湖北省武汉市2015届高中毕业生四月调研测试数学(理)试题(扫描版)
2015年武汉市九年级4调数学试卷及答案

2014-2015年武汉市部分学校九年级四月调考数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1。
在实数—5,0,4,-1中,最小的实数是A. —5。
B.0.C. -1。
D.4。
2.式子在实数范围内有意义,则x 的取值范围是A .x >—1.B .x ≥1.C .x ≥﹣1.D .x >1. 3。
把a a 43-分解因式正确的是A 。
a(a 2—4). B.a (a —2)2.C.a(a+2)(a-2).D 。
a(a+4) (a —4)。
4。
菲尔兹奖(Fields Medal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家对截至2014年获奖者获奖耐的年龄进行统计,整理成下面的表格这56个数据的中位数落在A .第一组.B .第二组.C .第三组.D .第四组. 5.下列计算正确的是A .222x x x =•.B .13222-=-x x .C .326326x x x =÷.D .222x x x =+.6。
如图,△ABC 的顶点坐标分别为A(-4,2),B(-2,4),C (—4,4), 原点O 为位似中心,将△ABC 缩小后得到△A’B’C’ , 若点C 的对应 点C'的坐标为(2,一2),则点A 的对应点A'坐标为 A .(2,—3 ). B .(2,-1). C .(3,—2). D .(1,-2).7。
4个大小相同的正方体积术摆放成如图所示的几何体,其俯视图是8.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出)。
根据以上信息,如下结论错误的是A。
被抽取的天数50天.B.空气轻微污染的所占比例为10%.C。
扇形统计图中表示优的扇形的圆心角度数57.6°.D.估计该市这一年(365天)达到优和良的总天数不多于290天.9。
湖北省武汉市武昌区2015届高三元月调考数学文试卷(扫描版)

武昌区2015届高三年级元月调研考试文科数学参考答案及评分细则一、选择题:1. B2.C 3.C 4. B 5.A 6.B 7. A 8.B 9.A 10.C 二、填空题:11.(Ⅰ)200;(Ⅱ)20 12. 4 13. ]4,3[- 14. 5050- 15. 9)3()1(22=-+-y x 或016222=+--+y x y x16.(Ⅰ) (4,2);(Ⅱ))1,(+-m n m 17. 43三、解答题:18.解:(Ⅰ)71cos -=C ,734cos 1sin 2=-=∴C C . B b C c sin sin =,3π=B ,237348b=∴,即7=b .…………………………(6分) (Ⅱ)方法一:)sin()sin(sin C B C B A +=--=π C B C B sin cos cos sin +=143373421)71(23=⨯+-⨯=, 3614337821sin 21=⨯⨯⨯==∴∆A bc S ABC .………………………………………(12分)方法二:B ac c a b cos 2222-+= ,3cos8287222πa a ⨯-+=∴,即01582=+-a a .3=∴a 或5=a .当5=a 时,712cos 222=-+=ab c b a C ,不合题意. 36238321sin 21=⨯⨯⨯==∴∆B ac S ABC .…………………………………………(12分)19.解:(Ⅰ)由题意知数列{}n a 是首项11=a ,公比2=q 的等比数列, 所以12-=n n a ;因为211=-a b ,422=-a b ,所以数列{}n n a b -的公差为2=d .所以n n d n a b a b n n 2)1(22)1()(11=-+=-+-=-.所以122-+=n n n b .…………………………………………………(6分) (Ⅱ)n n b b b b T ++++= 321)2421()2642(1-+++++++++=n n21)21(12)22(--⨯++=n n n 12)1(-++=n n n .………………………………………(12分)20.解:(Ⅰ)连接BD .ABCD 是正方形,BD AC ⊥∴.四棱柱1111D C B A ABCD -是直棱柱, ⊥∴B B 1平面ABCD .⊂AC 平面ABCD ,AC B B ⊥∴1.⊥∴AC 平面11BDD B .⊂E D 1 平面11BDD B ,∴E D AC 1⊥.…………………………………………………(6分)(Ⅱ)111111D B A E E D A B V V --= ,⊥1EB 平面1111D C B A ,111111131EB S V D B A D B A E ⋅=∴∆-.1211111111=⋅=∆D A B A S D B A ,32311111==∴-EB V D B A E .21=∴EB .11//D A AD ,111B D A ∠∴为异面直线AD ,E D 1所成的角.在∆Rt 11D EB 中,求得221=ED .⊥11A D 平面11ABB A ,E A A D 111⊥∴.在∆Rt 11D EB 中,求得21222cos 11==∠E D A , 6011=∠E D A . 所以,异面直线AD ,E D 1所成的角为60.……………………………………………(13分) 21.解:(Ⅰ))(x f 的定义域为),0(+∞,2ln 1)(x xx f -=', 由0ln 1)(2=-='xxx f ,得e =x . 当e 0<<x 时,0ln 1)(2>-='x x x f ;当e>x 时,0ln 1)(2<-='x xx f . A 1B 1C 1D 1 ABCD E所以函数)(x f 在e],0(上单调递增,在),e [+∞上单调递减. ………………………(4分) (Ⅱ)(1)当e 20≤<m ,即2e0≤<m 时,)(x f 在]2,[m m 上单调递增,所以 12)2ln()2()(max -==mm m f x f . (2)当e ≥m 时,)(x f 在]2,[m m 上单调递减,所以1ln )()(max -==mmm f x f . (3)当2m e <<m ,即e 2e<<m 时,)(x f 在]e ,[m 上单调递增,在]2,e [m 上单调递减,所以1e1)e ()(max -==f x f .…………………………………………………(10分) (Ⅲ)由(Ⅰ)知,当),0(+∞∈x 时,1e1)e ()(max -==f x f ,所以在),0(+∞上,恒有 1e 11ln )(-≤-=x x x f ,即e1ln ≤x x 且当e =x 时等号成立. 因此,对),0(+∞∈∀x ,恒有x x e1ln ≤. 因为01>+n n ,e 1≠+n n ,所以n n n n +⋅≤+1e 11ln ,即n nn n +≤+11ln e , 所以nnn n +≤+1)1ln(e . 即对*∈∀N n ,不等式nnn n +<+1)1ln(e 成立. …………………………………(14分) 22.解:(Ⅰ)由已知可得⎪⎩⎪⎨⎧==-=,3,42222b a b a c解得a 2=6,b 2=2,所以椭圆C 的标准方程是12622=+y x . …………………………………………………(4分) (Ⅱ)(ⅰ)由(Ⅰ)可得,F 点的坐标为(2,0).由题意知直线PQ 的斜率存在且不为0,设直线PQ 的方程为x =my +2. 将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my +2,x 26+y 22=1.消去x ,得(m 2+3)y 2+4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0. 设P (x 1,y 1),Q (x 2,y 2),则34221+-=+m m y y ,32221+-=m y y . 于是3124)(22121+=++=+m y y m x x . 设M 为PQ 的中点,则M 点的坐标为)32,36(22+-+m mm .因为PQ TF ⊥,所以直线FT 的斜率为m -,其方程为)2(--=x m y . 当t x =时,()2--=t m y ,所以点T 的坐标为()()2,--t m t ,此时直线OT 的斜率为()tt m 2--,其方程为x t t m y )2(-=. 将M 点的坐标为)32,36(22+-+m m m 代入x tt m y )2(-=, 得36)2(3222+⋅-=+-m t t m m m .解得3=t . ………………………………………(8分)(ⅱ)由(ⅰ)知T 点的坐标为),3(m -. 于是1||2+=m TF ,221221221221)()]([)()(||y y y y m y y x x PQ -+-=-+-=]4))[(1(212212y y y y m -++=]324)34)[(1(2222+--+-+=m m m m]324)34)[(1(2222+--+-+=m m m m 3)1(2422++=m m . 所以1)3(241)1(2431||||222222++⋅=++⋅+=m m m m m PQ TF 14)1(4)1(2411)3(2412222222+++++⋅=++⋅=m m m m m 414124122++++⋅=m m 33442241=+⋅≥. 当且仅当14122+=+m m ,即1±=m 时,等号成立,此时||||PQ TF 取得最小值33.故当||||PQ TF 最小时,T 点的坐标是)1,3(或)1,3(-.…………………………………(14分)。
湖北省武汉市2015届高三9月调考数学(理)试题 Word版含

武汉市2015届高三9月调研测试数 学(理科)2014.9.5一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.1+2i (1-i)2= A .-1-12i B .-1+12i C .1+12i D .1-12i 2.已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知变量x 与y 正相关,且由观测数据算得样本平均数x -=3,y -=3.5,则由该观测数据算得的线性回归方程可能是 A .y ^=0.4x +2.3 B .y ^=2x -2.4 C .y ^=-2x +9.5 D .y ^=-0.3x +4.4 4.已知向量a ,b 的夹角为45°,且|a |=1,|2a -b |=10,则|b |= A . 2 B .2 2 C .3 2 D .4 2 5.若一个几何体的三视图如图所示,则此几何体的体积为A .112B .5C .92D .46.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于A .32B .332 C .3+62 D .3+3947.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a的值为A .12或-1B .2或12 C .2或1 D .2或-1 8.如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n +1A n +1的面积均相等.设OA n =a n ,若a 1=1,a 2=2,则a 9=A .19B .22C .5D .279.已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,→OA ·→OB =2(其中O 为坐标原点),则△AFO 与△BFO 面积之和的最小值是A .28B .24C .22 D . 210.已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则a 的取值范围是A .(-∞,1e )B .(-∞,e)C .(-1e ,e)D .(-e ,1e )二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分. 11.设二项式(x -13x)5的展开式中常数项为A ,则A = .12.如果执行如图所示的程序框图,输入x =-1,n =3,则输出的数S = .13.正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图所示.若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是 . 14.已知椭圆C :x 24+y 23=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |= .15.平面几何中有如下结论:如图1,设O 是等腰Rt △ABC 底边BC 的中点,AB =1,过点O 的动直线与两腰或其延长线的交点分别为Q ,R ,则有1AQ +1AR =2.类比此结论,将其拓展到空间有:如图2,设O 是正三棱锥A-BCD 底面BCD 的中心,AB ,AC ,AD 两两垂直,AB =1,过点O 的动平面与三棱锥的三条侧棱或其延长线的交点分别为Q ,R ,P ,则有 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数f (x )=cos x (sin x +cos x )-12.(Ⅰ)若sin(π4+α)=22,且0<α<π,求f (α)的值; (Ⅱ)当f (x )取得最小值时,求自变量x 的集合.17.(本小题满分12分)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (Ⅰ)证明:a n +2-a n =λ;(Ⅱ)当λ为何值时,数列{a n }为等差数列?并说明理由.18.(本小题满分12分)如图,在三棱锥P-ABQ 中,PB ⊥平面ABQ ,BA =BP =BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,AQ =2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连结GH .(Ⅰ)求证:AB ∥GH ;(Ⅱ)求平面PAB 与平面PCD 所成角的正弦值.19.(本小题满分12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(Ⅰ)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元的概率. 20.(本小题满分13分)如图,动点M 与两定点A (-1,0),B (2,0)构成△MAB ,且∠MBA =2∠MAB .设动点M 的轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设直线y =-2x +m (其中m <2)与y 轴相交于点P ,与轨迹C 相交于点Q ,R ,且|PQ |<|PR |,求|PR ||PQ |的取值范围.21.(本小题满分14分)已知函数f (x )=ax +x ln x 的图象在点x =e (e 为自然对数的底数)处的切线的斜率为3. (Ⅰ)求实数a 的值;(Ⅱ)若f (x )≤kx 2对任意x >0成立,求实数k 的取值范围;(Ⅲ)当n >m >1(m ,n ∈N *)时,证明:nm m n>mn .武汉市2015届高三9月调研测试 数学(理科)试题参考答案及评分标准一、选择题1.B 2.A 3.A 4.C 5.D 6.B 7.D 8.C 9.B 10.B 二、填空题11.-10 12.-4 13.23 14.8 15.1AQ +1AR +1AP =3 三、解答题 16.(本小题满分12分)解:(Ⅰ)∵0<α<π,∴π4<π4+α<5π4. …………………2分∵sin(π4+α)=22,∴π4+α=3π4,即α=π2. …………………4分 ∴f (α)=cos α(sin α+cos α)-12=cos π2(sin π2+cos π2)-12=-12.……………………6分 (Ⅱ)f (x )=sin x cos x +cos 2x -12=12sin2x +1+cos2x 2-12 …………………7分 =12sin2x +12cos2x =22sin(2x +π4). …………………8分当2x +π4=2k π-π2,k ∈Z ,即x =k π-3π8,k ∈Z 时,f (x )取得最小值, …………………10分 此时自变量x 的集合为{x |x =k π-3π8,k ∈Z }.………………………………12分17.(本小题满分12分) 解:(Ⅰ)由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1. …………………2分两式相减,得a n +1(a n +2-a n )=λa n +1. .....................3分 由于a n +1≠0,所以a n +2-a n =λ. (4)分(Ⅱ)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. …………………5分由(Ⅰ)知,a 3=λ+1.令2a 2=a 1+a 3,解得λ=4. …………………6分 故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;…………………7分 {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.…………………8分 所以a n =2n -1,a n +1-a n =2. …………………10分 因此当λ=4时,数列{a n }为等差数列.………………………………………12分18.(本小题满分12分) 解:(Ⅰ)∵D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,…………………1分∴EF ∥AB ,DC ∥AB , …………………2分 ∴EF ∥DC .又EF ⊄平面PCD ,DC ⊂平面PCD ,∴EF ∥平面PCD . …………………3分 又EF ⊂平面EFQ ,平面EFQ ∩平面PCD =GH ,…………………4分 ∴EF ∥GH . 又EF ∥AB ,∴AB ∥GH .…………………………………………………………………………6分 (Ⅱ)在△ABQ 中,∵AQ =2BD ,AD =DQ ,∴∠ABQ =90°,即AB ⊥BQ .又PB ⊥平面ABQ ,∴BA ,BQ ,BP 两两垂直.以B 为坐标原点,分别以BA ,BQ ,BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.设BA =BQ =BP =2,则B (0,0,0),Q (0,2,0),D (1,1,0),C (0,1,0),P (0,0,2),(注:坐标写对给2分)∴→DP =(-1,-1,2),→CP =(0,-1,2).…………………8分 设平面PCD 的一个法向量为n =(x ,y ,z ),由n ·→DP =0,n ·→CP =0,得⎩⎪⎨⎪⎧-x -y +2z =0,-y +2z =0.取z =1, 得n =(0,2,1).…………………10分 又→BQ =(0,2,0)为平面PAB 的一个法向量, ∴cos <n ,→BQ >=n ·→BQ |n ||→BQ |=2×25×2=255. 故平面PAB 与平面PCD 所成角的正弦值为55.………………………………12分19.(本小题满分12分) 解:(Ⅰ)设A 表示事件“作物产量为300kg ”,B 表示事件“作物市场价格为6元/kg ”,由题设知P (A )=0.5,P (B )=0.4.(注:基本事件叙述各1分)2分 ∵利润=产量×市场价格-成本, ∴X 所有可能的取值为500×10-1000=4000,500×6-1000=2000,300×10-1000=2000,300×6-1000=800. …………………4分P (X =4000)=P (A -)P (B -)=(1-0.5)×(1-0.4)=0.3,P (X =2000)=P (A -)P (B )+P (A )P (B -)=(1-0.5)×0.4+0.5×(1-0.4)=0.5, P (X =800)=P (A )P (B )=0.5×0.4=0.2. ∴X 的分布列为……………………………………………………………6分(注:每个概率1分) (Ⅱ)设C i 表示事件“第i 季利润不少于2000元”(i =1,2,3),…………8分由题意知C 1,C 2,C 3相互独立,由(Ⅰ)知,P (C i )=P (X =4000)+P (X =2000)=0.3+0.5=0.8(i =1,2,3). ∴这3季中至少有2季的利润不少于2000元的概率为P =C 33×0.83+C 23×0.82×0.2=0.512+0.384=0.896.…………………………12分20.(本小题满分13分) 解:(Ⅰ)设M 的坐标为(x ,y ),显然有x >0,且y ≠0.…………………1分当∠MBA =90°时,点M 的坐标为(2,±3).…………………2分 当∠MBA ≠90°时,x ≠2,由∠MBA =2∠MAB ,有tan ∠MBA =2tan ∠MAB 1-tan 2∠MAB ,即-|y |x -2=2|y |x +11-(|y |x +1)2,…………………4分化简可得,3x 2-y 2-3=0.而点(2,±3)在曲线3x 2-y 2-3=0上,…………………5分综上可知,轨迹C 的方程为x 2-y 23=1(x >1).………………………………6分(Ⅱ)由⎩⎪⎨⎪⎧y =-2x +m ,x 2-y 23=1.消去y 并整理,得x 2-4mx +m 2+3=0.(*)…………7分由题意,方程(*)有两根且均在(1,+∞)内.设f (x )=x 2-4mx +m 2+3, ∴⎩⎪⎨⎪⎧--4m2>1,f (1)=12-4m +m 2+3>0,△=(-4m )2-4(m 2+3)>0.解得m >1,且m ≠2.……………9分∵m <2,∴1<m <2. …………………10分 设Q ,R 的坐标分别为(x Q ,y Q ),(x R ,y R ),由|PQ |<|PR |及方程(*)有 x R =2m +3(m 2-1),x Q =2m -3(m 2-1), ∴|PR ||PQ |=x R x Q =2m +3(m 2-1)2m -3(m 2-1)=2+3(1-1m 2)2-3(1-1m 2)=-1+42-3(1-1m 2).由1<m <2,得1<-1+42-3(1-1m 2)<7.…………………12分 故|PR ||PQ |的取值范围是(1,7).……………………………………………………13分 21.(本小题满分14分) 解:(Ⅰ)求导数,得f ′(x )=a +ln x +1. …………………1分由已知,得f ′(e)=3,即a +lne +1=3∴a =1.……………………………………………………………………………2分(Ⅱ)由(Ⅰ),知f (x )=x +x ln x ,∴f (x )≤kx 2对任意x >0成立⇔k ≥1+ln xx 对任意x >0成立,……………4分 令g (x )=1+ln xx ,则问题转化为求g (x )的最大值.求导数,得g ′(x )=-ln xx 2,令g ′(x )=0,解得x =1.…………………5分当0<x <1时,g ′(x )>0,∴g (x )在(0,1)上是增函数;当x >1时,g ′(x )<0,∴g (x )在(1,+∞)上是减函数.…………………6分 故g (x )在x =1处取得最大值g (1)=1.∴k ≥1即为所求.…………………………………………………………………8分 (Ⅲ)令h (x )=x ln xx -1,则h ′(x )=x -1-ln x (x -1)2.…………………9分 由(Ⅱ),知x ≥1+ln x (x >0),∴h ′(x )≥0,…………………10分∴h (x )是(1,+∞)上的增函数.∵n >m >1,∴h (n )>h (m ),即n ln n n -1>m ln mm -1,…………………11分∴mn ln n -n ln n >mn ln m -m ln m ,…………………12分 即mn ln n +m ln m >mn ln m +n ln n , 即ln n mn +ln m m >ln m mn +ln n n ,即ln(mn n )m >ln(nm m )n , …………………13分 ∴(mn n )m >(nm m )n ,∴nm m n>mn . (14)分。
湖北省武汉市高三数学四月调考试卷 文(含解析)

湖北省武汉市2015届高三四月调考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项符合题目要求的)1.(5分)复数z=的实部与虚部之和为()A.0 B.C.1 D.22.(5分)设全集U=R,集合M={x|y=lg(x2﹣1)|,N={x|0<x<2},则(∁R M)∩N=()A.{x|﹣2≤x≤1}B.{x|0<x≤1}C.{x|﹣1≤x≤1}D.{x|x<1}3.(5分)函数f(x)=|sin cos|的最小正周期是()A.B.C.πD.2π4.(5分)已知某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图如图所示,则甲、乙两人得分的中位数之和是()A.62 B.63 C.64 D.655.(5分)若命题P:∃x0∈R,x02+2x0+3≤0,则命题P的否定¬P是()A.∀x∈R,x2+2x+3>0 B.∀x∈R,x2+2x+3≥0C.∀x∈R,x2+2x+3<0 D.∀x∈R,x2+2x+3≤06.(5分)△ABC外接圆的半径为1,圆心为O,且的值是()A.3 B.C.D.17.(5分)先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为()A.B.C.D.8.(5分)已知某产品连续4个月的广告费x i(千元)与销售额y i(万元)(i=1,2,3,4)满足,,若广告费用x和销售额y之间具有线性相关关系,且回归直线方程为=0.8x+a,那么广告费用为6千元时,可预测的销售额为()A.3.5万元B.4.7万元C.4.9万元D.6.5万元9.(5分)已知直线kx﹣y=k﹣1与ky﹣x=2k的交点在第二象限,则实数k的取值范围是()A.(0,)B.(,1)C.(0,1)D.[1}10.(5分)过点A(﹣2,3)作抛物线:y2=4x的两条切线l1,l2,设l1,l2与y轴分别交于点B,C,则△ABC的外接圆方程为()A.x2+y2﹣3x﹣2y+1=0 B.x2+y2﹣2x﹣3y+1=0C.x2+y2﹣3x﹣4=0 D.x2+y2+x﹣3y﹣2=0二、填空题(共7小题,每小题5分,满分35分)11.(5分)不等式|x|+|x﹣1|>3的解集为.12.(5分)若x、y满足,则z=x﹣y的最大值为.13.(5分)执行如图所示的程序框图,若输入p=5,则输出的S等于14.(5分)一个几何体的三视图如图所示,则该几何体的表面积为15.(5分)如图,正四棱锥O﹣ABCD的棱长均为1,点A、B、C、D在求O的表面上,延长CO 交球面于点S,则四面体A﹣SOB的体积为.16.(5分)在各项均为正项的等比数列{a n}中,已知a1+a2+a3+a4+a5=31,=,则a3=.17.(5分)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若y=f2(x)﹣af(x)+a﹣1的零点个数是7个,则实数a的取值范围为.三、解答题(共5小题,满分65分)解答应写出文字说明,证明过程或演算步骤18.(12分)已知等差数列{a n}的前n项和为S n,a3=5,S8=64.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:>(n≥2,n∈N)19.(12分)已知△ABC的内角A、B、C的对边a,b,c,且满足bcos2A=a(2﹣sinAsinB),a+b=6.(Ⅰ)求a、b的值(Ⅱ)若cosB=,求△ABC的面积.20.(13分)如图,在四面体P﹣ABC中,底面ABC是边长为1的正三角形,PB=PC=,AB⊥BP.(Ⅰ)求证:PA⊥BC(Ⅱ)求点P到底面ABC的距离.21.(14分)已知函数f(x)=x3﹣3x2+ax(a∈R)(1)求函数y=f(x)的单调区间;(2)当a≥2时,求函数y=|f(x)|在0≤x≤1上的最大值.22.(14分)已知椭圆C:=1(a>b>0)的离心率为,短轴长为2.(Ⅰ)求椭圆C的方程;(Ⅱ)若A、B是椭圆C上的两动点,O为坐标原点,OA、OB的斜率分别为k1,k2,问是否存在非零常数λ,使k1•k2=λ时,△AOB的面积S为定值,若存在,求λ的值;若不存在,请说明理由.湖北省武汉市2015届高三四月调考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项符合题目要求的)1.(5分)复数z=的实部与虚部之和为()A.0 B.C.1 D.2考点:复数代数形式的乘除运算;复数的基本概念.专题:数系的扩充和复数.分析:利用复数的运算法则、实部与虚部的定义即可得出.解答:解:复数z====,∴实部与虚部之和==1,故选:C.点评:本题考查了复数的运算法则、实部与虚部的定义,属于基础题.2.(5分)设全集U=R,集合M={x|y=lg(x2﹣1)|,N={x|0<x<2},则(∁R M)∩N=()A.{x|﹣2≤x≤1}B.{x|0<x≤1}C.{x|﹣1≤x≤1}D.{x|x<1}考点:交、并、补集的混合运算.专题:集合.分析:本题主要考查了集合间的运算,根据运算原则求解即可.解答:解:M={x|y=lg(x2﹣1)}={x|x<﹣1或x>1},∴∁R M={x|﹣1≤x≤1},∴(∁R M)∩N={x|0<x≤1},故选:B.点评:本题主要考查集合间的运算,属于基础题.3.(5分)函数f(x)=|sin cos|的最小正周期是()A.B.C.πD.2π考点:三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:由条件利用二倍角的正弦公式可得函数的解析式为f(x)=|sinx|,再根据y=|Asin(ωx+φ)|的周期等于•,可得结论.解答:解:函数f(x)=|sin cos|=|sinx|的最小正周期是•=π,故选:C.点评:本题主要考查三角函数的周期性及其求法,二倍角的正弦公式,利用了y=Asin(ωx+φ)的周期等于 T=,y=|Asin(ωx+φ)|的周期等于•,属于基础题.4.(5分)已知某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图如图所示,则甲、乙两人得分的中位数之和是()A.62 B.63 C.64 D.65考点:众数、中位数、平均数;茎叶图.专题:计算题;图表型.分析:由茎叶图知甲的数据有12个,中位数是中间两个数字的平均数,乙的数据有13个,中位数是中间一个数字36,做出两个数字之和.解答:解:由茎叶图知甲的数据有12个,中位数是中间两个数字的平均数=27乙的数据有13个,中位数是中间一个数字36∴甲和乙两个人的中位数之和是27+36=63故选B.点评:本题考查茎叶图和中位数,本题解题的关键是先看出这组数据的个数,若个数是一个偶数,中位数是中间两个数字的平均数,若数字是奇数个,中位数是中间一个数字.5.(5分)若命题P:∃x0∈R,x02+2x0+3≤0,则命题P的否定¬P是()A.∀x∈R,x2+2x+3>0 B.∀x∈R,x2+2x+3≥0C.∀x∈R,x2+2x+3<0 D.∀x∈R,x2+2x+3≤0考点:命题的否定.专题:简易逻辑.分析:直接利用特称命题的否定是全称命题写出结果即可.解答:解:因为特称命题的否定是全称命题,所以,若命题P:∃x0∈R,x02+2x0+3≤0,则命题P的否定¬P是:∀x∈R,x2+2x+3>0.故选:A.点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.6.(5分)△ABC外接圆的半径为1,圆心为O,且的值是()A.3 B.C.D.1考点:平面向量数量积的运算;向量在几何中的应用.专题:计算题;平面向量及应用.分析:根据题中的向量等式可知AO是△ABC的边BC上的中线,可得△ABC是以A为直角顶点的直角三角形.然后在等腰△ABO中利用余弦定理,算出∠AOB=120°,进而得到∠C=60°.最后结合向量数量积公式和△ABC的边长,即可得出•的值.解答:解:∵,∴AO是△ABC的边BC上的中线,∵O是△ABC外接圆的圆心∴△ABC是以A为直角顶点的直角三角形∵等腰△ABO中,||=||=1,=∴cos∠AOB==﹣,可得∠AOB=120°由此可得,∠B=30°,∠C=90°﹣30°=60°,且△ACO是边长为1的等边三角形∵Rt△ABC中,||=1,||=2∴•=||•||cos60°=1故选:D点评:本题给出三角形ABC外接圆心O,在已知AO是BC边的中线情况下求•的值.着重考查了直角三角形的性质、余弦之理和向量数量积运算公式等知识,属于中档题.7.(5分)先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为()A.B.C.D.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意得出基本事件为(x,y),总共有6×6=36,列举两次朝上的点数之积为奇数事件求解个数,运用古典概率公式求解即可.解答:解:骰子的点数为:1,2,3,4,5,6,先后抛掷两颗质地均匀的骰子,基本事件为(x,y),总共有6×6=36,两次朝上的点数之积为奇数事件为:A有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共有9个结果,∴两次朝上的点数之积为奇数的概率为P(A)==故选:C点评:本题考查了古典概率的求解,关键是求解基本事件的个数,运用列举的方法求解符合题意的事件的个数,属于中档题.8.(5分)已知某产品连续4个月的广告费x i(千元)与销售额y i(万元)(i=1,2,3,4)满足,,若广告费用x和销售额y之间具有线性相关关系,且回归直线方程为=0.8x+a,那么广告费用为6千元时,可预测的销售额为()A.3.5万元B.4.7万元C.4.9万元D.6.5万元考点:线性回归方程.专题:计算题;概率与统计.分析:求出样本中心点代入回归直线方程,可得a,再将x=6代入,即可得出结论.解答:解:由题意,=4.5,=3.5,代入=0.8x+a,可得3.5=0.8×4.5+a,所以a=﹣0.1,所以=0.8x﹣0.1,所以x=6时,=0.8×6﹣0.1=4.7,故选:B.点评:本题考查线性回归方程,考查学生的计算能力,利用回归方程恒过样本中心点是关键.9.(5分)已知直线kx﹣y=k﹣1与ky﹣x=2k的交点在第二象限,则实数k的取值范围是()A.(0,)B.(,1)C.(0,1)D.[1}考点:两条直线的交点坐标.专题:直线与圆.分析:联立,解得,解出即可.解答:解:联立,解得,解得.∴实数k的取值范围是.故选:A.点评:本题考查了直线的交点、不等式的解法,考查了计算能力,属于基础题.10.(5分)过点A(﹣2,3)作抛物线:y2=4x的两条切线l1,l2,设l1,l2与y轴分别交于点B,C,则△ABC的外接圆方程为()A.x2+y2﹣3x﹣2y+1=0 B.x2+y2﹣2x﹣3y+1=0C.x2+y2﹣3x﹣4=0 D.x2+y2+x﹣3y﹣2=0考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:直接利用A的坐标满足圆的方程,判断求解即可.解答:解:由题意可知,△ABC的外接圆方程,A的坐标满足圆的方程,点A(﹣2,3)代入x2+y2﹣3x﹣2y+1=0,左侧=4+9+6﹣9+1=11≠0,不成立.所以A不正确;点A(﹣2,3)代入x2+y2﹣2x﹣3y+1=0,左侧=4+9+4﹣9+1=9≠0,不成立.所以B不正确;点A(﹣2,3)代入x2+y2﹣3x﹣4=0,左侧=4+9+6﹣4=15≠0,不成立.所以C不正确;点A(﹣2,3)代入x2+y2+x﹣3y﹣2=0,左侧=4+9﹣2﹣9﹣2=0,成立.所以D正确;故选:D.点评:本题考查直线与圆锥曲线的应用,圆的方程的求法,本题是选择题,方法独特,希望同学们掌握;如果直接求解方法是设出切线的斜率,利用直线与抛物线相切,求出k,然后求出三角形的顶点坐标,利用圆的一般方程求解.二、填空题(共7小题,每小题5分,满分35分)11.(5分)不等式|x|+|x﹣1|>3的解集为(﹣∞,﹣1)∪(2,+∞).考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:由于|x|+|x﹣1|表示数轴上的x对应点到0、1对应点的距离之和,而﹣1和2对应点到0、1对应点的距离之和等于3,由此求得不等式的解集.解答:解:由于|x|+|x﹣1|表示数轴上的x对应点到0、1对应点的距离之和,而﹣1和2对应点到0、1对应点的距离之和等于3,故当x<﹣1,或x>2时,不等式|x|+|x﹣1|>3成立.故不等式|x|+|x﹣1|>3的解集为(﹣∞,﹣1)∪(2,+∞),故答案为:(﹣∞,﹣1)∪(2,+∞).点评:本题主要考查绝对值的意义,绝对值不等式的解法,属于中档题.12.(5分)若x、y满足,则z=x﹣y的最大值为.考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,数形结合得到最优解联立方程组求得最优解的坐标,代入目标函数得答案.解答:解:由约束条件作出可行域如图,联立,解得,即C(1,0),化目标函数z=x﹣y为直线方程斜截式:,由图可知,当直线过点C时,直线在y轴上的截距最小,z有最大值等于.故答案为:.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.13.(5分)执行如图所示的程序框图,若输入p=5,则输出的S等于考点:程序框图.专题:图表型;三角函数的图像与性质.分析:模拟执行程序框图,依次写出每次循环得到的n,s的值,当n=5时,不满足条件n <p,退出循环,输出S的值为.解答:解:模拟执行程序框图,可得p=5,n=0,S=0满足条件n<p,n=1,S=满足条件n<p,n=2,S=满足条件n<p,n=3,S=满足条件n<p,n=4,S=满足条件n<p,n=5,S=不满足条件n<p,退出循环,输出S的值为.故答案为:.点评:本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的n,s的值是解题的关键,属于基本知识的考查.14.(5分)一个几何体的三视图如图所示,则该几何体的表面积为2π+2π+4考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是一底面为半圆,高为2的半圆锥,结合图中数据,求出它的表面积.解答:解:根据几何体的三视图,得;该几何体是一底面为半圆,高为2的半圆锥,且底面半圆的半径为2;∴该半圆锥的表面积为S表面积=S半圆+S△+S侧面展开图=π•22+×4×2+××2π•2×=2π+4+2π.故答案为:2π+2π+4.点评:本题考查了空间几何体的三视图的应用问题,解题时应根据三视图得出几何体的结构特征,是基础题目.15.(5分)如图,正四棱锥O﹣ABCD的棱长均为1,点A、B、C、D在求O的表面上,延长CO 交球面于点S,则四面体A﹣SOB的体积为.考点:棱柱、棱锥、棱台的体积;球内接多面体.专题:空间位置关系与距离.分析:假设AC与BD相交于点E,则BE⊥平面SAC,BE=.利用正方体的性质与勾股定理的逆定理可得OA⊥OC,利用四面体A﹣SOB的体积V=V B﹣SAO=BE•S△SAO.即可得出.解答:解:假设AC与BD相交于点E,则BE⊥平面SAC,BE=.连接SA,∵SC是直径,∴SA⊥AC,∵OA2+OC2=AC2=2,∴OA⊥OC,∴又S△SAO=S△OAC==.四面体A﹣SOB的体积V=V B﹣SAO=BE•S△SAO=×=.故答案为:.点评:本题考查了线面面面垂直的判定性质定理、正方形的性质、正四面体的性质、球的性质、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.16.(5分)在各项均为正项的等比数列{a n}中,已知a1+a2+a3+a4+a5=31,=,则a3=4.考点:等比数列的通项公式.专题:等差数列与等比数列.分析:设出等比数列的首项和公比,由题意列式,整体运算得到,则a3可求.解答:解:设等比数列a n的公比为q,则{}也是等比数列,且公比为,依题意得:,两式作比得:,即,∵a n>0,∴a3=4.故答案为:4.点评:本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.17.(5分)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若y=f2(x)﹣af(x)+a﹣1的零点个数是7个,则实数a的取值范围为(,2).考点:根的存在性及根的个数判断;函数的零点与方程根的关系.专题:计算题;作图题;函数的性质及应用.分析:化简f2(x)﹣af(x)+a﹣1=0得f(x)=1或f(x)=a﹣1,作f(x)与y=1及y=a ﹣1的图象,由数形结合求解.解答:解:令f2(x)﹣af(x)+a﹣1=0得,f(x)=1或f(x)=a﹣1,作f(x)与y=1及y=a﹣1的图象如下,由图象知,y=1与f(x)的图象有三个交点,故y=a﹣1与f(x)有四个交点,f(2)=,则结合图象可得,<a﹣1<1,即<a<2;故答案为:(,2).点评:本题考查了函数的零点与函数的交点的关系应用及数形结合的思想应用,属于中档题.三、解答题(共5小题,满分65分)解答应写出文字说明,证明过程或演算步骤18.(12分)已知等差数列{a n}的前n项和为S n,a3=5,S8=64.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:>(n≥2,n∈N)考点:数列与不等式的综合;等差数列的前n项和.专题:等差数列与等比数列;不等式的解法及应用.分析:(1)设等差数列{a n}的首项为a1,公差为d,通过a3=5,S8=64可得首项和公差,计算即可;(2)通过(1)可知S n=n2,利用不等式的性质化简可得原命题成立,只需3n2>1在n≥1时恒成立.解答:(1)解:设等差数列{a n}的首项为a1,公差为d,根据题意,可得,解得a1=1,d=2,∴数列{a n}的通项公式为:a n=2n﹣1;(2)证明:由(1)可知:S n=n2,要证:>(n≥2,n∈N)恒成立,只需证:+>,只需证:[(n+1)2+(n﹣1)2]n2>2(n2﹣1)2,只需证:(n2+1)n2>(n2﹣1)2,只需证:3n2>1,而3n2>1在n≥1时恒成立,且以上每步均可逆,从而:>(n≥2,n∈N)恒成立.点评:本题考查等差数列的简单性质,利用不等式的性质进行化简是解决本题的关键,属于中档题.19.(12分)已知△ABC的内角A、B、C的对边a,b,c,且满足bcos2A=a(2﹣sinAsinB),a+b=6.(Ⅰ)求a、b的值(Ⅱ)若cosB=,求△ABC的面积.考点:正弦定理.分析:(I)由bcos2A=a(2﹣sinAsinB),可得sinBcos2A=sinA(2﹣sinAsinB),化为sinB=2sinA,由正弦定理可得:b=2a,与a+b=6联立解得a,b.(II)由cosB=,可得sinB=,可得sinA=,cosA=;sinC=sin(A+B)=sinAcosB+cosAsinB,利用S△ABC=即可得出.解答:解:(I)∵bcos2A=a(2﹣sinAsinB),∴sinBcos2A=sinA(2﹣sinAsinB),∴sinBcos2A+sin2AsinB=2sinA,∴sinB=2sinA,由正弦定理可得:b=2a,与a+b=6联立解得a=2,b=4.(II)∵cosB=,∴sinB==,∴sinA==cosA==;∴sinC=sin(A+B)=sinAcosB+cosAsinB=+=,∴S△ABC===2.(II)由余弦定理可得:b2=a2+c2﹣2accosB,b=2a,c=,∴4a2=a2+7﹣=a2+7﹣2×,化为3a2+4a﹣7=0,解得a=1.∴b=2.∴a=1,b=2.点评:本题考查了正弦定理余弦定理、同角三角函数基本关系式、两角和差的正弦公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.20.(13分)如图,在四面体P﹣ABC中,底面ABC是边长为1的正三角形,PB=PC=,AB⊥BP.(Ⅰ)求证:PA⊥BC(Ⅱ)求点P到底面ABC的距离.考点:点、线、面间的距离计算;直线与平面垂直的性质.专题:综合题;空间位置关系与距离.分析:(Ⅰ)取BC中点M,连结AM,PM,依题意可知AM⊥BC,PM⊥BC,从而BC⊥平面PAM,由此能证明PA⊥BC;(Ⅱ)过P作PH⊥AM,连接BH,证明PH⊥平面ABC,求出BH,即可求点P到底面ABC的距离.解答:(Ⅰ)证明:取BC中点M,连结AM,PM,依题意底面ABC是边长为1的正三角形,PB=PC=,所以AM⊥BC,PM⊥BC,又AM∩PM=M,所以BC⊥平面PAM,又PA⊂平面PAM,所以PA⊥BC;(Ⅱ)解:因为BC⊥平面PAM,BC⊂平面ABC所以平面ABC⊥平面PAM,过P作PH⊥AM,连接BH,所以PH⊥平面ABC,所以PH⊥AB,因为AB⊥PB,PH∩PB=P,所以AB⊥平面PBH,所以AB⊥BH.在Rt△ABH中,∠BAH=30°,所以BH=,在Rt△PBH中,PB=,所以PH==,所以点P到底面ABC的距离为.点评:本题考查异面直线垂直的证明,考查点到平面的距离的求法,正确作出点P到底面ABC的距离是解题的关键.21.(14分)已知函数f(x)=x3﹣3x2+ax(a∈R)(1)求函数y=f(x)的单调区间;(2)当a≥2时,求函数y=|f(x)|在0≤x≤1上的最大值.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:函数的性质及应用;导数的综合应用.分析:(1)求出函数的导数,讨论判别式小于或等于0,和大于0,令导数大于0,得增区间;令导数小于0,得减区间;(2)由(1)讨论当a≥3时,当2≤a<3时,求得函数的单调区间,通过函数值的符号,去绝对值符号,即可得到最大值.解答:解:(1)函数f(x)=x3﹣3x2+ax的导数为f′(x)=3x2﹣6x+a,判别式△=36﹣12a,当△≤0时,即a≥3,f′(x)≥0恒成立,f(x)为增函数;当a<3时,即△>0,3x2﹣6x+a=0有两个实根,x1=1﹣,x2=1+,f′(x)>0,可得x>x2或x<x1;f′(x)<0,可得x1<x<x2.综上可得,a≥3时,f(x)的增区间为R;a<3时,f(x)的增区间为(﹣∞,1﹣),(1+,+∞),减区间为(1﹣,1+).(2)由于y=|f(x)|的图象经过原点,当a≥3时,由(1)可得y=|f(x)|=f(x)在[0,1]递增,即有x=1处取得最大值,且为a﹣2;当2≤a<3时,由(1)可得f(x)在[0,1﹣)递增,在(1﹣,1]递减,则f(x)在x=1﹣处取得最大值,且大于0,又f(0)=0,f(1)=a﹣2≥0,则y=|f(x)|=f(x)(0≤x≤1)的最大值即为f(1﹣).综上可得,当a≥3时,函数y的最大值为a﹣2;当2≤a<3时,函数y的最大值为f(1﹣).点评:本题考查导数的运用:求单调区间和极值、最值,主要考查分类讨论的思想方法和函数的单调性的运用,考查运算能力,属于中档题和易错题.22.(14分)已知椭圆C:=1(a>b>0)的离心率为,短轴长为2.(Ⅰ)求椭圆C的方程;(Ⅱ)若A、B是椭圆C上的两动点,O为坐标原点,OA、OB的斜率分别为k1,k2,问是否存在非零常数λ,使k1•k2=λ时,△AOB的面积S为定值,若存在,求λ的值;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过=、2b=2、a2=b2+c2,计算即得结论;(Ⅱ)设直线AB的方程并与椭圆方程联立,利用韦达定理、三角形面积计算公式、k1•k2=λ可得S△AOB的表达式,分析表达式、计算即可.解答:解:(Ⅰ)∵e==,2b=2,a2=b2+c2,∴a=2,b=1,∴椭圆C的方程为:+y2=1;(Ⅱ)结论:存在非零常数λ=﹣,使k1•k2=﹣时,△AOB的面积S为定值1.理由如下:设存在这样的常数λ,使k1•k2=λ时,S△AOB为定值.设直线AB的方程为:y=kx+m,且AB与+y2=1的交点坐标为A(x1,y1),B(x2,y2),∵k1•k2=λ,∴λx1x2﹣y1y2=0,∴﹣λx1x2+(kx1+m)(kx2+m)=0,∴(k2﹣λ)x1x2+km(x1+x2)+m2=0.将y=kx+m代入+y2=1,消去y得:(1+4k2)x2+8kmx+4m2﹣4=0,由韦达定理可得:x1+x2=,x1x2=,∴(k2﹣λ)x1x2+km(x1+x2)+m2=0可化为:m2=,∵点O到直线AB的距离为d=,∴S△AOB=•d•|AB|=•|x1﹣x2|•|m|=,∴==•,要使上式为定值,只需==,即只需(1+4λ)2=0,∴λ=﹣,此时=,即S△AOB=1,故存在非零常数λ=﹣,此时S△AOB=1.点评:本题考查椭圆的定义及其标准方程、直线与椭圆的位置关系等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,注意解题方法的积累,属于中档题.。
湖北省武汉市2015届高中毕业生五月模拟考试理科综合试卷(扫描版).pdf

化学答案 生物参考答案 1A,2B,3C,4D,5A,6D 29.(1分) 直接因降低ATP含量/抑制ATP的合成/促进ATP水解降低呼吸速率下降ATP的消耗量增加 酸性的重铬酸钾 (1) 神经递质 血糖浓度 胰高血糖素含量 神经——体液 (2) 蛋白质、脂肪、糖原 (3) 1 胰岛B 葡萄糖 自身免疫 31.(10分) (1)直毛3:1分叉毛都是雄果蝇3或5可见1)S 逐渐减小 捕食、竞争、寄生 (2)生产者 非生物的物质和能量 是 次生演替 (3)第一 野兔用于自身生长、发育和繁殖的能量(储存在野兔体内的能量) (4)16% 40.(15分) (1)逆转录法 (2)卡那霉素 (3)植物组织培养 再分化(或细胞增殖与分化) (4)质壁分离 理综物理答案 一、选择题: 14、B 15、D 16、A 17、D 18、B 19、AD 20、AD 21、BD 22、 (1)刻度尺 23、 (1)多次测量求平均值 (2)① S1 ② S2 24、 (1)2 s (2) 35题: 、BDE 、(1) 3 m/s 9 J (2)10 m/s≤v1≤14 m/s 17 J 10.某人在相距10 m的A、B两点间练习折返跑,他在A点由静止出发跑向B点,到达B点后立即返回A点.设加速过程和减速过程都是匀变速运动,加速过程和减速过程的加速度大小分别是4 m/s2和8 m/s2,运动过程中的最大速度为4m/s,从B点返回的过程中达到最大速度后即保持该速度运动到A点,求: (1)从B点返回A点的过程中以最大速度运动的时间; (2)从A点运动到B点与从B点运动到A点的平均速度的大小之比. 10.(1)2 s (2) [解析] (1)设此人从静止到加速至最大速度时所用的时间为t1,加速运动的位移大小为x1,从B点返回A点的过程中做匀速运动的时间为t2,A、B两点间的距离为L,由运动学公式可得 vm=a1t1 x1=t1 L-x1= vmt2 联立以上各式并代入数据可得t2=2 s. (2)设此人从A点运动到B点的过程中做匀速运动的时间为t3,减速运动的位移大小为x2,减速运动的时间为t4,由运动学方程可得 vm=a2t4 x2=t4 L-x1-x2= vmt3 = 联立以上各式并代入数据可得=. 35.(1)3 m/s 9 J (2)10 m/s≤v1≤14 m/s 17 J [解析] (1)P1、P2碰撞过程动量守恒,有mv1=2mv 解得v==3 m/s 碰撞过程中损失的动能为ΔE=mv-(2m)v2 解得ΔE=9 J. (2)由于P与挡板的碰撞为弹性碰撞.故P在AC间等效为匀减速运动,设P在AC段加速度大小为a,碰后经过B点的速度为v2 ,由牛顿第二定律和运动学规律,得 μ(2m)g=2ma 3L=v t-at2 v2=v-at 解得v1=2v= v2= 由于2 s≤t≤4 s 所以解得v1的取值范围 10 m/s≤v1≤14 m/s v2的取值范围1 m/s≤v2≤5 m/s 所以当v2=5 m/s时,P向左经过A点时有最大速度 v3= 则P向左经过A点时有最大动能E=(2m)v=17 J.。
湖北省部分高中2015届高三数学元月调考试题 理

数学(理科)试卷考试时间:2015年1月6日下午15:00—17:00 试卷满分:150分注意事项:1.答卷前,考生务必将自己的学校、考号、班级、姓名等填写在答题卡上.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用0.5毫米黑色签字笔直接在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效.4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回.第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分)1.设复数z 满足i i21=+z,则 z =( ) A.i 2+- B.i 2-- C.i 2+D.i 2-2.设集合P ={x |⎰>=+-x02006103x dt t t ,)(},则集合P 的非空子集个数是( )A.2B.3C.7D.8 3.下列结论正确的是( )A.若向量//a b ,则存在唯一的实数λ使得aλb =B.已知向量,a b 为非零向量,则“,a b 的夹角为钝角”的充要条件是“,a b <0”C.命题:若12=x ,则1=x 或1-=x 的逆否命题为:若1≠x 且1-≠x ,则21x ≠D.若命题012<+-∈∃x x x P ,R :,则012>+-∈∀⌝x x x P ,R :4.一个几何体的三视图如图所示,其中俯视图是一个腰长为2的等腰直角三角形,则该几何体外接球的体积是( )A.π36B.π9C.π29 D.π8275.等比数列{}n a 的前n 项和为n S ,27),...(43211n 2312=+++=-a a a a a a S n ,则6a =( )A.27B.81C.243D.7296.设函数)22,0)(sin(3)(πφπωφω<<->+=x x f 的图像关于直线32π=x 对称,它的周 期是π,则( )A.)(x f 的图象过点)21,0( B.)(x f 的一个对称中心是)0,125(πC.)(x f 在]32,12[ππ上是减函数 D.将)(x f 的图象向右平移||φ个单位得到函数x y ωsin 3=的图象7.已知函数若x ,y 满足约束条件1,1,22,x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩目标函数z =ax +2y 仅在点(1,0)处取得最小值,则实数a 的取值范围是( ) A.(4,2)-B.(4,1)-C.(,4)(2,)-∞-+∞ D.(,4)(1,)-∞-+∞8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =22,则下列结论中错误..的个数是 ( ) (1) AC ⊥BE ;(2) 若P 为AA 1上的一点,则P 到平面BEF 的距离为22; (3) 三棱锥A -BEF 的体积为定值;(4) 在空间与DD 1,AC ,B 1C 1都相交的直线有无数条;(5) 过CC 1的中点与直线AC 1所成角为40°并且与平面BEF 所成角为50°的直线有2条. A.0 B.1 C.2 D.3 9.已知椭圆)0(1:112122121>>=+b a b y a x C 与双曲线)0,0(1:222222222>>=-b a b y a x C 有相同的焦点F 1,F 2,点P 是两曲线的一个公共点,e 1,e 2又分别是两曲线的离心率,若PF 1⊥PF 2, 则22214e e +的最小值为( )A.25 B.4 C.29D.9 10.已知1ln 1)(-+=x x x f ,*)()(N k xkx g ∈=,对任意的c >1,存在实数b a ,满足c b a <<<0,使得)()()(b g a f c f ==,则k 的最大值为( )A.2B.3C.4D.5第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分)11.平面向量a与b的夹角为60°,a =(2,0),|a |=1,则|a+2b|= .12.已知tan β=43,sin(α+β)=513,且α,β∈(0,π),则sin α的值为 .13.设正数c b a ,,满足c b a c b a ++≤++36941,则=+++c b a cb 32 .14.已知两个正数,a b ,可按规则c ab a b =++扩充为一个新数c ,在,,a b c 三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一 次操作.若0p q >>,经过6次操作后扩充所得的数为(1)(1)1m n q p ++-(m ,n 为正整数), 则n m +的值为 .(15,16为选做题,二选一即可)15. 如右图,圆O 的直径AB =8,C 为圆周上一点,BC =4,过C 作圆的切线l ,过A 作直线l 的垂线AD ,D 为垂足,AD 与圆O 交于点E ,则线段AE 的长为 .16.直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧+==242222t y t x (其中t 为参数),圆c 的极坐标方程为 )4cos(2πθρ+=,过直线上的点向圆引切线,则切线长的最小值是 .三、解答题(本大题共6小题,共75分)17.(12分)在△ABC 中,角A 、B 、C 对应边分别是a 、b 、c ,c=2,222sin sin sin sin sin A B C A B +-=.(1)若sin sin()2sin 2C B A A +-=,求△ABC 面积;(2)求AB 边上的中线长的取值范围.18.(12分)已知数列{}n a 的前n 项和为n S ,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立.(1)求数列{}n a 的通项公式;(2)设10a >,100λ=,当n 为何值时,数列1{lg }na 的前n 项和最大?19.(12分)已知x ∈[0,1],函数()()a x a x x g x x x f 4321ln 232--=⎪⎭⎫ ⎝⎛+-=,. (1)求函数f (x )的单调区间和值域;(2)设a ≤-1,若[]101,∈∀x ,总存在[]100,∈x ,使得g (x 0)=f (x 1)成立,求a 的取值范围.20.(12分)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD //BC ,∠ADC =90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA =PD =2,BC =12AD =1,CD =3.(1)求证:平面PQB ⊥平面PAD ; (2)若二面角M-BQ-C 为30°,设=t ,试确定t 的值.21.(13分)如图,已知点()2,0A -和圆22:4,O x y +=AB 是圆O 的直经,从左到右M 、O 和N依次是AB 的四等分点,P (异于A 、B )是圆O 上的动点,,PD AB ⊥交AB 于D ,PE ED λ=,直线PA 与BE 交于C ,|CM |+|CN | 为定值.(1)求λ的值及点C 的轨迹曲线E 的方程;(2)一直线L 过定点S (4,0)与点C 的轨迹相交于Q ,R 两点,点Q 关于x 轴的对称点为Q 1,连接Q 1与R 两点连线交x 轴于T 点,试问△TRQ 的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.22.(14分)已知函数f (x )=ax +1a x-+(1-2a )(a >0) (1)若f (x )≥㏑x 在[1,∞)上恒成立,求a 的取值范围; (2)证明:1+12+13+…+1n >㏑(n +1)+()21n n +(n ≥1); (3)已知S=1111232014+++⋅⋅⋅+,求S 的整数部分.(ln 20147.6079≈,ln 20157.6084≈)理科参考答案题号 1 2 3 4 5 6 7 8 9 10 答案 CBCCCBAACB11. 3212.6563 13.61314. 21 15. 4 16. 62 17. 解:①由题意知2221cos 23a b c ab C C π+-= = =由sinC+sin(B-A)=2sin(2A) => sinBcosA=2sinAcosA (1)若cosA=0 2323ABC A S π∆==(2)若cosA ≠0 b=2a 233ABCS ∆=……………………(6分) ②2CA CBCD +=222222222222cos3||441cos 4242||14442||34||a b ab a b ab CD C a b ab a b ab ab CD abCD CD π++++ === +-=+++ ==>+ =≤ ∈ 故又故故……………………(12分) 18. 解:(1)令n=1,得112122a S a ==λ,0)2(11=-a a λ若)(,时,,当则1n 0a 0a 2n 00n 1-n n n n 1≥=∴=-=≥==S S S a若时,当,则2n 21a 0a 1≥=≠λn n 2a 2S +=λ,1-n 1-n 2a 2S +=λ两式相减得)(,2n a 2a a a 2-a 21-n n n 1-n n ≥=∴=从而数列{}n a 为等比数列 所以λn1-n 1n 22a a =•=综上:当0a 0a n 1==时,,当λnn 12a 0=≠时,a ……………………(6分)(2)当)知,由(时,令,1a 1lgb 1000a n n 1==>λ2nlg -22100lg b n n == 所以数列{}n b 是单调递减的等差数列(公差为-lg2) 所以01lg 64100lg 2100lg 6621=>==>•••>>b b b 当01lg 2100lg b b 777n =<=≤≥时n 所以数列⎭⎬⎫⎩⎨⎧n a 1lg的前6项和最大。
湖北省武汉市2015届高三二月调考数学试卷(理科)
湖北省武汉市2015届高三二月调考数学试卷(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)复数﹣的共轭复数是() A . 1﹣i B . ﹣1+iC . 1+iD .﹣1﹣i2.(5分)已知集合A={y|y=log 2x ,x >1},B={y|y=()x,x >1},则A ∩B=() A . {y|0<y <} B . {y|0<y <1}C . {y|<y <1}D .∅3.(5分)若函数f (x )=在[2,+∞)上有意义,则实数a 的取值范围为()A . a =1B . a >1C . a ≥1D .a ≥04.(5分)若几何体的三视图如图所示,则该几何体的体积为()A .B .C .D .π5.(5分)10件产品中有3件次品,不放回地抽取2次,在第1次抽出的是次品的前提下,则第2次抽出正品的概率是()A .B .C .D .6.(5分)dx=()A . 2(﹣1)B . +1C . ﹣1D .2﹣ 7.(5分)已知m 、n 是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是() A . 若α⊥γ,α⊥β,则γ∥β B . 若m ∥n ,m ⊂α,n ⊂β,则α∥βC.若m∥n,m∥a,则n∥αD.若m∥n,m⊥α,n⊥β,则α∥β8.(5分)已知点P是双曲线﹣y2=1上任意一点,过点P分别作双曲线的两条渐近线的垂线,垂足分别为A、B,则•=()A.﹣B.C.﹣D.﹣9.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,且b2+a2=c2+ab,则内角C=()A.B.C.D.或10.(5分)已知点P为曲线xy﹣x﹣2y+3=0上任意一点,O为坐标原点,则|OP|的最小值为()A.B.C.D.二、填空题:本大题共4小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)11.(5分)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为.12.(5分)(1+x)(1﹣x)10展开式中x3的系数为.13.(5分)已知向量=(2,﹣7),=(﹣2,﹣4),若存在实数λ,使得(﹣λ)⊥,则实数λ为.14.(5分)已知实数x,y满足约束条件,若目标函数z=(a﹣1)x+ay在点(﹣1,0)处取得最大值,则实数a的取值范围为.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)(选修4-1:几何证明选讲)15.(5分)已知AB是⊙O的弦,P是AB上一点,AB=6,PA=4,OP=3,则⊙O的半径R=.(选修4-4:坐标系与参数方程)16.在极坐标系中,点P(2,﹣)到直线l:ρsin(θ﹣)=1的距离是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知函数f(x)=2sinx•cos(x﹣)+asin(2x+)(a为常数)的图象经过点(,)(Ⅰ)求a的值及函数f(x)的最小正周期;(Ⅱ)解不等式f(x)≥0.18.(12分)已知{a n}是由正数组成的数列,其前n项和S n与a n之间满足:a n+=(n≥1且n∈N*).(Ⅰ)求数列{a n}的通项a n;(Ⅱ)设b n=()n a n,求数列{b n}的前n项和T n.19.(12分)在三棱柱ABC﹣A1B1C1中,底面△ABC为正三角形且边长为a,侧棱AA1=2a,点A在下底面的射影是△A1B1C1的中心O.(Ⅰ)求证:AA1⊥B1C1;(Ⅱ)求二面角B1﹣AA1﹣C1所成角的余弦值.20.(12分)某工厂的一个车间有5台同一型号机器均在独立运行,一天中每台机器发生故障的概率为0.1,若每一天该车间获取利润y(万元)与“不发生故障”的机器台数n(n∈N,n≤5)之间满足关系式:y=(Ⅰ)求某一天中有两台机器发生故障的概率;(Ⅱ)求这个车间一天内可能获取利润的均值(.精确到0.01).21.(13分)如图,F1,F2是椭圆C:+=1的左右两个焦点,|F1F2|=4,长轴长为6,又A,B分别是椭圆C上位于x轴上方的两点,且满足=2.(Ⅰ)求椭圆C的方程;(Ⅱ)求直线AF1的方程;(Ⅲ)求四边形ABF2F1的面积.22.(14分)已知e=2.71828…是自然对数的底数.(Ⅰ)求函数f(x)=ln(x+1)﹣x+在[0,+∞)上的最小值;(Ⅱ)求证ln2>;(Ⅲ)求证ln2+ln3+ln4+…+ln(n+1)>(n≥1,n∈N).湖北省武汉市2015届高三二月调考数学试卷(理科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数﹣的共轭复数是()A.1﹣i B.﹣1+i C.1+i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、共轭复数的定义即可得出.解答:解:复数﹣==﹣1+i的共轭复数为﹣1﹣i,故选:D.点评:本题考查了复数的运算法则、共轭复数的定义,属于基础题.2.(5分)已知集合A={y|y=log2x,x>1},B={y|y=()x,x>1},则A∩B=()A.{y|0<y<} B.{y|0<y<1} C.{y|<y<1} D.∅考点:交集及其运算.专题:计算题.分析:首先根据对数函数和指数函数的特点求出集合A和B,然后再求两个集合的交集即可.解答:解:∵集合A={y|y=log2x,x>1},∴A=(0,+∞)∵B={y|y=()x,x>1},∴B=(0,)∴A∩B=(0,)故选A.点评:本题考查了交集运算以及函数的至于问题,要注意集合中的自变量的取值范围,确定各自的值域.3.(5分)若函数f(x)=在[2,+∞)上有意义,则实数a的取值范围为()A.a=1 B.a>1 C.a≥1 D.a≥0考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据函数成立的条件,解参数即可.解答:解:∵函数f(x)=在[2,+∞)上有意义,∴ax﹣2≥0在[2,+∞)上恒成立,即a≥在[2,+∞)恒成立,∵0<≤1,∴a≥1,故选:C.点评:本题主要考查函数恒成立问题,根据函数的定义域是解决本题的关键.4.(5分)若几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.π考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是圆锥被轴截面截去一半所剩的几何体,结合数据求出该几何体的体积.解答:解:根据几何体的三视图,得该几何体是圆锥被轴截面截去一半所得的几何体,底面圆的半径为1,高为2,所以该几何体的体积为V几何体=×π•12×2=.故选:B.点评:本题考查了利用空间几何体的三视图求几何体体积的应用问题,是基础题目.5.(5分)10件产品中有3件次品,不放回地抽取2次,在第1次抽出的是次品的前提下,则第2次抽出正品的概率是()A.B.C.D.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.解答:解:根据题意,在第一次抽到次品后,还有有2件次品,7件正品;则第二次抽到正品的概率为P=.故选:B.点评:本题考查概率的计算,解题时注意题干“在第一次抽到次品条件下”的限制.6.(5分)dx=()A.2(﹣1)B.+1 C.﹣1 D.2﹣考点:定积分.专题:导数的概念及应用.分析:先根据二倍角公式,化简原函数,再根据定积分的计算法则计算即可解答:解:∵==cosx﹣sinx,∴dx=(cosx﹣sinx)dx=(sinx+cosx)|=+﹣0﹣1=﹣1故选:C点评:本题考查了定积分的计算和三角函数的化简,属于基础题7.(5分)已知m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m∥a,则n∥αD.若m∥n,m⊥α,n⊥β,则α∥β考点:空间中直线与平面之间的位置关系.分析:用具体事物比如教室作为长方体,再根据面面平行的判定定理及线面平行的性质定理判断.解答:解:A不正确,比如教室的一角三个面相互垂直;B不正确,由面面平行的判定定理知m与n必须是相交直线;C不正确,由线面平行的性质定理知可能n⊂α;D正确,由m∥n,m⊥a得n⊥α,因n⊥β,得α∥β故选D.点评:本题考查了线面平行的性质定理和面面平行的判定定理,利用具体的事物可培养立体感.8.(5分)已知点P是双曲线﹣y2=1上任意一点,过点P分别作双曲线的两条渐近线的垂线,垂足分别为A、B,则•=()A.﹣B.C.﹣D.﹣考点:双曲线的简单性质.专题:计算题;平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:设P(m,n),则﹣n2=1,即m2﹣4n2=4,求出渐近线方程,求得交点A,B,再求向量PA,PB的坐标,由向量的数量积的坐标表示,计算即可得到.解答:解:设P(m,n),则﹣n2=1,即m2﹣4n2=4,由双曲线﹣y2=1的渐近线方程为y=x,则由解得交点A(,);由解得交点B(,).=(,),=(,),则有•=•+•=+=﹣(m2﹣4n2)=﹣×4=﹣.故选A.点评:本题考查双曲线的方程和性质,考查渐近线方程的运用,考查联立方程组求交点的方法,考查向量的数量积的坐标表示,考查运算能力,属于中档题.9.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,且b2+a2=c2+ab,则内角C=()A.B.C.D.或考点:余弦定理.专题:解三角形.分析:利用余弦定理表示出cosC,把已知等式变形后代入计算求出cosC的值,即可确定出C的度数.解答:解:∵在△ABC中,b2+a2=c2+ab,即b2+a2﹣c2=ab,∴cosC==,则C=,故选:B.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.10.(5分)已知点P为曲线xy﹣x﹣2y+3=0上任意一点,O为坐标原点,则|OP|的最小值为()A.B.C.D.考点:两点间的距离公式;函数的最值及其几何意义.专题:计算题;函数的性质及应用.分析:根据两点间的距离公式,利用配方法进行转化即可得到结论.解答:解:设P(x,y),则|OP|===≥,当且仅当,即取等号,故|OP|的最小值是,故选:A.点评:本题主要考查两点间的距离的求解,利用配方法将式子进行配方是解决本题的关键.二、填空题:本大题共4小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)11.(5分)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为32.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序,依次写出每次循环得到的a的值,当a=32时,满足条件a>31,退出循环,输出a的值为32.解答:解:模拟执行程序,可得a=1,b=2不满足条件a>31,a=2不满足条件a>31,a=4不满足条件a>31,a=8不满足条件a>31,a=16不满足条件a>31,a=32满足条件a>31,退出循环,输出a的值为32.故答案为:32.点评:本题主要考查了程序框图和算法,正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.12.(5分)(1+x)(1﹣x)10展开式中x3的系数为﹣75.考点:二项式系数的性质.专题:二项式定理.分析:把(1﹣x)10按照二项式定理展开,可得(1+x)(1﹣x)10展开式中x3的系数.解答:解:(1+x)(1﹣x)10=(1+x)(1﹣•x+•x2﹣•x3+…+•x10),故(1+x)(1﹣x)10展开式中x3的系数为﹣+=﹣75,故答案为:﹣75.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.13.(5分)已知向量=(2,﹣7),=(﹣2,﹣4),若存在实数λ,使得(﹣λ)⊥,则实数λ为.考点:数量积判断两个平面向量的垂直关系.专题:平面向量及应用.分析:由垂直关系可得(﹣λ)•=0,由坐标运算可得λ的方程,解方程可得.解答:解:∵向量=(2,﹣7),=(﹣2,﹣4),∴﹣λ=(2+2λ,﹣7+4λ),∵存在实数λ,使得(﹣λ)⊥,∴(﹣λ)•=﹣2(2+2λ)﹣4(﹣7+4λ)=0,解得λ=故答案为:点评:本题考查数量积与向量的垂直关系,属基础题.14.(5分)已知实数x,y满足约束条件,若目标函数z=(a﹣1)x+ay在点(﹣1,0)处取得最大值,则实数a的取值范围为(﹣∞,].考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,确定目标取最优解的条件,即可求出a的取值范围.解答:解:作出不等式组对应的平面区域如图:(阴影部分).若a=0,则目标函数为z=﹣x,即x=﹣z,此时满足目标函数z=(a﹣1)x+ay在点(﹣1,0)处取得最大值,若a≠0,则由z=(a﹣1)x+ay得,y=x,若a<0,此时目标函数的斜率k=<0,平移目标函数可知此时当目标函数经过点A(﹣1,0)时,直线截距最小,z最大,若a>0,要使目标函数z=(a﹣1)x+ay在点(﹣1,0)处取得最大值,则满足目标函数的斜率k=≥1,即a≤,此时满足0≤a≤,综上a≤,故实数a的取值范围是(﹣∞,]故答案为:(﹣∞,]点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.根据目标函数z=(a﹣1)x+ay在点(﹣1,0)处取得最大值,确定直线的位置是解决本题的关键.注意要进行分类讨论.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)(选修4-1:几何证明选讲)15.(5分)已知AB是⊙O的弦,P是AB上一点,AB=6,PA=4,OP=3,则⊙O的半径R=5.考点:与圆有关的比例线段.专题:立体几何.分析:过点O作OC⊥AB,交AB于点C,连结OA,由垂径定理和勾股定理求出OC⊥AB,PC=PA﹣AC=,OC=,由此能求出⊙O的半径R.解答:解:过点O作OC⊥AB,交AB于点C,连结OA,∵AB是⊙O的弦,P是AB上一点,AB=6,PA=4,OP=3,∴OC⊥AB,PC=PA﹣AC=4﹣=,∴OC===,∴R=OA===5.故答案为:5.点评:本题考查圆的半径的求法,是基础题,解题时要认真审题,注意垂径定理和勾股定理的合理运用.(选修4-4:坐标系与参数方程)16.在极坐标系中,点P(2,﹣)到直线l:ρsin(θ﹣)=1的距离是3.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:由极坐标化为直角坐标,再利用点到直线的距离公式即可得出.解答:解:点P(2,﹣)化为P,即P.直线l:ρsin(θ﹣)=1化为:=1,x﹣y+2=0.∴点P(2,﹣)到直线l:ρsin(θ﹣)=1的距离==3.故答案为:3.点评:本题考查了极坐标化为直角坐标、点到直线的距离公式,属于基础题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知函数f(x)=2sinx•cos(x﹣)+asin(2x+)(a为常数)的图象经过点(,)(Ⅰ)求a的值及函数f(x)的最小正周期;(Ⅱ)解不等式f(x)≥0.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的图像与性质.分析:(1)由已知可得2sin cos(﹣)+asin=,从而解得a=1,由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin2x+,由周期公式即可求最小正周期T.(2)由f(x)≥0,知:sin2x≥﹣,由正弦函数的图象解得2kπ﹣≤2x≤2kπ+(k∈Z),即可得f(x)≥0的解集.解答:解:(1)函数f(x)=2sinx•cos(x﹣)+asin(2x+)(a为常数)的图象经过点(,),则有:2sin cos(﹣)+asin=,故解得:a=1,∴f(x)=2sinx•cos(x﹣)+sin(2x+),=2sinx(cosxcos+sinxsin)+sin2xcos+cos2xsin,=2sin2xcos+(2sin2x+cos2x)sin,=sin2x+sin,=sin2x+,∴最小正周期T=…6分(2)由f(x)≥0,知:sin2x≥﹣,∴2kπ﹣≤2x≤2kπ+(k∈Z),∴f(x)≥0的解集为:[kπ﹣,kπ+](k∈Z)…12分点评:本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.18.(12分)已知{a n}是由正数组成的数列,其前n项和S n与a n之间满足:a n+=(n≥1且n∈N*).(Ⅰ)求数列{a n}的通项a n;(Ⅱ)设b n=()n a n,求数列{b n}的前n项和T n.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(I)由a n+=(n≥1且n∈N*),两边平方化为.当n≥2时,,a n=S n﹣S n﹣1.可得a n﹣a n﹣1=1,利用等差数列的通项公式即可得出.(II)b n=•a n=,利用“错位相减法”、等比数列的前n项和公式即可得出.解答:解:(I)∵a n+=(n≥1且n∈N*),两边平方化为.∴,a1>0,解得a1=1.当n≥2时,,∴a n=S n﹣S n﹣1=﹣,化为(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,∵a n+a n﹣1>0,∴a n﹣a n﹣1=1,∴数列{a n}为等差数列,∴a n=1+(n﹣1)×1=n.(II)b n=•a n=,∴数列{b n}的前n项和T n=+…+,∴=+…+,∴=++…+﹣,∴T n=1++…+﹣=﹣=.点评:本题考查了递推式的应用、“错位相减法”、等差数列与等比数列的通项公式与前n 项和公式,考查了推理能力与计算能力,属于中档题.19.(12分)在三棱柱ABC﹣A1B1C1中,底面△ABC为正三角形且边长为a,侧棱AA1=2a,点A在下底面的射影是△A1B1C1的中心O.(Ⅰ)求证:AA1⊥B1C1;(Ⅱ)求二面角B1﹣AA1﹣C1所成角的余弦值.考点:二面角的平面角及求法;空间中直线与直线之间的位置关系.专题:空间位置关系与距离;空间角.分析:(Ⅰ)由已知得B1C1⊥A1O,AO⊥B1C1,由此能证明B1C1⊥面A1AO,从而得到B1C1⊥AA1.(Ⅱ)过B1作B1D⊥AA1,交AA1于D,连结DC1,由已知得∠B1DC1是二面角B1﹣AA1﹣C1的平面角,由此能求出二面角B1﹣AA1﹣C1所成角的余弦值.解答:(Ⅰ)证明:∵A在底面△A1B1C1上射影是下底面正△A1B1C1的中心O,∴B1C1⊥A1O,又AO⊥平面A1B1C1,∴AO⊥B1C1,∴B1C1和两相交直线AO,A1O均垂直,∴B1C1⊥面A1AO,又AA1⊂面A1AO,∴B1C1⊥AA1.(Ⅱ)解:过B1作B1D⊥AA1,交AA1于D,连结DC1,∵AA1⊥B1C1,AA1⊥DB1,∴AA1⊥面DB1C1,∴AA1⊥DC1,∴∠B1DC1是二面角B1﹣AA1﹣C1的平面角,又A在底面A1B1C1上的投影是△A1B1C1的中心,∴AA1=AB1=2a,在△AA 1B1中,由AA1=AB1=2a,,由面积法知:=,同理DC1=,在△C1DB1中,由余弦定理得cos∠B1DC1==,∴二面角B1﹣AA1﹣C1所成角的余弦值为.点评:本题考查异面直线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要注意空间思维能力的培养.20.(12分)某工厂的一个车间有5台同一型号机器均在独立运行,一天中每台机器发生故障的概率为0.1,若每一天该车间获取利润y(万元)与“不发生故障”的机器台数n(n∈N,n≤5)之间满足关系式:y=(Ⅰ)求某一天中有两台机器发生故障的概率;(Ⅱ)求这个车间一天内可能获取利润的均值(.精确到0.01).考点:函数模型的选择与应用.专题:应用题;函数的性质及应用.分析:(Ⅰ)利用相互独立事件的概率公式,求某一天中有两台机器发生故障的概率;(Ⅱ)利用每一天该车间获取利润y(万元)与“不发生故障”的机器台数n(n∈N,n≤5)之间满足关系式:y=,结合相互独立事件的概率公式,求这个车间一天内可能获取利润的均值.解答:解:(Ⅰ)∵一天中每台机器发生故障的概率为0.1,∴某一天中有两台机器发生故障的概率为=0.0729;(Ⅱ)∵每一天该车间获取利润y(万元)与“不发生故障”的机器台数n(n∈N,n≤5)之间满足关系式:y=又P0==0.95,P1==0.5•0.94,∴这个车间一天内可能获取利润的均值P0•12+P1•9+P2•6+(P3+P4+P5)•(﹣6)=P0•12+P1•9+P2•6+(1﹣P0﹣P1﹣P2)•(﹣6)=18P0+15P1+12P2﹣6≈10.42万元.点评:本题考查函数模型的选择与应用,考查相互独立事件的概率公式,正确运用相互独立事件的概率公式,是关键.21.(13分)如图,F1,F2是椭圆C:+=1的左右两个焦点,|F1F2|=4,长轴长为6,又A,B分别是椭圆C上位于x轴上方的两点,且满足=2.(Ⅰ)求椭圆C的方程;(Ⅱ)求直线AF1的方程;(Ⅲ)求四边形ABF2F1的面积.考点:椭圆的简单性质;直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:对于(Ⅰ),由焦距得c的值,由长轴长得a2的值,结合b2=a2﹣c2,即可得椭圆C 的方程.对于(Ⅱ),延长AB,与x轴交于点M,由BF2为△MAF1的中位线,得M的坐标,由此设直线AB的方程,联立椭圆+=1,消去x,得到关于y的一元二次方程,由韦达定理,得y1+y2及y1y2,又由=2,得y1与y2的关系式,于是得y1,y2,m的值,继而求得x1的值,可得AF1的斜率,即可得直线AF1的方程.对于(Ⅲ),易知四边形ABF2F1为梯形.由(Ⅱ)得x2的值,从而得到|AF1|及|BF2|,再计算点M到直线AF1的距离,即可根据梯形的面积公式计算出梯形ABF2F1的面积.解答:解:(Ⅰ)设F1(﹣c,0),F2(c,0),由题意,得,即,从而b2=a2﹣c2=5,所以椭圆C的方程为.(Ⅱ)由(Ⅰ)知,F1(﹣2,0),F2(2,0).设A(x1,y1),B(x2,y2),延长AB,与x轴交于点M,由=2知,BF2为△MAF1的中位线,∴|MF2|=|F1F2|,得M(6,0),如右图所示.设直线AB的方程为x=my+6,联立,消去x,整理,得(9+5m2)y2+60my+135=0,由韦达定理,得.…①又由=2,得(﹣2﹣x1,﹣y1)=2(2﹣x2,﹣y2),∴y1=2y2.…②联立①、②,得,从而,于是AF1的斜率,∴直线AF1的方程为.(Ⅲ)易知四边形ABF2F1为梯形.由(Ⅱ)知,,从而|AF1|==,|BF2|==.又点F2(2,0)到直线AF1:的距离,∴.点评:1.本题综合性较强,考查了椭圆标准方程的求法,直线与椭圆的相交关系及四边形面积的求法等,充分挖掘图形的几何特征是求解本题的突破口.2.对于相交弦问题,常利用根与系数的关系(即韦达定理)探究坐标之间的关系;对于向量共线问题,常共线的充要条件转化为坐标之间的关系.3.对于四边形面积的求解,一般先判断四边形的形状,再确定求解方式,或将四边形转化为两个三角形处理.22.(14分)已知e=2.71828…是自然对数的底数.(Ⅰ)求函数f(x)=ln(x+1)﹣x+在[0,+∞)上的最小值;(Ⅱ)求证ln2>;(Ⅲ)求证ln2+ln3+ln4+…+ln(n+1)>(n≥1,n∈N).考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(Ⅰ)由已知可得f′(x)=﹣1+x,当x∈[0,+∞)时f′(x)≥0,得函数f(x)在[0,+∞)上单调性,即可得到函数的最小值;(Ⅱ)可用分析法证明ln2>;(Ⅲ)亦可用分析法证明ln2+ln3+ln4+…+ln(n+1)>(n≥1,n∈N).解答:解:(Ⅰ)由于函数f(x)=ln(x+1)﹣x+,则f′(x)=﹣1+x=,故当x∈[0,+∞)时f′(x)≥0,则函数f(x)在[0,+∞)上是增函数,故函数f(x)=ln(x+1)﹣x+在[0,+∞)上的最小值为0;(Ⅱ)证明:要证ln2>,只需证ln4>,只需证ln>,而由(Ⅰ)知ln(x+1)≥x﹣(x≥0)所以ln[1+(﹣1)]≥(﹣1)﹣只需证(﹣1)﹣>,即需证明4(e﹣1)>0.9e2而e=2.71828…是自然对数的底数,故4(e﹣1)>0.9e2恒成立,从而ln2>得证;(Ⅲ)要证ln2+ln3+ln4+…+ln(n+1)>(n≥1,n∈N)成立,只需证ln(n+1)>﹣(﹣)(n≥1,n∈N)恒成立,只需证2xln(x+1)+>x(x≥1)恒成立,令g(x)=2xln(x+1)+﹣x(x≥1),则g′(x)=2ln(x+1)+2x •﹣﹣=2ln(x+1)﹣﹣+(x≥1),故g′(x)在[1,+∞)上是增函数所以g′(x)≥g′(1)=2ln2﹣1﹣+>﹣1﹣+=>0,故g′(x)在[1,+∞)上是增函数,故g(x)≥g(1)=2ln2+﹣>+=0,从而2xln(x+1)+>x(x≥1)恒成立,即ln2+ln3+ln4+…+ln(n+1)>(n≥1,n∈N)成立.点评:本题考查函数在闭区间上的最值的求法,解题时要注意导数性质的合理运用以及不等式证明中的分析法的应用.。
湖北省武汉市2015届高中毕业生四月调研测试数学(文)试题 word版含答案]
武汉市2015届高中毕业生四月调研测试文科数学第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、复数23iz i+=-的实部与虚部之和为 A .0 B .12C .1D .22、设全集U R =,集合2{|lg(1)},{02}M x y x N x ==-=<<,则()U C M N =A .{|21}x x -≤≤B .{|01}x x <≤C .{|02}x x <<D .{|1}x x < 3、函数()sincos 22x xf x =的最小正周期是 A .4π B .2πC .πD .2π4、已知某赛季甲乙两名篮球运动员每场比赛的得分茎叶图, 则甲乙两人得分的中位数之和为 A .62 B .63 C .64 D .655、4、若命题200:,230P x R x x ∃∈++≤,则命题P 的否定P ⌝是A .2,230x R x x ∀∈++>B .2,230x R x x ∀∈++≥C .2,230x R x x ∀∈++< D .2,230x R x x ∀∈++≤6、已知ABC ∆外接圆的半径为1,圆心为O ,且2,3AB AC A O A B O A +==,则CA CB ⋅的值是A .3B .2D .1 7、先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为 A .112 B .16 C .14 D .138、已知某产品连续4个月的广告费i x (千元)与销售额iy (万元)(1,2,3,4i =)满足4118ii x==∑,4114ii y==∑,若广告费x 和销售量y 之间具有线性相关关系,且回归直线方程为ˆ0.8yx a =+,那么广告费用为6千元时,可预测的销售量为A .3.5万元B .4.7万元C .4.9万元D .6.5万元9、已知直线1kx y k -=-与2kx y k --的交点在第二象限,则实数k 的取值范围是 A .1(0,)2 B .1(,1)2C .(0,1)D .{}1-10、过点(2,3)A -作抛物线24y x =的两条切线12,l l ,设12,l l 与y 轴分别交于点B 、C ,则ABC ∆的外接圆的方程为A .22340x y x +--= B .222310x y x y +--+= C .22320x y x y ++--= D .223210x y x y +--+=第Ⅱ卷二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卷的横线上。
湖北省武汉市2015届高中毕业生四月调研测试理综试卷及答案
武汉市2015 届高中毕业生四月调研测试理综一、选择题1.下列有关人体红细胞的叙述,正确的是A.成熟的红细胞可不断合成血红蛋白用于运输氧气B.衰老的红细胞可发生细胞核体积增大和核膜内折C.通过显徽观察红细胞的形态可初步诊断镰刀型细胞贫血症D.通过测定红细胞无氧呼吸产生CO2的速率可表示其呼吸强度2.下列关于人体生命活动调节的描述,正确的是A.饥饿状态下非糖物质转化为葡萄糖的速率加快B.寒冷刺激时下丘脑合成促甲状腺激素的速率加快C.饮水不足时肾小管和集合管重吸收水分的速率减慢D.病原体感染后浆细胞迅速增殖分化并分泌大量抗体3.具有两对相对性状的纯合子杂交,F2中要呈现典型的孟德尔分离比,下列条件不需要具备的是A.不同基因型的精子与卵细胞结合机率相同B.环境对不同基因型的个体的选择程度相同C.控制不同性状的基因的分离与组合互不干扰D.控制不同性状的基因均不能位于性染色体上4.向一装有2/3 容积葡萄糖溶液的锥形瓶中加入适量酵母菌,密封并静置一段时间后通入充足的氧气,此后锥形瓶中最可能发生的现象是A.酒精的浓度降低B.葡萄糖的浓度降低C.酵母菌的数量减少D. CO2的释放量减少5.右图表示通过突触传递信息的示意图,有关叙述正确的是A.①内的神经递质以胞吐方式释放B.②处发生化学信号→电信号的转变C.③对神经递质的识别不具有专一性D.④一定是某一个神经元的树突膜6.关于群落水平结构叙述,正确的是A.草原生态系统具有群落水平结构而森林生态系统没有B.环境条件分布不均匀是形成群落水平结构的原因之一C.湖泊各个水层中分布着不同种动物属于群落水平结构D.种群中的个体在水平方向上的分布构成群落水平结构7.化学与生产、生活密切相关。
下列说法的是A.小苏打是发酵粉的主要成分B.铁表面镀锌可增强其抗腐蚀性C.向汽油中添加乙醇后,该混合燃料的热值不变D.粮食酿酒经历了淀粉→葡萄糖→乙醇的化学变化过程8.卤代烃有者广泛的应用。