车载手机充电器电路图

合集下载

通用型手机旅行充电器电路图

通用型手机旅行充电器电路图

通用型手机旅行充电器电路图目前的手机旅行充电器,输出端口通常都是采用USB接口,输出电压为5V。

输入电压为110V-240V,可以适用于不同地区和国家的电源电压。

旅行充电器功能实质上就是将市电的交流电变换为5V的直流电,所以我觉得,把它称为“电源变换器”或“电源适配器”更合适。

由于不同手机的旅行充电器基本上都类似,所以旅行充电器一般可以互换使用。

当然为确保万无一失,互换使用前要一定要仔细确认旅行充电器的输出电压和输出电流等参数,输出电压相同,输出电流相近的旅行充电器,互换使用是完全可以的。

本人剖析过多个手机旅行充电器,其内部电路基本相似。

这里,以型号为GC-002 RCC的旅行充电器为例,介绍一下电路图和电路工作原理,供大家参考。

电路图系根据旅行充电器实物绘制,其输入电压为110V-240V,输出电压5V,最大输出电流700mA。

工作原理C1,R1,D3组成的整流滤波电路,将市电输入转换成150-300V的直流电压;C2,R5,Q2及L1,L1组成开关振荡电路,将整流滤波后的直流电压变换成高频脉冲电压。

R5,C2组成RC反馈回路,其值的大小决定开关振荡频率及反馈量的大小。

R3为振荡电路提供启动电流;R7,C3,D5组成反向高峰电压吸收回路,避免在Q2截止时在L1上产生的反向高峰电压击穿Q2;R11,R12,D8,U1,Q1组成稳压电路,当输出电压发生变化时,通过光电耦合器U1改变Q1的基极电压,Q1的c-e间等效电阻也随之变化,因为这个等效电阻与Q2的基极并联,其阻值的变化将引起反馈电路时间常数的变化,使振荡电路的振荡脉冲宽度发生变化,脉冲宽度的变化将引起输出电压的改变,从而达到调节输出电压的目的,使输出电压趋于稳定;R6,R4,Q1组成保护电路,当负载过大或输出短路时,Q2的射极电流也将增大,此电流在R6上的压降达到约0.7V时,Q1开始导通。

Q1的c-e间等效电阻会限制Q2的电流进一步增大,也就可以防止Q2因电流过大而损坏;D7,C5及L3组成输出整流滤波电路,开关振荡电路产生的高频脉冲电压,经过高频变压器T1,在L3上也将得到高频脉冲电压,当Q2处于截止状态时,L3的电压为上正下负,此时D7导通,向输出端供电。

手机充电器原理图

手机充电器原理图

一款手机充电器用电源变换器电路的分析分析一个电源,往往从输入开始着手。

220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。

这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。

右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。

13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。

当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。

由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。

不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。

左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。

13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。

当取样电压大约大于,即开关管电流大于时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。

变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。

为了分析方便,我们取三极管C945发射极一端为地。

那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。

取样电压经过稳压二极管后,加至开关管13003的基极。

原理图如下:前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。

手机万能充电器电路图

手机万能充电器电路图

手机万能充电器电路图
手机万能充电器电路图
手机锂电池的充电原理
锂离子电池的充电过程分两阶段进行,首要用恒流充电到
4.2V+0.05V,即转入4.2V±0.05V恒压的第二阶段充电,恒压充电电流会随着时间的推移而逐渐降低,待充电电流降到0.1CmA时,表明电池已充到额定容量的93%或94%,此时即可认为基本充满,如果继续充下去,充电电流会慢慢降低到零,电池完全充满。

恒流充电率为
0.1CmA~1.5CmA(CmA:当电池额定容量为1000mAh时,则1.0CmA 充电率表示充电电流为1500mA,依此类推)。

标准充电率为0.5CmA,约需2小时可将电池电压(放电到3.0V的电池)充到4.2V,再转入恒压充1小时左右,即可结束充电。

整个充电过程约需3小时,当充电率为1.5CmA时,第一阶段的充电时间只约需1/2小时。

实用万能充电器电路图
图为一手机万能充电器电路此充电器主要有恒流源、恒压源和电池电压检测控制三部分组成。

元器件清单:
实物图。

简易汽车12V电瓶充电器电路

简易汽车12V电瓶充电器电路

汽车12V电瓶充电器电路设计
这是12V汽车电池充电器电路。

该电路的设计,解决一些问题的发生,大多数汽车电池充电器。

当充电器不关闭的问题发生在大多数汽车电池充电器,电池会过充,充电器板将破坏和充电器的电解质会因为蒸发而丢失。

该电路将监测电池的充电情况,通过使用一个闭环控制电路。

应用一个高充电电流,直到电池完全充电。

下面是电路的示意图:
红色LED将会亮起,当充电完成,充电电路将停用。

该电路仅用于12伏电池。

当了布线的电路,某些重点应采取。

他们目前正在充电电池和连接变压器的电路板提供的软管。

为了防止热量积聚和电压降当电流流通过电路的连接变压器的电路板应与电缆有一个大的截面积。

元器件清单:
R1=1k 电阻
D1=1N4001 整流二极管
T1=220V/17V 4A Transformer 变压器
R2=1.2k
D2=6.8v 0.5W zener 稳压二极管LD1=Green LED 绿色发光二级管R3=470Ω
TR1=4.7k
LD2=LED 红色发光二级管
R4=470Ω
Q1=BTY79 6A SCR 单向可控硅
Q2=C106D SCR 单向可控硅
M1=0~5A DC 直流电流表
R5=10k
C1=10μF/25V
GR1=50V 6A 整流桥
F=5A Fuse 保险丝。

手机充电器原理分解和图

手机充电器原理分解和图

USB用电池充电器电路图如图是USB用电池充电器电路。

它是在5.25V/500mA最大额定功率时,使用通用串联总线(USB)以最大电流对锤离子充电的电路。

电路中,LM3622为锤离子电池充电控制器。

设计的充电电路使USB具有最大功率工作的能力,为了满足USB的技术指标,在正常工作情况下,最大功率工作能力从总线中取出的电流不能大于5OOmA。

通过限流电阻R1将其最大充电电流设定为400mA,而剩下的100mA电流供给充电器控制电路等。

在系统启动期间,LM3525电源开关使电池充电器与总线保持隔离状态,充电电流不会超过总线提供的最大电流。

在总线输出口经过适当的计算后,USB控制信号将USB电源通过LM3525与充电电路连接起来。

在开关通/断工作时,LM3525具有过电流与欠电压防止功能。

在设计充电电路时,应认真考虑总线电源与充电电路之间的电压降,因此,VT1和VD1要选用低电压降的器件,使输入电压较低时电路也能有效地对电池进行充电。

在优选元件的情况下LM3525输入与电池正极之目的电压降的典型值为53OmV,或对电池的充电电流大于400mA。

最佳充电时间为从以最大电流对电池开始充电直到电池达到满充电电压为止。

对于4.2V锤离子电池,要求充电电路的输入电压典型值为4.7V。

USB规格规定的最小输出电压为4.75V,但USB电缆和接线电阻上电压降为35OmV,因此,在最坏情况下,充电电路的输入电压低至4.4V,而在USB规格中充电电路仍然有效。

要说清楚的是,要防止USB电压规格下限的系统对电池进行慢充电,或防止对满度电池充电。

4.2V电池的最佳充电电压是充电电路的输入电压,其典型值为4.7V。

当电路的输入电压低到4.6V以及电池电压接近满充电4.2V时,VT1和VD1的电压降使电路不能有效地提供充电电流。

在VT1和VD1的电压降仅为400mV时,电路为电池提供的充电电流不大于2OOmA。

在低输入情况下,充电电流降为50%对电池恒压充电。

实用手机万能充电器电路原理图和分析说明

实用手机万能充电器电路原理图和分析说明

手机万能充电器由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。

当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。

万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。

下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。

该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维修时参考。

四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。

面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。

一、工作原理该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。

在充电之前,先接上待充电池,看充电器面板上的测试指示灯TEST是否亮。

若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键)才行。

具体电路原理如下。

1.振荡电路该电路主要由三极管VT2及开关变压器T1等组成。

接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。

该电压经开关变压器T 1-1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。

此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T1-1初级绕组中有电流通过。

由于正反馈作用,在变压器T 1-2绕组感应的电压通过反馈电阻R1和电容C1加到VT2的b极,使三极管VT2的b极导通电流加大,迅速进人饱和区。

手机万能充电电路图

手机万能充电电路图手机万能充电电路图如下:原理离子电池以其体积小、容量大、重量轻、无记忆效应、无污染、电池循环充放电次数多(寿命长)等优点,现已普遍地在手机上使用。

但在实际使用中有不少人会觉得锂离子电池的寿命很短,用不了多久就充不上电了,其实都是因为充电不当造成电池的损坏。

锂离子电池充电条件要求严格,充电控制要求精度高,对过充电的承受能力差,如果用一般的充电器对其充电,必定会因过充电而损坏。

因此,锂离子电池的充电器必须符合锂离子电池的充电特性要求。

锂离子电池的充电过程分两阶段进行,首要用恒流充电到4.2V+0.05V,即转入4.2V±0.05V恒压的第二阶段充电,恒压充电电流会随着时间的推移而逐渐降低,待充电电流降到0.1CmA时,表明电池已充到额定容量的93%或94%,此时即可认为基本充满,如果继续充下去,充电电流会慢慢降低到零,电池完全充满。

恒流充电率为0.1CmA~1.5CmA(CmA:当电池额定容量为1000mAh时,则1.0CmA充电率表示充电电流为1500mA,依此类推)。

标准充电率为0.5CmA,约需2小时可将电池电压(放电到3.0V的电池)充到4.2V,再转入恒压充1小时左右,即可结束充电。

整个充电过程约需3小时,当充电率为1.5CmA时,第一阶段的充电时间只约需1/2小时。

此充电器主要有恒流源、恒压源和电池电压检测控制三部分组成。

元件有:手机充电器电路的工作原理手机充电器电路的工作原理对于市场上到处可见的手机充电器,万能充不断的增多,但质量又不是很高,经常会出现问题,扔了可惜,故教大家几招分析手机充电器原理的分析,希望能给大家修理带来些帮助。

分析一个电源,往往从输入开始着手。

220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。

这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。

lm358手机电池充电器电路图及相关资料 (1)

LM358 手机电池充电器电路图及相关资料
符号参数元件名称符号参数
R1 1Ω电阻D1 1N4007 整流二极管R2 5K 电阻D2 1N4007 整流二极管R3 10K 电阻D3 1N4007 整流二极管R4 10K 电阻D4 1N4007 整流二极管R5 10K 电阻D5 1N4148 开关二极管R6 5.1K 电阻D6 1N4148 开关二极管R7 10K 电阻D7 FR106 快恢复二极管R8 22.6K 精密电阻D8 SR260 肖特基二极管R9 36K 电阻LED 发光二极管R10 300Ω电阻C1 4.7μ/400V 电解电容R11 22K 电阻C2 4.7μ/400V 电解电容R12 5.1K 电阻C3 22μ/50V 电解电容R13 1K 电阻C4 2200P/1000V 电容
R14 4.8K 精密电阻C5 0.22μ电容
R15 100Ω电阻C6 62P 电容
1
R16 3.9K 电阻C7 22μ/50V 电解电容R17 2Ω精密电阻C8 470μ/10V 电解电容IC1 LM358 2/1 双运算放大器C9 220μ/10V 电解电容IC2 LM358 2/1 双运算放大器C10 0.1μ电容IC3 TL431 精密电压基准C11 39P 电容IC4 PC817 光电藕合器RZ 471K 压敏电阻IC5 P102AP06 开关电源模块-
2。

手机万能充电器电路图d

手机万能充电器电路图(ZHUAN)(2007-09-17 06:04:59)分类:电子制作标签:知识/探索一、手机万能充电器是一个小型的开关电源,电路结构简单,外围元件较少。

但是一旦发生故障,有些人束手无策,因为没有电路图。

现在我将电路图传上,和大家一起分享。

有问题可以向我提问。

希望和大家共同进步!二、超力通电路图(原图)三、我修改过的图纸(我认为原图可能有错误)四、超力通电路原理该充电器具有镍镉、镍氢、锂离子电池充电转换开关,并具有放电功能。

在150~250V、40mA的交流市电输入时,可输出300±50mA的直流电流。

该充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM型开关电源有一定的区别。

PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。

由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。

当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。

开关管的截止时间取决于负载电流的大小。

开关管的导通/截止由电平开关从输出电压取样进行控制。

因此这种电源也称非周期性开关电源。

220V市电经VD1~VD4桥式整流后在V2的集电极上形成一个300V左右的直流电压。

由V2和开关变压器组成间歇振荡器。

开机后,300V直流电压经过变压器初级加到V2的集电极,同时该电压还经启动电阻R2为V2的基极提供一个偏置电压。

由于正反馈作用,V2 Ic 迅速上升而饱和,在V2进入截止期间,开关变压器次级绕组产生的感应电压使VD7导通,向负载输出一个9V左右的直流电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一个巧妙的车载手机充电器
将一个废弃的但仍能够使用的手机充电器外壳拆掉,将原来的220V电压经电容降压和二极管整流部分去掉,将车上点烟器的12V车用插头与图中的12V输入端进行连接,之后再测量一下输出端的电压是否符号手机的充电电压4.2~5V,正常后将充电器固定在一个不碍事的地方就可以了。安装部
分的四周要注意隔离,防止短路。
若输出电压稍低于用户的手机充电电
压,需要将光耦限流电位器RP作适当调整,
这样就可得到合适的充电电压。

相关文档
最新文档