高中立体几何知识点总结

合集下载

高中数学立体几何知识点总结

高中数学立体几何知识点总结

高中数学立体几何知识点总结高中数学立体几何知识点总结立体几何是数学中的一个重要分支,它研究的是空间中的图形、体积以及它们之间的关系。

高中数学中的立体几何知识点较多,包括立体图形的基本概念、立体图形的体积与表面积计算、立体图形的投影等。

下面将对高中数学中的立体几何知识点进行详细总结。

1. 空间几何基本概念空间中的图形包括点、直线和平面等基本几何元素。

其中,直线是由无数个点组成的,平面是由无数个直线组成的。

2. 立体图形的基本概念立体图形是由平面围成的图形。

常见的立体图形包括立方体、正方体、长方体、棱柱、棱锥、球体、圆锥、圆柱等。

这些图形都有特定的性质和特征。

3. 立体图形的投影立体图形在投影面上的投影是指某一光线在经过立体图形后,再次射到平面上所形成的图形。

常见的立体图形投影包括正交投影和透视投影。

4. 立体图形的体积计算立体图形的体积是指该立体图形所占据的空间大小。

不同的立体图形计算方式不同,常见的计算公式包括:立方体的体积=边长的立方,正方体的体积=边长的立方,长方体的体积=长×宽×高,球体的体积=4/3×Π×半径的立方等。

5. 立体图形的表面积计算立体图形的表面积是指该立体图形各个面的总面积。

常见的计算公式包括:立方体的表面积=6×边长的平方,正方体的表面积=6×边长的平方,长方体的表面积=2×(长×宽+长×高+宽×高),圆柱的表面积=2×Π×半径×(半径+高),球体的表面积=4×Π×半径的平方等。

6. 空间的位置关系立体图形在空间中可以有不同的位置关系,包括重叠、相离、切平面、直角垂直、平行等。

通过对不同图形的位置关系的分析,可以解决立体几何的应用问题。

7. 立体图形的相交与切割两个立体图形可以相交或切割。

相交是指两个立体图形有公共部分,切割是指一个立体图形被另一个立体图形分割成两部分。

高中立体几何知识点概括

高中立体几何知识点概括

高中立体几何知识点概括高中立体几何知识点总结1:一直线上不重合的两点在平面内,则这条直线在平面内.2:若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则ABα.3:过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b⊥α,则aα.4:过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ5:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线 .6:经过一条直线和这条直线外一点,有且仅有一个平面.7:经过两条相交直线,有且仅有一个平面.8:经过两条平行线,有且仅有一个平面.9:平行于同一直线的两条直线互相平行10:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等.11:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行12:垂直于同一直线的两个平面平行13:两个平面平行,其中一个平面内的直线必平行于另一个平面14:如果两个平行平面同时和第三个平面相交,那么它们的交线平行15:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面高中立体几何解题技巧1:锻炼空间想象力:首先是学会画立体图,要画得准,还要能将不同角度的同一个几何体画出,脑子里面能想出立体图。

2:熟记立体图形各种定理和推论:只有掌握好这些立体图形各种定理和推论,才能真正学好立体图形。

3:多做题:一般说做的题太少,很多熟能生巧的问题就会无从谈起。

但是不建议题海战术,要注重做题的效率以及效果,做题之后加强反思,这样高中数学水平才能长进。

高考前数学的复习方法1、调整好状态,控制好自我。

保持清醒。

高考数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

部编版高中数学必修二第八章立体几何初步知识点总结(超全)

部编版高中数学必修二第八章立体几何初步知识点总结(超全)

(名师选题)部编版高中数学必修二第八章立体几何初步知识点总结(超全)单选题1、在△ABC 中,AB =1,AC =2,∠BAC =60°,P 是△ABC 的外接圆上的一点,若AP ⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ + nAC ⃑⃑⃑⃑⃑ ,则m +n 的最小值是( ) A .−1B .−12C .−13D .−16 答案:B分析:先解三角形得到△ABC 为直角三角形,建立直角坐标系,通过AP ⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ + nAC ⃑⃑⃑⃑⃑ 表示出m +n ,借助三角函数求出最小值.由余弦定理得BC 2=AB 2+AC 2−2AB ⋅AC ⋅cos∠BAC = 1+4−2×1×2×cos 60∘=3,所以BC =√3,所以AB 2+BC 2=AC 2,所以AB ⊥BC .以AC 的中点为原点,建立如图所示的平面直角坐标系,易得A (-1,0),C (1,0),B (-12,√32),设P 的坐标为(cosθ,sinθ),所以AB ⃑⃑⃑⃑⃑ =(12,√32),AC ⃑⃑⃑⃑⃑ =(2,0),AP ⃑⃑⃑⃑⃑ = (cosθ+1,sinθ),又AP ⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ +nAC ⃑⃑⃑⃑⃑ ,所以(cosθ+1,sinθ)=m (12,√32)+ n (2,0)=(m 2+2n ,√32m),所以m =2√33sin θ,n =cos θ2+12−√36sin θ,所以m +n =2√33sin θ+cos θ2+12−√36sin θ =√32sin θ+cos θ2+12=sin (θ+π6)+12≥−1+12=−12,当且仅当sin (θ+π6)=−1时,等号成立.故选:B .2、如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,BD =2,DE =1,点P 在线段EF 上.给出下列命题:①存在点P,使得直线DP//平面ACF;②存在点P,使得直线DP⊥平面ACF;,1];③直线DP与平面ABCD所成角的正弦值的取值范围是[√55④三棱锥A−CDE的外接球被平面ACF所截得的截面面积是9π.8其中所有真命题的序号()A.①③B.①④C.①②④D.①③④答案:D分析:当点P是线段EF中点时判断①;假定存在点P,使得直线DP⊥平面ACF,推理导出矛盾判断②;利用线面角的定义转化列式计算判断③;求出△ACF外接圆面积判断④作答.取EF中点G,连DG,令AC∩BD=O,连FO,如图,在正方形ABCD中,O为BD中点,而BDEF是矩形,则DO//GF且DO=GF,即四边形DGFO是平行四边形,即有DG//FO,而FO⊂平面ACF,DG⊄平面ACF,于是得DG//平面ACF,当点P与G重合时,直线DP//平面ACF,①正确;假定存在点P,使得直线DP⊥平面ACF,而FO⊂平面ACF,则DP⊥FO,又DG//FO,从而有DP⊥DG,在Rt△DEF中,∠DEF=90∘,DG是直角边EF上的中线,显然在线段EF上不存在点与D连线垂直于DG,因此,假设是错的,即②不正确;因平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,则线段EF上的动点P在平面ABCD上的射影在直线BD上,于是得∠PDB是直线DP与平面ABCD所成角的,在矩形BDEF中,当P与E不重合时,∠PDB=∠DPE,sin∠PDB=sin∠DPE=DEDP =√DE2+EP2=√1+EP2,而0<EP≤2,则√55≤sin∠PDB<1,当P与E重合时,∠PDB=π2,sin∠PDB=1,因此,√55≤sin∠PDB≤1,③正确;因平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,BF⊥BD,BF⊂平面BDEF,则BF⊥平面ABCD,BC=√2,在△ACF中,AF=CF=√BC2+BF2=√3,显然有FO⊥AC,sin∠FAC=FOAF =√BO2+BF2AF=√2√3,由正弦定理得△ACF外接圆直径2R=CFsin∠FAC =√2,R=2√2,三棱锥A−CDE的外接球被平面ACF所截得的截面是△ACF的外接圆,其面积为πR2=9π8,④正确,所以所给命题中正确命题的序号是①③④.故选:D小提示:名师点评两个平面互相垂直,则一个平面内任意一点在另一个平面上的射影都在这两个平面的交线上.3、正方体中,点P,O,R,S是其所在棱的中点,则PQ与RS是异面直线的图形是()A.B.C.D.答案:C分析:对于A,B,D,利用两平行线确定一个平面可以证明直线PQ与RS共面,对于C,利用异面直线的定义推理判断作答.对于A,在正方体ABCD−A1B1C1D1中,连接AC,A1C1,则AC//A1C1,如图,因为点P,Q,R,S是其所在棱的中点,则有PQ//AC,RS//A1C1,因此PQ//RS,则直线PQ与RS共面,A错误;对于B,在正方体ABCD−A1B1C1D1中,连接AC,QS,PR,如图,因为点P,Q,R,S是其所在棱的中点,有AP//CR且AP=CR,则四边形APRC为平行四边形,即有AC//PR,又QS//AC,因此QS//PR,直线PQ与RS共面,B错误;对于C,在正方体ABCD−A1B1C1D1中,如图,因为点P,Q,R,S是其所在棱的中点,有RS//BB1,而BB1⊂平面ABB1A1,RS⊄平面ABB1A1,则RS//平面ABB1A1,PQ⊂平面ABB1A1,则直线PQ与RS无公共点,又直线PQ与直线BB1相交,于是得直线PQ与RS不平行,则直线PQ与RS是异面直线,C正确;对于D,在正方体ABCD−A1B1C1D1中,连接A1B,D1C,PS,QR,如图,因为A1D1//BC且A1D1=BC,则四边形A1D1CB为平行四边形,有A1B//D1C,因为点P,Q,R,S是其所在棱的中点,有PS//A1B,QR//D1C,则PS//QR,直线PQ与RS共面,D错误.故选:C4、下面四个选项中一定能得出平面α/⁄平面β的是()A.存在一条直线a,a//α,a//βB.存在一条直线a,a⊂α,a//βC.存在两条平行直线a,b,a⊂α,b⊂β,a//β,b//αD.存在两条异面直线a,b,a⊂α,b⊂β,a//β,b//α答案:D分析:对于A,B,C,举出符合条件的特例即可判断;对于D,过直线a作平面γ∩β=c,再证c//α即可. 如图,ABCD−A1B1C1D1是长方体,平面ABCD为平面α,平面ABB1A1为平面β,对于A,直线C1D1为直线a,显然a//α,a//β,而α与β相交,A不正确;对于B,直线CD为直线a,显然a⊂α,a//β,而α与β相交,B不正确;对于C,直线CD为直线a,直线A1B1为直线b,显然a⊂α,b⊂β,a//β,b//α,而α与β相交,C不正确;对于D,因a,b是异面直线,且a⊂α,b⊂β,过直线a作平面γ∩β=c,如图,则c//a,并且直线c与b必相交,而c⊄α,于是得c//α,又b//α,即β内有两条相交直线都平行于平面α,⁄平面β.因此,平面α/故选:D5、已知直线l⊥平面α,有以下几个判断:①若m⊥l,则m//α;②若m⊥α,则m//l;③若m//α,则m⊥l;④若m//l,则m⊥α;上述判断中正确的是()A.①②③B.②③④C.①③④D.①②④答案:B分析:根据线面的位置关系,线面垂直的性质定理,线面平行的性质定理及线面垂直的性质逐项分析即得. 对于①,当m⊂平面α也可以有m⊥l,但m不平行于平面α,故①错;对于②,根据线面垂直的性质定理可知②正确;对于③,根据线面平行的性质定理可得存在n⊂α且m∥n.而直线l⊥平面α,故可根据线面垂直的性质得出l⊥n,故l⊥m正确;对于④,根据直线l⊥平面α,可在平面α内找到两条相交直线p,n,且l⊥p,l⊥n,又m∥l,所以m⊥p,m⊥n,故根据线面垂直的判定定理可知,m⊥α正确.即②③④正确.故选:B.6、下列命题:①有两个面平行,其他各面都是平行四边形的几何体叫做棱柱;②有两侧面与底面垂直的棱柱是直棱柱;③过斜棱柱的侧棱作棱柱的截面,所得图形不可能是矩形;④所有侧面都是全等的矩形的四棱柱一定是正四棱柱.其中正确命题的个数为()A.0B.1C.2D.3答案:A分析:①②③④均可举出反例.①如图1,满足有两个面平行,其他各面都是平行四边形,显然不是棱柱,故①错误;②如图2,满足两侧面ABB1A1与底面垂直,但不是直棱柱,②错误;③如图3,四边形ACC1A1为矩形,即过斜棱柱的侧棱作棱柱的截面,所得图形可能是矩形,③错误;④所有侧面都是全等的矩形的四棱柱不一定是正四棱柱,因为两底面不一定是正方形,④错误.故选:A7、圆柱的底面直径与高都等于球的直径,则球的表面积与圆柱的侧面积的比值为()A.1∶1B.1∶2C.2∶1D.2∶3答案:A分析:按圆柱侧面积和球的表面积公式计算即可.设球的半径的r,依题意圆柱的底面半径也是r,高是2r,圆柱的侧面积=2πr·2r=4πr2,球的表面积为4πr2,其比例为1:1,故选:A.8、已知圆锥的母线长为3,其侧面展开图是一个圆心角为2π3的扇形,则该圆锥的体积为()A.√23πB.2√23πC.πD.√2π分析:根据弧长计算公式,求得底面圆半径以及圆锥的高,即可求得圆锥的体积.设圆锥的底面圆半径为r,故可得2πr=2π3×3,解得r=1,设圆锥的高为ℎ,则ℎ=√32−12=2√2,则圆锥的体积V=13×πr2×ℎ=13×π×2√2=2√23π.故选:B.多选题9、设z1,z2为复数,则下列命题正确的是()A.若|z1−z2|=0,则z1=z2B.若|z1|=|z2|,则z12=z22C.若z1+z2>0,则z2=z̅1D.若z1z2=0,则z1=0或z2=0答案:AD分析:通过反例可说明BC错误;设z1=a+b i,z2=c+d i,根据模长运算和复数乘法运算可分析得到AD正确.对于A,设z1=a+b i,a,b∈R,z2=c+d i,c,d∈R,则|z1−z2|=√(a−c)2+(b−d)2=0,∴{a−c=0 b−d=0,即{a=cb=d,∴z1=z2,A正确;对于B,令z1=1,z2=i,则|z1|=|z2|=1,此时z12≠z22,B错误;对于C,令z1=1+i,z2=−i,则z1+z2=1>0,此时z2≠z̅1,C错误;对于D,设z1=a+b i,z2=c+d i,则z1z2=(ac−bd)+(ad+bc)i=0,∴{ac−bd=0 ad+bc=0,即{ac=bdad=−bc,则a2cd=−b2cd;若c=d=0,则a2cd=−b2cd成立,此时z2=0;若c=0,d≠0,由ac=bd知:b=0;由ad=−bc知:a=0;此时z1=0;同理可知:当c≠0,d=0时,z1=0;若c≠0,d≠0,由a2cd=−b2cd得:a2=−b2,∴a=b=0,此时z1=0;综上所述:若z1z2=0,则z1=0或z2=0,D正确.10、如图所示,已知正方体ABCD−A1B1C1D1的棱长为2,M,N分别是AD,CC1的中点,P是线段AB上的动点,则下列说法正确的是()A.当点P与A,B两点不重合时,平面PMN截正方体所得的截面是五边形B.平面PMN截正方体所得的截面可能是三角形C.△MPN一定是锐角三角形D.△MPN面积的最大值是√212答案:AD分析:依据平面的性质画出平面PMN截正方体所得的截面判断选项AB;举反例否定选项C;求得△MPN面积的最大值判断选项D如图,当点P与A,B两点不重合时,将线段MP向两端延长,分别交CD,CB的延长线于点O,Q,连接NO,NQ分别交DD1,BB1于R,S两点,连接RM,SP,MP此时截面为五边形MPSNR,所以A正确;当点P与点A或点B重合时,截面为四边形.综上,平面PMN截正方体所得的截面为四边形或五边形.不可能是三角形,所以B不正确;考虑△PMN ,当点P 与点A 重合时,MN =√6,PM =1,PN =3,此时因为MN 2+PM 2<PN 2,故∠PMN 为钝角,所以C 判断错误;如图,E,F 为DD 1,BC 中点,连接EN,MF ,则AB//MF//EN ,且MN ⊂面MFNE ,延长EM,NF 分别交A 1A,B 1B 延长线于I,J ,则AI =AM =BJ =BF ,若G,H 分别为MI,FJ 中点,易知:AG,BH ⊥面MFNE ,且AG//BH ,AG =BH ,易证:面AGHB ⊥面MFNE ,即AB 在面MFNE 上的投影为GH ,令PK ⊥GH ,面MFNE ∩面AGHB = GH ,则PK ⊥面MFNE ,MN ⊂面MFNE ,所以PK ⊥MN ,若KL ⊥MN ,PK ∩KL =K ,则MN ⊥面PKL ,PL ⊂面PKL ,所以MN ⊥PL ,即PL 为P 到直线MN 的距离,如下图,随P 从A 到B 移动过程中,KL 逐渐变大,而PK 不变,故PL 也在变大,所以当P 与点B 重合时,点P 到直线MN 的距离取到最大值,△MPN 的面积取到最大值,此时MN =√6,BM =BN =√5,则MN 边上的高为√(√5)2−(√62)2=√142, △MBN 的面积为12×√142×√6=√212,即最大值为√212,D 判断正确.故选:AD .11、如图所示,在棱长为2的正方体ABCD −A 1B 1C 1D 1中,M ,N 分别为棱C 1D 1,C 1C 的中点,则下列结论正确的是( )A .直线AM 与BN 是平行直线B .直线BN 与MB 1是异面直线C .直线MN 与AC 所成的角为60°D .平面BMN 截正方体所得的截面面积为92 答案:BCD解析:根据异面直线的定义直接判断AB 选项,根据MN//D 1C ,转化求异面直线所成的角,利用确定平面的依据,作出平面BMN 截正方体所得的截面,并求面积.A.直线AM 与BN 是异面直线,故A 不正确;B.直线BN 与MB 1是异面直线,故B 正确;C. 由条件可知MN//D 1C ,所以异面直线MN 与AC 所成的角为∠ACD 1,△ACD 1是等边三角形,所以∠ACD 1=60∘,故C 正确;D.如图,延长MN ,并分别与DD 1和DC 交于E,F ,连结EA,GB 交于点F ,连结A 1M,BN ,则四边形A 1BNM 即为平面BMN 截正方体所得的截面,由对称性可知,四边形A 1BNM 是等腰梯形,MN =√2,A 1B =2√2,A 1M =BN =√5,则梯形的高是ℎ=√(√5)2−(√22)2=3√22,所以梯形的面积S =12×(√2+2√2)×3√22=92,故D 正确.故选:BCD小提示:关键点点睛:本题考查以正方体为载体,判断异面直线,截面问题,本题关键选项是D,首先要作出平面BMN与正方体的截面,即关键作出平面EFG.填空题12、直三棱柱ABC−A1B1C1的所有顶点都在球O的球面上,AB⊥BC,AB=1,BC=2√2,AA1=4,则球O的体积是__________.答案:1256π分析:把直三棱柱ABC−A1B1C1补成长方体,求出外接球的直径即得解.把直三棱柱ABC−A1B1C1补成长方体,则直三棱柱和长方体的外接球重合,外接球的直径2R=√12+(2√2)2+42=5,故球O的体积V=43πR3=1256π.所以答案是:1256π。

高中数学中的立体几何知识点总结

高中数学中的立体几何知识点总结

高中数学中的立体几何知识点总结立体几何是高中数学中一个重要的分支,它研究的是三维空间中的物体形状、大小以及它们之间的相互关系。

本文将对高中数学中的立体几何知识点进行总结,帮助同学们梳理和复习相关内容。

一、点、线、面的关系1. 点:点是空间中最基本的概念,没有大小和形状,只有位置坐标。

2. 线:两个点确定一条线段,线段有长度,可以延伸成直线。

3. 面:三个或三个以上的点确定一个面,面有面积,可以延伸成平面。

二、多面体1. 三棱锥:底面为三角形,侧面为三角形的四面体。

2. 四棱锥:底面为四边形,侧面为三角形的五面体。

3. 五棱锥:底面为五边形,侧面为三角形的六面体。

4. 正棱锥:底面为正多边形,侧面为等边三角形的多面体。

5. 正方体:六个面都是正方形的多面体。

6. 正四面体:四个面都是正三角形的多面体。

7. 正六面体:六个面都是正方形的多面体。

三、平面图形与立体图形1. 投影:图形在投影面上的图象。

2. 平行投影:平行于投影面的投影方式,不改变图形的形状和面积。

3. 斜投影:不平行于投影面的投影方式,改变图形的形状和面积。

4. 立体图形的展开图:将立体图形展开成平面图,便于计算和分析。

5. 空间几何体的视图:主视图、俯视图和侧视图,用来描述一个立体图形。

四、平行与垂直1. 平行关系:两条直线在同一个平面上,且永远不相交。

2. 垂直关系:两条直线在同一个平面上,且相交成直角。

五、角与平面的关系1. 角:由两条射线共同确定的图形,可以是平面角或空间角。

2. 平面角:两个相交的平面所夹的角,范围为0到180度。

3. 相对角:两个相交直线上相对的两个角。

六、面积与体积1. 面积:平面图形所占的面积,常见的有三角形、四边形、圆形的计算公式。

2. 体积:三维物体所占的空间大小,常见的有长方体、正方体、棱柱、棱锥、球体的计算公式。

七、相交与相切1. 相交:两个或多个图形交叠在一起。

2. 相切:两个或多个图形只有一个点是共同的。

高中数学立体几何知识点总结(全)

高中数学立体几何知识点总结(全)

高中数学立体几何知识点总结(全)垂直直线:两条直线的夹角为90度。

XXX.三.点与平面的位置关系点在平面上:点在平面内部;点在平面外:点在平面的一侧;点在平面上方或下方:需要指定一个方向向量,点在平面的哪一侧就取决于该方向向量与平面法向量的夹角。

四.直线与平面的位置关系直线在平面上:直线的每一点都在平面上;直线在平面内部:直线与平面没有交点;直线与平面相交:直线与平面有且只有一个交点;直线平行于平面:直线与平面没有交点,且方向向量与平面法向量垂直。

改写后:一、空间几何体的三视图空间几何体的三视图包括正视图、侧视图和俯视图。

其中,正视图是指从几何体的前面向后面正投影得到的投影图,反映了物体的高度和长度;侧视图是指从几何体的左面向右面正投影得到的投影图,反映了物体的高度和宽度;俯视图是指从几何体的上面向下面正投影得到的投影图,反映了物体的长度和宽度。

在三视图中,长对正,高平齐,宽相等是反映长、宽、高特点的简洁表述。

二、空间几何体的直观图斜二测画法是一种用于绘制空间几何体直观图的方法。

基本步骤包括建立适当的直角坐标系xOy,建立斜坐标系x'O'y',并画出对应图形。

在直观图中,已知图形平行于X轴的线段画成平行于X'轴,长度不变;已知图形平行于Y轴的线段画成平行于Y'轴,长度变为原来的一半。

直观图与原图形的面积关系是直观图面积为原图形面积的四分之一。

三、空间几何体的表面积与体积圆柱、圆锥、圆台的侧面积分别为2πrl、πrl和πr(l+R),其中r表示底面半径,l表示母线长度,R表示上底面半径。

圆柱、圆锥、圆台的体积分别为Sh、S/3h和S(h/3),其中S为底面积,h为高度。

球的表面积和体积分别为4πR²和(4/3)πR³。

四、点、直线、平面之间的位置关系平面的基本性质包括三条公理,分别是公理1、公理2和公理3.直线与直线的位置关系有相交、平行和垂直;点与平面的位置关系有在平面上、在平面内部、在平面外部、在平面上方或下方;直线与平面的位置关系有在平面上、在平面内部、相交和平行。

高中立体几何基础知识点全集

高中立体几何基础知识点全集

高中立体几何基础知识点全集在高中数学的学习中,立体几何是一个重要的组成部分。

它不仅能够培养我们的空间想象力和逻辑思维能力,也是解决许多实际问题的有力工具。

接下来,就让我们一起走进高中立体几何的世界,系统地梳理一下其中的基础知识点。

一、空间几何体1、棱柱棱柱是由两个平行且全等的多边形底面和若干个平行四边形侧面围成的多面体。

侧棱都平行且相等,侧面都是平行四边形。

根据侧棱与底面是否垂直,棱柱又分为直棱柱和斜棱柱。

2、棱锥棱锥是由一个多边形底面和若干个有公共顶点的三角形侧面围成的多面体。

如果棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,那么这样的棱锥叫做正棱锥。

正棱锥的性质包括:侧棱长相等、侧面是全等的等腰三角形、顶点在底面的射影是底面正多边形的中心。

3、棱台棱台是用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

棱台的上下底面是相似多边形,侧面都是梯形。

4、圆柱以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

5、圆锥以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体叫做圆锥。

圆锥的轴、底面、侧面、母线的定义与圆柱类似。

6、圆台用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。

圆台的上下底面是两个半径不同的圆,侧面是一个母线延长后能够相交于一点的曲面。

7、球以半圆的直径所在直线为轴,将半圆旋转一周所形成的曲面叫做球面,球面所围成的几何体叫做球体,简称球。

二、空间几何体的表面积和体积1、棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台的表面积就是各个面的面积之和。

直棱柱的侧面积等于底面周长乘以高,正棱锥的侧面积等于底面周长乘以斜高的一半,正棱台的侧面积等于上下底面周长之和乘以斜高的一半。

高中数学知识点总结立体几何基础

高中数学知识点总结立体几何基础高中数学知识点总结:立体几何基础在高中数学中,立体几何是一个非常重要的内容,它研究的是空间中的物体、形状和位置关系。

掌握立体几何的基础知识对于解题和应用数学都有着重要的作用。

本文将对高中数学中的立体几何基础知识点进行总结。

一、点、线、面和空间1. 点:点是最基本的几何图形,它没有长度、宽度和高度,只有位置。

2. 线:线由无数个点连成,具有长度和方向。

3. 面:面由线围成,具有长度和宽度,两个面之间由边界线分隔。

4. 空间:空间就是由无限个点、线和面组成的。

二、立体的分类1. 多面体:多面体是由多个平面围成的空间图形,它有很多面、边和顶点。

常见的多面体有正方体、长方体、正六面体等。

2. 圆锥体:圆锥体是由一个圆和一个顶点连成的线段,再将这个线段旋转一周形成的。

3. 圆柱体:圆柱体是由两个平行的圆底面和连接两个底面的矩形侧面组成的。

4. 球体:球体由一个圆绕着直径旋转一周形成的。

三、体积和表面积1. 体积:体积用来表示立体图形的容量大小,它的单位是立方厘米(cm³)或立方米(m³)。

不同形状的立体图形计算体积的公式也不同,例如长方体的体积公式为长×宽×高。

2. 表面积:表面积是表示立体图形外部各个面积的总和,它的单位是平方厘米(cm²)或平方米(m²)。

各种立体图形的表面积计算公式不同,例如正方体的表面积公式为6×边长×边长。

四、立体图形的投影1. 正交投影:正交投影是指从不同的方向将物体的投影投射到一个平面上,保持形状和大小不变。

常见的正交投影有俯视图、正视图和侧视图。

2. 斜投影:斜投影是指将物体的投影投射到一个斜面上,通过变换物体的位置和大小来表示形状。

五、相似立体和全等立体1. 相似立体:相似立体是指两个立体图形的形状相似,但大小可以不同。

在相似立体中,对应的边长比例相等,对应的面积比例相等,对应的体积比例相等。

高中立体几何知识点总结

高中立体几何知识点总结1500字高中立体几何是高中数学的一个重要分支,它研究的是空间中的物体以及它们之间的关系。

在高中立体几何中,我们主要学习物体的表面积、体积、投影等这些基本概念和计算方法。

下面是关于高中立体几何的知识点总结。

一、几何体的表面积和体积1.立体几何的基本概念:点、线、面、体2.立体几何的基本性质:平行面、平面交线、平面垂直于线、线垂直于面3.立体几何的基本公式:表面积公式:正方体(A=6a²)、长方体(A=2(ab+bc+ca))、正方体锥(A=πr²+πrl)、球(A=4πr²)、圆锥(A=πr²+πrl)、圆柱(A=2πr²+2πrh)体积公式:正方体(V=a³)、长方体(V=abc)、正方体锥(V=1/3πr²h)、球(V=4/3πr³)、圆锥(V=1/3πr²h)、圆柱(V=πr²h)二、平行截面的性质1.平行截面的基本概念:平行截面、柱体、锥体2.平行截面的性质:平行截面的面积比等于相应部分高度的比例三、投影1.平行投影和中心投影的概念2.平行投影和中心投影的性质:平行投影和中心投影的形状和面积相等,但长度有变化3.平行投影和中心投影的应用:建筑物的投影、光学现象等四、旋转体的性质1.旋转体的基本概念:旋转体、回转体2.圆锥、圆柱、球、棱柱、棱锥的性质3.通过平行、垂直截面计算旋转体的体积五、两线垂直、两面垂直的关系1.两线垂直的性质:两直线垂直的充分必要条件是它们的斜率的乘积为-12.两面垂直的性质:两平面垂直的充分必要条件是它们的法向量的点积为0六、空间距离的计算1.空间点、直线、平面之间的距离计算2.空间点到直线、平面的距离计算七、几何体的相交关系1.两直线相交的性质:两条直线相交的充分必要条件是它们的方向向量不共线2.两平面相交的性质:两平面相交的充分必要条件是它们的法向量不平行3.直线与平面的相交:直线与平面相交的充分必要条件是直线不与平面平行且经过平面内一点4.点与几何体的关系:点与几何体的关系分为共面和异面两种情况八、立体几何的应用1.建筑结构中的立体几何:建筑物的设计和施工中,立体几何是十分重要的2.机械工程中的立体几何:机械制图和设计中,立体几何是必不可少的3.地理学中的立体几何:地球的表面积计算、地图的制作等都需要用到立体几何的知识以上是关于高中立体几何的知识点总结,希望对你有所帮助!。

高中立体几何知识点总结

高中立体几何知识点总结高中立体几何知识点总结高中阶段的几何学主要包括平面几何和立体几何两个部分。

在立体几何中,我们将着重总结一些常见的知识点和解题技巧。

1. 空间几何基本概念① 点、线、面在立体几何中,点是空间的基本单位,线由一系列连续的点构成,而面是由一系列连续的线构成。

② 直线和平面的相交关系两个不平行的直线一定有交点;两个平面要么相交于一条直线,要么平行,不能相交于一点;直线与平面的交点可以是一点、也可以是一条直线。

③ 角和平面角角的度量是通过两条相交线之间的夹角来表示的;平面角则是两个相邻的平面之间的夹角。

2. 空间几何基本定理① 垂直定理两条直线互相垂直的充要条件是它们的斜率互为相反数。

② 平行定理两条直线平行的充要条件是它们的斜率相等。

③ 傍心定理四条边垂直于外切圆弧的充要条件是这四条边中垂直于同一边的两条边相等。

④ 钝角三角形性质任何一个钝角三角形的边上都至少有一条边大于这个三角形的底边。

3. 空间几何常见图形① 等腰三角形等腰三角形的两边(腰)相等,两边所对的角(底角)也相等。

② 直角三角形直角三角形有一个角为直角(90度),符合勾股定理:a²+b²=c²,其中a、b为直角边,c为斜边。

③ 正方体正方体是一个六个正方形构成的立体图形,具有六个面、八个顶点和十二条棱。

④ 圆锥圆锥是一种具有一个圆形底面和一个尖顶的立体图形。

4. 空间几何解题技巧① 利用平行线和相似三角形当两条直线平行时,可以利用平行线与交线的关系,推导出一些角的对应关系和边长比例。

相似三角形性质也经常用于解决一些立体几何问题。

② 借助投影和截面利用点、线、面在空间中的投影关系,可以在图形上投影出一些重要的点和线,建立辅助线,从而简化解题过程。

此外,利用平面截面将三维问题转化为二维问题,也是解决一些空间几何问题的常见方法。

③ 建立方程在一些立体几何问题中,可以通过建立坐标系,利用平面几何中的方程来解决。

高中数学立体几何知识点

高中数学立体几何知识点立体几何是高中数学中的重要组成部分,对于培养我们的空间想象力和逻辑推理能力具有重要意义。

下面就让我们一起来梳理一下高中数学立体几何的相关知识点。

一、空间几何体1、棱柱棱柱是由两个平行且全等的多边形底面以及侧面都是平行四边形的多面体。

棱柱根据侧棱与底面的关系可以分为直棱柱和斜棱柱。

直棱柱的侧棱垂直于底面,斜棱柱的侧棱不垂直于底面。

2、棱锥棱锥是由一个多边形底面和若干个有公共顶点的三角形侧面组成的多面体。

棱锥根据底面多边形的边数可以分为三棱锥、四棱锥等。

3、棱台棱台是用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

4、圆柱以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

5、圆锥以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体叫做圆锥。

6、圆台用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台。

7、球以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球体,简称球。

二、空间几何体的表面积和体积1、棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台的表面积就是各个面的面积之和。

棱柱的侧面积等于底面周长乘以侧棱长。

棱锥的侧面积等于各个侧面三角形面积之和。

棱台的侧面积等于各个侧面梯形面积之和。

2、圆柱、圆锥、圆台的表面积圆柱的表面积等于侧面积加上两个底面积,侧面积等于底面圆的周长乘以圆柱的高。

圆锥的表面积等于侧面积加上底面积,侧面积等于底面圆的周长乘以母线长的一半。

圆台的表面积等于侧面积加上上、下底面积,侧面积等于上、下底面圆的周长分别乘以母线长的一半之和。

3、体积公式棱柱的体积等于底面积乘以高。

棱锥的体积等于三分之一乘以底面积乘以高。

棱台的体积等于三分之一乘以高乘以(上底面积加下底面积加上底面积乘以下底面积的平方根)。

圆柱的体积等于底面积乘以高。

圆锥的体积等于三分之一乘以底面积乘以高。

圆台的体积等于三分之一乘以高乘以(上底面积加下底面积加上底面积乘以下底面积的平方根)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中立体几何知识点总结一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱面的中心,这样的棱锥叫做正棱锥。

2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。

对棱间的距离为a 22(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=)正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-)正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、圆柱的结构特征3.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。

3.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆; (2)过轴的截面(轴截面)是全等的矩形。

3.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。

3.4 圆柱的面积和体积公式S 圆柱侧面 = 2π·r ·h (r 为底面半径,h 为圆柱的高) S 圆柱全 = 2π r h + 2π r 2ABC D POHV 圆柱 = S 底h = πr 2h 4、圆锥的结构特征4.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥。

4.2 圆锥的结构特征(1) 平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;(3)母线的平方等于底面半径与高的平方和: l 2 = r 2 + h 24.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。

5球的结构特征5.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体。

空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体。

5-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ★5-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴ 根据题意,确定是内接还是外切,画出立体图形;⑵ 找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图; ⑶ 将立体问题转化为平面几何中圆与多边形的问题;⑷ 注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长。

5-4 球的面积和体积公式 S 球面 = 4 π R 2 (R 为球半径) V 球 = 4/3 π R 3(三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+图1-5 圆锥圆锥的表面积:2Srl r ππ=+球的表面积:24S R π=扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积 :V S h =⨯底锥体的体积 :13V S h =⨯底球体的体积:343V R π= 二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)、平行于同一直线的两直线平行。

(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

(12)、垂直于同一平面的两直线平行。

2、线线垂直的判断:(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

(10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

3、线面平行的判断:(2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

(5)、两个平面平行,其中一个平面内的直线必平行于另一个平面。

判定定理:性质定理:★判断或证明线面平行的方法⑴ 利用定义(反证法):l α=∅I ,则l ∥α (用于判断); ⑵ 利用判定定理:线线平行线面平行 (用于证明);⑶ 利用平面的平行:面面平行线面平行 (用于证明);⑷ 利用垂直于同一条直线的直线和平面平行(用于判断)。

2 线面斜交和线面角:l ∩ α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ。

2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90° 4、线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。

⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

判定定理:图2-3 线面角性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线。

即:(2)垂直于同一平面的两直线平行。

即:★判断或证明线面垂直的方法 ⑴ 利用定义,用反证法证明。

⑵ 利用判定定理证明。

⑶ 一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面。

⑷ 一条直线垂直于两平行平面中的一个,则也垂直于另一个。

⑸ 如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面。

★1.5 三垂线定理及其逆定理⑴ 斜线定理:从平面外一点向这个平面所引的所有线段中,斜线相等则射影相等,斜线越长则射影越长,垂线段最短。

如图:⑵ 三垂线定理及其逆定理已知PO ⊥α,斜线PA 在平面α内的射影为OA ,a 是平面α内的一条直线。

① 三垂线定理:若a ⊥OA ,则a ⊥PA 。

即垂直射影则垂直斜线。

② 三垂线定理逆定理:若a ⊥PA ,则a ⊥OA 。

即垂直斜线则垂直射影。

⑶ 三垂线定理及其逆定理的主要应用 ① 证明异面直线垂直; ② 作出和证明二面角的平面角; ③ 作点到线的垂线段。

5、面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。

⒀垂直于同一条直线的两个平面平行。

6、面面垂直的判断:⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。

判定定理:性质定理:图2-7 斜线定理图2-8 三垂线定理⑴ 若两面垂直,则这两个平面的二面角的平面角为90°; (2)(3)(4)(二)、其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线; (2)直线与直线的位置关系: 相交 ; 平行 ; 异面 ;直线与平面的位置关系: 在平面内 ; 平行 ; 相交(垂直是它的特殊情况) ;平面与平面的位置关系: 相交 ;; 平行 ;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。

(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角。

(6)异面直线的判定: ①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线。

(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内。

图2-10 面面垂直性质 2图2-11 面面垂直性质3(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线。

(三)、唯一性定理:(1)过已知点,有且只能作一直线和已知平面垂直。

(2)过已知平面外一点,有且只能作一平面和已知平面平行。

(3)过两条异面直线中的一条能且只能作一平面与另一条平行。

四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相oo(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o0;②线面垂直:线面所成的角为o90;oo所成的角。

o o(3)二面角:关键是找出二面角的平面角。

方法有:①定义法;②三垂线定理法;③垂面法;o o五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长。

求它们首先要找到表示距离的线段,然后再计算。

相关文档
最新文档