 第二步,利用ACF和PACF来确定p和q的值。一般规则是: (1)如果序列的ACF是截尾的,即过了某一滞后项值(设为q)后,ACF变得不显著,接近于零,并且PACF是拖尾的,则可把序列设为MA(q)过程; (2)如果序列的PACF是截尾的,即过了某一滞后项值(设为p)后,PACF变得不显著,接近于零,并且ACF是拖尾的,则可把序列设为AR(p)过程; (3)如果序列的ACF和PACF都是拖尾的,则可把该序列设为ARMA(p,q)过程,而关于p和q的值需要不断地从低阶试探,并使信息准则达到最小。
四、 时间序列模型建立与拟合 4.1.数据的录入 根据中国国家统计局网站发布的社会消费品零售总额时间序列数据,经整理得到了历年社会消费品零售总额(1952~2011)(单位:亿元)。 我国社会消费品零售总额
我将这些数据编写了SAS的程序(附录1),进行了下列的检验和预测。 4.2.数据分析 4.2.1 根据原始数据画出时序图 7
图2.1.1 时间序列图 有上图可知在1952-2011年我国社会消费品零售总额波动趋势总体上是持续上升的,我们可以看出该时间序列图显示这是一个典型的非平稳序列,因为具有明显的趋势性。 4.2.2 一阶差分处理 对于该非平稳社会消费品零售总额的时间序列,首先可以利用SAS软件对数据进行一阶季节性差分的处理,以便消除其具有的强烈的趋势性,来观察数据是否大致趋于平稳。因此得到的一阶差分时间序列图如下:
从图2.2.1中可以看出社会消费品零售总额时间序列的趋势性得到了一定的消除,序列围绕均值为零的一个小区间内震荡,且方差明显有界。但是很明显在1995-2000年这段时间波动比较大,影响这个波动较大的因素是由于在1997年的亚洲金融危机的冲击下,国内的消费需求不振,从而导致我国的经济陷入衰退,出现了通货紧缩的情况,社会消费品零售总额开始出现回落。2007年是由于美国次贷危机的影响,有小幅度的波动,2008年的社会消费品零售总额略有下降,8
但是国家政府为了促进经济的增长,采取了一系列的宏观调控政策。如宽松的货币政策和财政政策,使得经济复苏,从而使得社会消费品零售总额稳中有降。此时季节性性因素对社会消费品零售总额的影响表现出来。 2.3 平稳性检验 为了进一步判断其平稳性,考察差分序列的自相关图,如图2.3.1所示,自相关图显示延迟3阶之后,自相关系数都落入2倍标准差范围以内,而且自相关系数向零衰减的速度非常快,延迟在16阶以后自相关系数即在零值附近波动,从而判断该序列有很强的短期相关性,所以可以初步认为一阶差分后序列平稳。自相关函数与偏自相关函数图如下: