空间立体几何归纳
高中立体几何知识点总结

一、空间点、线、面的位置关系1.1 点与点•点的定义:空间中的任意一点。
•点的坐标表示:a⃗=(a x,a y,a z)。
1.2 直线与直线•直线的定义:无限延伸的平面内的所有点。
•直线的方程表示:r⃗=(x,y,z),其中Ax+By+Cz+D=0。
1.3 直线与平面•直线的平面方程表示:r⃗=(x,y,z),其中Ax+By+Cz+D=0。
•直线与平面的交点表示:设直线上的点为P(x0,y0,z0),则有Ax0+ By0+Cz0+D=0。
1.4 平面与平面•平面的定义:无限延伸的平面内的所有点。
•平面的方程表示:r⃗=(x,y,z),其中Ax+By+Cz+D=0。
1.5 平面与空间体•平面与空间体的交线表示:设空间体上的点为P(x0,y0,z0),则有Ax0+By0+Cz0+D=0。
二、空间几何体2.1 柱体•柱体的定义:底面为圆形或矩形,顶面与底面平行的空间几何体。
•柱体的体积公式:V=底面积×高。
2.2 锥体•锥体的定义:底面为圆形或三角形,顶点在底面内的空间几何体。
•锥体的体积公式:V=1底面积×高。
32.3 球体•球体的定义:所有点与球心等距的空间几何体。
•球体的体积公式:V=4πR3。
32.4 空间四边形•空间四边形的定义:四个顶点在空间中的四边形。
•空间四边形的面积公式:S=12|a⃗×b⃗⃗|,其中a⃗和b⃗⃗为四边形的两条对角线。
三、空间角的计算3.1 线线角•线线角的定义:两条直线之间的夹角。
•线线角的计算公式:θ=arccos(|a⃗⃗⋅b⃗⃗||a⃗⃗||b⃗⃗|),其中a⃗和b⃗⃗为两条直线的方向向量。
3.2 线面角•线面角的定义:直线与平面之间的夹角。
•线面角的计算公式:θ=arccos(|n⃗⃗⋅a⃗⃗||n⃗⃗||a⃗⃗|),其中n⃗⃗为平面的法向量,a⃗为直线的方向向量。
3.3 面面角•面面角的定义:两个平面之间的夹角。
•面面角的计算公式:θ=arccos(|n⃗⃗1⋅n⃗⃗2||n⃗⃗1||n⃗⃗2|),其中n⃗⃗1和n⃗⃗2为两个平面的法向量。
空间几何体知识点归纳总结(超详细)(精华版)

空间几何体一:棱柱1,定义有两个面相互平行,其余各面都是四边形,并且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体叫做“棱柱”2,分类斜棱柱棱柱;正棱柱(侧棱垂直于底)其他棱柱面,且底面是正多边形)直棱柱(侧棱与底面垂直3,底面:两个可以重合的多边形4,侧面:平行四边形5,侧面积6,表面积7,体积二:棱锥1,“棱锥”定义有一个面是多边形,锥;2,分类“正棱锥”定义其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱假如一个棱锥的底面是正多边形,棱锥;否就它是斜棱锥;3,底面4,侧面5,侧面积6,表面积7,体积并且顶点在底面的射影是底面的中心,这样的棱锥叫做正PCOBAD三:棱台1,“棱台”定义用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台;2,分类“正棱台”定义由正棱锥截得的棱台叫做正棱台;3,底面4,侧面5,侧面积6,表面积7,体积留意:棱台常常补成棱锥讨论四:圆柱1,定义 以矩形的一边所在的直线为旋转轴, 2,底面 3,侧面 4,侧面积 5,表面积 6,体积其余各边旋转而形成的曲面所围成的几何体叫“圆柱”;五:圆锥1,定义 以直角三角形的一条直角边所在直线为旋转轴, “圆锥”;该直角边叫圆锥的轴; 2,底面 3,侧面 4,侧面积 5,表面积 6,体积其余两边旋转形成的面所围成的旋转体叫做六:圆台1,定义 用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做“圆台” 2,底面 3,侧面 4,侧面积 5,表面积 6,体积;七:空间几何体的体积与表面积 1,多面体的面积和体积公式名称 侧面积 (S 侧 ) 全面积 (S 全)体 积 (V)S 底 ·h=S 直截面 ·h 棱柱直截面周长 ×l棱 柱S 侧+2S 底S 底 ·h直棱柱 ch 棱锥 各侧面积之和棱 锥1 底 ·hS 3S 侧+S 12底正棱锥 ch ′ 棱台 各侧面面积之和1 棱 台上底 +S 下底 + h(S 3)侧+S 上底 +S 下底1 2S S 下S 下正棱台(c+c ′h )′表中 S 表示面积, c ′, c 分别表示上,下底面周长, h 表示高, h ′表示斜高, l 表示侧棱长;2,旋转体的面积和体积公式名称圆柱圆锥圆台球2πrl πrl π(r1+r2)lS 侧222 2πr(l+r ) πr(l +r ) π(r1+r 2)l+π(r 1+r 2)4πR S 全1 31343222322πr hπh(r 1+r1r 2+r 2)πR πr h( 即πr l)V表中l ,h 分别表示母线,高,r 表示圆柱,圆锥与球冠的底半径,r 1,r 2 分别表示圆台上,下底面半径,R表示半径;八:空间几何体的三视图与直观图1,正视图光线从几何体的前面对后面正投影,得到投影图;2,侧视图光线从几何体的左面对右面正投影,得到投影图;3,俯视图光线从几何体的左面对右面正投影,得到投影图;九,“斜二测”画法.正六面形的斜二测画法示意图xoy 901:在已知图形中取相互垂直的轴Ox,Oy,(即取);o ' x ', o' y' ,取x ' o' y ' 45 (or135 ) ,它们确定的平2:画直观图时,把它画成对应的轴面表示水平平面;x 'o ' y ' 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于3:在坐标系x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半;24结论:一般地,采纳斜二测法作出的直观图面积是原平面图形面积的倍.。
空间立体几何知识点归纳

第一章 空间几何体知识点归纳1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
简单组合体的构成形式:⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
1、空间几何体的三视图和直观图投影:中心投影 平行投影(1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上)②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:()S r R l π=+侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()13V h S S =+下台体上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。
第二章 点、直线、平面之间的位置关系及其论证1,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩ 公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。
立体几何初步知识点全总结

立体几何初步知识点全总结一、空间几何体的结构。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 直棱柱:侧棱垂直于底面的棱柱。
正棱柱:底面是正多边形的直棱柱。
- 性质:- 侧棱都相等,侧面是平行四边形。
- 两个底面与平行于底面的截面是全等的多边形。
- 过不相邻的两条侧棱的截面(对角面)是平行四边形。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。
- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。
- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。
- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。
- 性质:- 棱台的各侧棱延长后交于一点。
- 棱台的上下底面是相似多边形,侧面是梯形。
4. 圆柱。
- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。
- 性质:- 圆柱的轴截面是矩形。
- 平行于底面的截面是与底面全等的圆。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。
- 性质:- 圆锥的轴截面是等腰三角形。
- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
空间几何体知识点总结

空间几何体知识点总结一、点、线和面的概念在空间几何中,点、线和面是最基本的几何对象。
点是没有长度、宽度和高度的,只有位置的概念;线是由无穷多个点组成的,具有长度但没有宽度和高度;面是由无穷多条线组成的,具有长度和宽度但没有高度。
二、立体几何体的分类立体几何体是由面围成的空间几何体,根据其表面的性质和特点,可以分为以下几类:1. 平面图形的立体几何体:由平面图形在空间中沿着一定方向运动而形成。
例如,正方形拉伸成长方体,圆形拉伸成圆柱体等。
2. 柱体:具有两个平行的底面和一个连接两个底面的侧面。
根据底面的形状,柱体可以分为圆柱体、矩形柱体等。
3. 锥体:具有一个底面和一个连接底面和顶点的侧面。
根据底面的形状,锥体可以分为圆锥体、三角锥体等。
4. 球体:表面上的所有点到球心的距离都相等。
球体没有棱和面,只有一个面。
5. 圆环体:由两个或多个同心圆所构成的空间几何体。
圆环体没有顶面和底面,只有侧面。
6. 多面体:具有多个面、棱和顶点的立体几何体。
根据面的形状和数量,多面体可以分为正多面体和非正多面体。
正多面体的面都是相等的正多边形,例如正方体、正六面体等;非正多面体的面可以是不相等的多边形,例如四面体、五面体等。
三、立体几何体的特性和性质立体几何体具有以下几个重要的特性和性质:1. 体积:立体几何体的体积是指该几何体所占的空间大小。
不同几何体的体积计算公式各不相同,例如长方体的体积是底面积乘以高度,球体的体积是4/3乘以π乘以半径的立方。
2. 表面积:立体几何体的表面积是指该几何体所有面的总面积。
不同几何体的表面积计算公式各不相同,例如长方体的表面积是各个面的面积之和,球体的表面积是4乘以π乘以半径的平方。
3. 对称性:立体几何体可能具有不同类型的对称性,例如平面对称、轴对称等。
对称性可以帮助我们判断几何体的性质和解决一些几何问题。
4. 刚体性:立体几何体是刚体,即形状和大小固定不变。
在空间中进行平移、旋转和翻转等操作时,立体几何体的性质不变。
空间几何体知识点总结

空间几何体
1.
2.
3.
棱柱的种类:
① :棱柱的底面可以是三角形、四边形、五边形…….我们把这样的棱柱分别叫做三棱柱、四棱锥、五棱柱…….
②
棱柱的性质:
① :棱柱的侧棱都相等,侧面都是平行四边形;
② :直棱柱的侧面都是矩形;
③ :正棱柱的侧面都是全等的矩形;
④ :棱柱的两个底面以及平行于底面的截面都是全等的多边形.
4.
棱锥的分类:
① :以底面边数分:三棱锥、四棱锥、五棱锥······
② :正棱锥:底面是正多边形,并且顶点在底面的射影是底面正多边形的中心.
正棱锥的性质:
①:各侧棱相等;
②:各侧面都是全等的等腰三角形;
③:各等腰三角形底边上的高相等,叫做正棱锥的斜高;
④:正棱锥的侧棱与底面所成角都相等.
5.
由三棱锥、四棱锥、五棱锥······截得的棱台分别叫做三棱台、四棱台、五棱台······
正棱台:由正棱锥截得的棱台称为正棱台.
正棱台的性质:
①正棱台的侧棱相等,侧面是全等的等腰梯形;
②各等腰梯形的高相等,它叫做正棱台的斜高;
③正棱台的两底面以及平行于底面的截面是相似正多边形.
6.
7.
8.
圆台也可以看成以直角梯形的直角腰所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体.9.球体:
球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.半圆的圆心叫做球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.
10.。
空间几何体知识点总结

空间几何体知识点总结空间几何体知识点总结空间几何体是研究三维空间中各种几何形体的数学学科。
它包括了点、线、面和立体等概念,以及它们之间的关系与性质。
在学习空间几何体时,我们通常会接触到以下几个重要的知识点。
1. 点、线、面的定义:点是空间中的一个位置,用来表示长度为零的物体;线是两个点之间最短的路径,没有宽度和厚度;面是由多条线围成的平坦平面,有宽度和厚度。
2. 点、线、面的关系:点和点之间可以连成线,线和线之间可以相交、平行或垂直,面与面之间可以相交、平行或垂直。
3. 空间几何体的表示方法:点可以用坐标表示,线可以用两个点的坐标表示,面可以用三个点的坐标表示。
在三维空间中,我们通常使用笛卡尔坐标系来表示几何体。
4. 长度、面积与体积:长度是线段的大小,可以用距离公式计算;面积是平面内图形的大小,可以用计算面积的公式计算;体积是立体图形的大小,可以用计算体积的公式计算。
5. 点、线、面的投影:点的投影是指将点在投影面上的投影点,线的投影是指将线在投影面上的投影线段,面的投影是指将面在投影面上的投影区域。
6. 点、线、面与平面的位置关系:点可以在平面上、平面内或平面外;线可以与平面相交、平面内或平面外;面可以与平面相交、平面内或平面外。
7. 点、线、面的旋转、平移与对称:旋转是指在空间中围绕某个轴旋转;平移是指将一个物体在空间中沿着某个方向平行移动;对称是指将一个物体绕着某个中心轴翻转。
8. 直线、平面的方程:直线可以用点斜式、两点式、截距式等方程表示;平面可以用一般式、点法式等方程表示。
9. 空间几何体的投影性质:投影性质是指一个物体在投影面上的形状与原来物体的关系。
例如,平行于投影面的物体的投影在投影面上的尺寸与原来物体的尺寸相等。
10. 空间几何体的立体视图:立体视图是指将一个三维物体在不同方向上投影到二维平面上,用于表示物体的三维形状。
除了以上的知识点,还有许多更深入、更复杂的空间几何体的理论与性质,如立体的表面积与体积计算、立体的相似性与全等性、等距变换等。
高中数学立体几何总结

高中数学立体几何总结立体几何是高中数学中一个重要的内容,大致内容包括立体几何基本概念、体积、体积计算公式、侧棱、正三棱柱、正四棱锥、正八棱锷、台面等等。
(一)立体几何基本概念1、三视图:即从三个不同的视角把物体有条不紊的绘出来的文字图形,可以根据它来确定物体的三维形状。
2、几何体:是由把平面图形几何关系组合而成的任何在空间中由一致点构成的物体。
3、棱:即立体几何中各几何体的侧面所围成的线段或面称为棱,如正三棱柱的侧棱。
(二)体积1、体积的定义:体积是立体图形的面积之和,反映物体内部空间的容积大小。
2、体积的计算公式:几何体的体积可用面积的乘积公式计算,比如正三棱柱的体积的表示公式:V=ah;正四棱锥的体积的表示公式:V=1/3bh;正八棱锷的表示公式为:V=1/3πr²h。
(三)正三棱柱1、正三棱柱,是一种方形底面,面积相同的三角柱体,它有三个直角,等边的三个棱,以及一个正方形的底部。
2、侧棱:正三棱柱的侧棱可以分别表示为a,b,c三条线段,表示a=b=c,它们在同一平面且互相垂直。
3、体积计算:正三棱柱的体积可以用面积乘积公式来计算:V=ah;其中,a表示正三棱柱的侧棱,h表示高度。
(四)正四棱锥1、正四棱锥是由正方形底面、顶面和棱构成的三角锥体,它有四个直角棱,棱之间相互垂直,底面和顶面也相互垂直。
2、侧棱:正四棱锥的侧棱只有一条,用a表示,它的四条边都要等于。
(五)正八棱锷1、正八棱锷是一种八个棱组成的几何体,其四条边中有三条边为互相垂直的折线,其余五条边为圆形弧线。
2、侧棱:正八棱锷有八个侧棱,用a1,a2,a3…a8表示,但它们互相之间不相等,作用上也不是等距的。
(六)台面1、台面,又称台体,是由一个小三角形共同构成的平面图形。
当该平面图形在三维空间中展开时,可以形成一个台体,它由三个等高的并列棱构成。
2、台体体积计算:台体的体积可以由其三角面积和三边长共同确定,台体的体积公式为:V=1/3(A1+A2+A3)H;其中,A1,A2,A3表示三个三角面积,H表示高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间立体几何归纳一、考点分析
基本图形
1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
”斜棱柱
①棱柱棱垂直于底面正棱柱★
---------- 、直棱柱\
洪他棱柱III
②四棱柱I底面为平行四边形平行六面体I 侧棱垂直于底面I直平行六面体底面为矩形
正四棱柱
长方体底面为正方形侧棱与底面边长相等.正方体
2.棱锥
棱锥一一有一个面是多边形, 其余各面是有一个公共顶点的三角形, 由这些面所围成的几何
体叫做棱锥。
★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心, 这样的棱锥叫做正棱锥。
3.球 球的性质:
①球心与截面圆心的连线垂直于截面; ★②r 二•、R 2 -d 2 (其中,球心到截面的距离为
注:球的有关问题转化为圆的问题解决
d 、球的半径为 R 、截面的半径为r ) ★球与多面体的组合体:
球与正四面体,球与长
方体,球与正方体等的内接与外切
轴
0'1
B
A
平行垂直基础知识网络★★★
平行与垂直关系可互相转化
异面直线所成的角,线面角,二面角的求法★★★
1求异面直线所成的角 〔三[0 ,90 1:
解题步骤:一找(作):利用平移法找出异面直线所成的角;
(1)可固定一条直线平移
另一条与其相交;(2 )可将两条一面直线同时平移至某一特殊位置。
常用中位线平移法 证:证明所找(作)的角就是异面直线所成的角(或其补角) 。
常需要证明线线平行;
三计算:通过解三角形,求出异面直线所成的角;
2求直线与平面所成的角 v 0 ,90 1:关键找“两足”:垂足与斜足
解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角 (注意三垂线定理的应用) 二证:证明所找(作)的角就是直线与平面所成的角(或其补角) (常需证明线面垂直);
计算:常通过解直角三角形,求出线面角。
3求二面角的平面角 "〔0,二丨
解题步骤:一找: 根据二面角的平面角的定义,找(作)出二面角的平面角;
二证:
证明所找(作)的平面角就是二面角的平面角 (常用定义法,三垂线法,垂面法);三计算: 通过解三角形,求出二面角的平面角。
平行关系
垂直关系
平面几何知识
平面几何知识
*
线线平行
线线垂直
判定推论
•
线面垂直
■
« -----
面面垂直
1. a | ,b . :• = a 〃 b
2. a 丨 *,a 〃b= b _ :•
3. a |「,,a . - =■ :- // -
4. :• 〃 :, a . := a _ :
5. 】// :, __' : __ '
判定
判定
线面平行
面面平行
判
义
质。