如何判断函数的对称性与周期性

合集下载

函数的对称性、周期性及其应用

函数的对称性、周期性及其应用

函数的对称性、周期性及其应用(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数); (2)()()()f a x f b x f x -=+⇔关于2a bx +=轴对称; (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称.① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=-+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+⎡⎤⎣⎦;② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称. 2、中心对称的等价描述:(1)()()f a x f a x -=-+⇔()f x 关于(),0a 中心对称(当0a =时,恰好就是奇函数); (2)()()()f a x f b x f x -=-+⇔关于,02a b +⎛⎫⎪⎝⎭中心对称; (3)()f x a +是奇函数,则()()f x a f x a +=--+,进而可得到:()f x 关于(),0a 中心对称。

① 要注意奇函数是指自变量取相反数,函数值相反,所以在()f x a +中,x 仅是括号中的一部分,奇函数只是指其中的x 取相反数时,函数值相反,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是奇函数,则()()f x a f x a +=--+⎡⎤⎣⎦:()f x 是奇函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相反,所以有()()f x a f x a +=--+⎡⎤⎣⎦;② 本结论也可通过图像变换来理解,()f x a +是奇函数,则()f x a +关于()0,0中心对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于(),0a 对称。

函数对称性、周期性和奇偶性的规律总结大全-.

函数对称性、周期性和奇偶性的规律总结大全-.

函数对称性、周期性和奇偶性规律一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。

如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。

2、 对称性定义〔略〕,请用图形来理解。

3、 对称性:我们知道:偶函数关于y 〔即x=0〕轴对称,偶函数有关系式)()(x f x f =-奇函数关于〔0,0〕对称,奇函数有关系式0)()(=-+x f x f上述关系式是否可以进行拓展?答案是肯定的 探讨:〔1〕函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。

得证。

假设写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(ba xb x a x +=-++=对称〔2〕函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。

函数的周期性与图象对称性

函数的周期性与图象对称性

4.对称性与周期性的关系 ①一般地:若x=a,x=b(a≠b)是函数f(x)的两条对称轴,
则f(x)为周期函数且2|a-b|为它的一个周期. ②一般地:若(a,0),(b,0)(a≠b)是函数f(x)的两个对称中心,
则f(x)为周期函数且2|a-b|为它的一个周期. ③一般地: 若x=a和(b,0)(a≠b)分别是函数f(x)的一条对 称轴和一个对称中心,则f(x)为周期函数且4|a-b|为它的
=f(0)+f(1)=log21+log22=1.
【答案】 C 思维启迪 紧紧抓住题目的条件关系——奇偶性与周期性, 这是解题的关键,并注意体会本题中转化化归思想的运用。
【练习】设奇函数f(x)的定义域为R且f(x+2)=f(-x),
当x∈[4,6]时f(x)=2x+1,
①求f(x)在区间[-2,0]上的解析式.
函数的周期性与图象对称性
1.函数的周期性 对于函数f(x),如果存在一个不为0的常数T,使得当x 取定义域内的 任意一个值 时,有 f(x+T)=f(x) ,那么就把函数y=f(x)叫周期函数, 如果在所有的周期中存在着一个最小的正数,把这个 都成立
最小的正数叫 最小正周期 .若T是函数y=f(x)的一个周
009)的值,只需转化到已知的区间[0,2)上,利用函数的周期性 和奇偶性,问题可解. 【解】 ∵f(x)是偶函数,∴f(-2 008)=f(2 008), 当x≥0时,f(x+2)=f(x),
∴函数f(x)的周期为2,则f(2 009)=f(1).
又x∈[0,2)时,f(x)=log2(x+1) 因此f(-2 008)+f(2 009)=f(2 008)+f(1)
∴f(x)是周期为4的周期函数. (2)由f(x)是周期为4的周期函数, ∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7) =…

函数的周期性和对称性常用结论

函数的周期性和对称性常用结论

函数的周期性和对称性常用结论1.若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”.2.周期性:(1)若()()f x a f b x +=+,则||T b a =-(2)若()()f x a f b x +=-+,则2||T b a =-(3)若1()()f x a f x +=±,则2T a = (4)若1()()1()f x f x a f x -+=+,则2T a = (5)若1()()1()f x f x a f x ++=-,则4T a = 注:(3)、(4)、(5)要求知道并会推导,不要求死记3.对称性(1)若()()f a x f b x +=-,则()f x 的对称轴为2a b x += (2)若()()f a x f b x c +=--+,则()f x 的图象关于点(,)22a b c +中心对称 (3)函数()y f a x =+与()y f b x =-的图象关于2a b x +=对称 4.若函数的图象同时具备两种对称性:即两条对称轴、两个对称中心、一条对称轴一个对称中心,则函数必定为周期函数,反之亦然。

(只需要知道这个结论,用的时候会推导即可)(1)若()f x 的图象有两条对称轴x a =和x b =,则()f x 必定为周期函数,其一个周期为2||b a -;(2)若()f x 的图象有两个对称中心(,0)a 和(,0)b ()a b ≠,则()f x 必定为周期函数,其一个周期为2||b a -;(3))若()f x 的图象有一条对称轴x a =和一个对称中心(,0)b ()a b ≠,则()f x 必定为周期函数,其一个周期为4||b a -;。

函数的对称性和周期性结论总结

函数的对称性和周期性结论总结

函数的对称性和周期性结论总结函数是数学中最基础的概念,它是描述两个数量之间关系的方程。

函数的对称性和周期性是函数的重要性质,它们的研究可以帮助我们理解更多有关函数的属性。

本文综述了函数的对称性和周期性的结论,以及它们在实际应用中的重要性。

首先,让我们看看函数的对称性。

函数的对称性是指函数的曲线在某些特定的平行线上具有相同的形状,或者说函数曲线具有对称性。

函数的对称性可以分为三类:对称、半对称和反对称。

称类型的函数具有正负对称性,这意味着函数的曲线在直线上的形状是完全一样的。

半对称的函数具有正值或负值的对称性,这意味着函数的曲线在正负一侧的形状是一样的。

反对称的函数具有不正或不负的对称性,这意味着它的曲线在正负一侧的形状是不一样的。

因此,函数的对称性是指函数曲线在一些特定的平行线上具有特定的形状特性。

其次,让我们看看函数的周期性。

函数的周期性是指函数曲线在某一特定的时间间隔内重复出现的性质。

一般情况下,函数的周期性可以用来表示这个时间间隔中某些特征的变化。

一般来说,函数的周期性也可以用来描述函数曲线在一定时间内变化的情况。

函数的周期性主要包括正弦周期性、余弦周期性、正弦余弦和正弦角周期性。

正弦周期性是指,函数曲线在特定间隔内变化如正弦函数曲线一样,产生正弦波形。

余弦周期性是指,函数曲线在特定间隔内变化如余弦函数曲线一样,产生余弦波形。

正弦余弦型是指,函数曲线同时包含正弦和余弦波形,在特定间隔内变化如正弦余弦数列一样。

正弦角周期性的特点是,函数曲线在特定间隔内变化如正弦角函数一样,产生正弦角波形。

最后,让我们看看函数对称性和周期性在实际应用中的重要性。

函数对称性和周期性都在很多领域中有广泛的应用,如物理学、机械工程和电子信息等。

物理学中,函数的对称性和周期性可用于研究力学系统的运动,从而有助于我们更好地理解动力学中的某些问题。

在机械工程中,函数的对称性和周期性对计算机的性能也有很大的影响,可以帮助我们更好地把握计算机的运行状态。

函数的对称性和周期性

函数的对称性和周期性

函数的对称性和周期性(一)函数的奇偶性定义:1.偶函数一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数.2.奇函数一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数.(二)函数)(x f y =图象本身的对称性(自身对称)若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。

1、)()(x b f x a f -=+ ⇔)(x f y =图象关于直线22)()(b a x b x a x +=-++=对称 推论1:)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称推论2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称如果他们是不同函数,那他们又关于什么对称?2、c x b f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),2(c b a +对称 推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称(三).定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立则f(x)叫做周期函数,T 叫做这个函数的一个周期。

重要结论1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。

函数周期性和对称性

对称. 反之也成立.
例如:(1)若 f (x) = f (4 − x) ,括号内的和为 4,所以 f (x) 关于直线 x = 2 对称; (2)若 f (−x −1) = f (x − 3) ,括号内的和为-4,所以 f (x) 关于直线 x = −2 对称; (3)如果 f (x) 的对称轴为 x = 2,那么有 f (x) = f (4 − x), f (x + 2) = f (2 − x), f (2x + 2016) = f (−2x − 2012)
1
( 3 ) 若 f (x) 的 对 称 中 心 为 (−1, 3) , 那 么 有 f (x) + f (−2 − x) = 6 ;
f (2x +100) = 6 − f (−2x −102).
1.4 抽象复合函数的奇偶性
例:函数 y = f (x +1) 是偶函数是什么含义呢?注意抽象复合函数的自变量仍然是 x. 而偶函数的意思是:当自变量取相反数时,函数值不变,即当 x 变成 −x 时,有 f (−x +1) = f (x +1) .同样的,如果 y = f (x +1) 是奇函数,那么有 f (−x +1) = − f (x +1) .
函数 f (x) 的图象关于直线 x = a 对称,可以用图象上的点来描述,即若 x 轴上的两个
点关于 a 对称(考虑数轴上点的对称),则它们对应的函数值相等,如图:
关于 a 对称的点的横坐标 x1, x2 满足 x1 + x2 = 2a ,所以我们通过“和”去考虑就可以很
好地绕开 f 括号内的各种形式上的变化,得到: 若两个数的和为定值 2a 时,对应的函数值相等,那么这个函数的图象关于直线 x = a 轴

函数对称性与周期性

函数对称性与周期性知识归纳:一.函数自身的对称性结论结论1. 函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a -x) = 2b证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P‘(2a-x,2b-y)也在y = f (x)图像上,∴2b -y = f (2a-x)即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。

(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。

故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。

推论1:函数y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0推论2:的图象关于点对称.推论3:的图象关于点对称.推论4:的图象关于点对称.结论2. 若函数 y = f (x)满足f (a +x) = f (b-x)那么函数本身的图像关于直线x = 对称,反之亦然。

证明:已知对于任意的都有f(a+) =f(b-)=令a+=, b-=则A(,),B(,)是函数y=f(x)上的点 显然,两点是关于x= 对称的。

反之,若已知函数关于直线x = 对称, 在函数y = f (x)上任取一点P()那么()关于x = 对称点(a+ b-,)也在函数上故f()=f(a+ b-)f(a+(-a))=f(b-(-a))所以有f (a +x) = f (b-x)成立。

推论1:函数y = f (x)的图像关于直线x = a对称的充要条件是f (a +x) = f (a-x) 即f (x) = f (2a-x)推论2:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)结论3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。

函数的奇偶性对称性与周期性总结史上最全

函数的奇偶性对称性与周期性总结史上最全1.函数的奇偶性在介绍函数的奇偶性之前,我们先来回顾一下函数的定义。

函数是一种映射关系,它将一个集合的元素映射到另一个集合的元素上。

在数学中,常用的函数表示方法是y=f(x),其中x表示自变量,y表示因变量。

一个函数被称为奇函数,当且仅当对于任意x,f(-x)=-f(x)成立。

换句话说,奇函数关于y轴对称。

例如,y=x^3就是一个奇函数,因为f(-x)=(-x)^3=-x^3=-f(x)。

一个函数被称为偶函数,当且仅当对于任意x,f(-x)=f(x)成立。

换句话说,偶函数关于y轴对称。

例如,y=x^2就是一个偶函数,因为f(-x)=(-x)^2=x^2=f(x)。

有些函数既不是奇函数也不是偶函数,它们被称为非奇非偶函数。

例如,y=x是一个非奇非偶函数,因为f(-x)=-x=-f(x)不成立,f(-x)也不等于f(x)。

2.函数的对称性函数的对称性是指函数图像在其中一种变换下保持不变。

常见的对称性有关于y轴对称、关于x轴对称和关于原点对称。

关于y轴对称是指函数图像关于y轴对称,即对于任意的x,f(-x)=f(x)。

这时函数的奇偶性可以被判断出来,如果f(-x)=f(x),则函数是一个偶函数;如果f(-x)=-f(x),则函数是一个奇函数。

关于x轴对称是指函数图像关于x轴对称,即对于任意的x,f(x)=f(-x)。

这时函数可以被看作是一个非奇非偶函数。

关于原点对称是指函数图像关于原点对称,即对于任意的x,f(x)=-f(-x)。

这时函数可以被看作是一个非奇非偶函数。

3.函数的周期性一个函数被称为周期函数,当且仅当存在一个正数T,对于任意的x,f(x+T)=f(x)成立。

换句话说,函数的值在周期T内不发生变化。

周期函数的最小正周期被称为函数的周期。

周期函数是一类特殊的函数,它在一些范围内不断重复。

我们可以通过观察函数的图像来判断函数是否具有周期性。

如果函数的图像在一个范围内不断重复,则函数是一个周期函数;如果函数的图像没有重复的部分,则函数是一个非周期函数。

函数对称性与周期性关系

函数对称性与周期性关系函数对称性与周期性关系【知识梳理】一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。

如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。

2、 对称性定义(略),请用图形来理解。

3、 对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或)2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y-==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。

得证。

若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(ba xb x a x +=-++=对称(2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y=,通过bx f x a f 2)()2(=+-可知,bx f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何判断函数的对称性与周期性
函数的性质着重讲解了单调性、奇偶性、周期性,但考试中还会考
查函数对称性、连续性、凹凸性。

对称性考查的频率一直比较高,如二次函
数的对称轴,反比例函数的对称性,三角函数的对称性,尤其是抽象函数的
对称性判断。

1对称性的概念①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线
称为该函数的对称轴。

②中心对称:如果一个函数的图像沿一个点旋转180 度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心
对称,该点称为该函数的对称中心。

1函数的几种变换1、平移变换
函数y=f(x)的图像向右平移a个单位得到函数y=f(x-a)的图像;向上平
移b个单位得到函数y=f(x)+b的图像;左平移a个单位得到函数y=f(x+a)的图像;向下平移b个单位得到函数y=f(x)-b的图像(a,b>0)。

2、伸缩变换
函数y=f(x)的图像上的点保持横坐标不变纵坐标变为原来的k倍(01时,伸)得到函数y=k f(x)的图像;
函数y=f(x)的图像上的点保持纵坐标不变横坐标变为原来的1/k倍(01 时,缩)得到函数y=f(k x)的图像(k>0,且k≠1)。

3、对称变换
(1)函数y=f(x)的图象关于y轴对称的图像为y=f(-x);
关于x轴对称的图像为y=-f(x);关于原点对称的图像为y=-f(-x)。

(2)函数y=f(x)的图象关于x=a对称的图像为y=f(2a-x);关于y=b对称的。

相关文档
最新文档