湖北省武汉市2015届高中毕业生四月调研测试数学(理)试题
湖北省武汉市2018届高中毕业生四月调研测试理科数学试题+Word版含解析

武汉市2018届高中毕业生四月调研测试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数的共轭复数是()A. B. C. D.【答案】B【解析】,所以其共轭复数为.2. 已知集合,,若,则实数的取值集合为()A. B. C. D.【答案】D【解析】【分析】先求出集合M={x|x2=1}={﹣1,1},当a=0时,N=∅,成立;当a≠0时,N={},由N⊆M,得或=1.由此能求出实数a的取值集合.【详解】∵集合M={x|x2=1}={﹣1,1},N={x|ax=1},N⊆M,∴当a=0时,N=∅,成立;当a≠0时,N={},∵N⊆M,∴或=1.解得a=﹣1或a=1,综上,实数a的取值集合为{1,﹣1,0}.故选:D.【点睛】本题考查实数的取值范围的求法,考查子集、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3. 执行如图所示的程序框图,如果输入的,则输出的属于()A. B. C. D.【答案】A【解析】【分析】根据程序框图的功能进行求解即可.【详解】本程序为条件结果对应的表达式为S=,则当输入的t∈[﹣2,2],则当t∈[﹣2,0)时,S=2t∈[﹣4,0),当t∈[0,2]时,如右图,S=﹣3t+t3=t(t﹣)(t)∈[﹣2,2],综上S∈[﹣4,2],故选:A.【点睛】本题主要考查程序框图的识别和判断,根据条件结构,结合分段函数的表达式是解决本题的关键.4. 某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为()A. B. C. D.【答案】B【解析】【分析】在该几何体的所有顶点中任取两个顶点,它们之间距离取最大值时,最大距离相当于一个长宽高分别为2,1,1的长方体的体对角线,进而得到答案.【详解】由已知中的三视图可得该几何体是一个以侧视图为底面的直四棱柱,在该几何体的所有顶点中任取两个顶点,它们之间距离取最大值时,最大距离相当于一个长宽高分别为2,1,1的长方体的体对角线,故d==,故选:B.【点睛】由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.5. 一张储蓄卡的密码共有位数字,每位数字都可以从中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过次就按对的概率为()A. B. C. D.【答案】C【解析】【分析】利用互斥事件概率加法公式和相互独立事件概率乘法公式直接求解.【详解】一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,任意按最后一位数字,不超过2次就按对的概率为:p==.故选:C.【点睛】本题考查概率的求法,考查互斥事件概率加法公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6. 若实数,满足,,,,则,,的大小关系为()A. B. C. D.【答案】B【解析】【分析】推导出0=log a1<log a b<log a a=1,由此利用对数函数的单调性能比较m,n,l的大小.【详解】∵实数a,b满足a>b>1,m=log a(log a b),,,∴0=log a1<log a b<log a a=1,∴m=log a(log a b)<log a1=0,0<<1,1>=2log a b>.∴m,n,l的大小关系为l>n>m.故选:B.【点睛】本题考查三个数的大小的比较,考查对数函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7. 已知直线与双曲线的右支有两个交点,则的取值范围为()A. B. C. D.【答案】D【解析】【分析】根据双曲线的渐近线和切线的方程得出k的范围.【详解】双曲线的渐近线方程为y=±x,∴当﹣1<k≤1时,直线与双曲线的右支只有1个交点,当k≤﹣1时,直线与双曲线右支没有交点,把y=kx﹣1代入x2﹣y2=4得:(1﹣k2)x+2kx﹣5=0,令△=4k2+20(1﹣k2)=0,解得k=或k=﹣(舍).∴1<k<.故选:D.【点睛】本题考查了双曲线的简单几何性质,直线与双曲线相切的等价条件,属于中档题.8. 在中,角、、的对应边分别为,,,条件:,条件:,那么条件是条件成立的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由条件p:a≤,利用余弦定理与基本不等式的性质可得:cosA=≥,当且仅当b=c=a时取等号.又A∈(0,π),可得.由条件q:A,B,C∈(0,π),A≤.取,C=,B=满足上述条件,但是a.即可判断出结论.【详解】由条件p:a≤,则cosA=≥=≥=,当且仅当b=c=a时取等号.又A∈(0,π),∴.由条件q:A,B,C∈(0,π),A≤.取,C=,B=满足上述条件,但是a.∴条件p是条件q成立的充分不必要条件.故选:A.【点睛】本题考查了余弦定理与基本不等式的性质、倍角公式、三角函数求值,考查了推理能力与计算能力,属于中档题.9. 在的展开式中,含项的系数为()A. B. C. D.【答案】B【解析】【分析】把x+看作一项,写出的展开式的通项,再写出的展开式的通项,由x的指数为5求得r、s的值,则答案可求.【详解】的展开式的通项为.的展开式的通项为=.由6﹣r﹣2s=5,得r+2s=1,∵r,s∈N,∴r=1,s=0.∴在的展开式中,含x5项的系数为.故选:B.【点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.10. 若,满足,则的最小值为()A. B. C. D.【答案】D【解析】【分析】画出约束条件表示的可行域,通过表达式的几何意义,求出表达式的最小值.【详解】令,,作出可行域,如图所示:,表示可行域上的动点到定点距离的平方,然后减去,故其最小值为定点到直线AB的距离的平方减去。
湖北省八校2015届高三第一次联考理科数学试卷(解析版)

湖北省八校2015届高三第一次联考理科数学试卷(解析版)一、选择题1.已知复数∈+=a ai z (21R ),i z 212-=,若21z z 为纯虚数,则=||1z ( ) A .2 B .3 C .2 D .5 【答案】D 【解析】由于()()()5422521221221ia a i ai i ai z z ++-=++=-+=为纯虚数,则1=a ,则=1z 5,故选择D.考点:复数的概念,复数的代数运算,复数的模 2.如图给出的是计算11112462014++++L 的值的程序框图,其中判断框内应填入的是( )A .2013≤iB .2015≤iC .2017≤iD .2019≤i 【答案】B【解析】由程序知道,2,4,6,2014i =L 都应该满足条件,2016=i 不满足条件,故应该选择B.考点:算法,程序框图3.设224a x dx πππ-⎛⎫=+ ⎪⎝⎭⎰,则二项式6(展开式中含2x 项的系数是( ) A .192- B .193 C .6- D .7【答案】A【解析】由于()22222222cos sin cos sin 24a x dx x x dx xdx xπππππππππ----⎛⎫=+=-=== ⎪⎝⎭⎰⎰⎰则6(含2x 项的系数为192)1(2516-=-C ,故选择A.考点:定积分,二项式定理4.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是( )A .314 B .4 C .310D .3 【答案】B【解析】几何体如图,体积为:42213=⨯,故选择B考点:三视图,几何体的体积 5.“5≠a 且5-≠b ”是“0≠+b a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既非充分条件也非必要条件 【答案】D【解析】5≠a 且5-≠b 推不出0≠+b a ,例如2,2-==b a 时0=+b a0≠+b a 推不出5≠a 且5-≠b ,例如6,5-==b a ,故“5≠a 且5-≠b ”是“0≠+b a ”的既不充分又不必要条件,故选择D 考点:充要条件6.已知实数等比数列{a n }的前n 项和为S n ,则下列结论中一定成立的( ) A .若03>a ,则02013<a B .若04>a ,则02014<a C .若03>a ,则02013>SD .若04>a ,则02014>S 【答案】C【解析】设11-=n n q a a ,因为02010>q 所以A ,B 不成立,对于C ,当03>a 时,01>a ,因为q -1与20131q -同号,所以02013>S ,选项C 正确,对于D ,取数列:-1,1,-1,1, ,不满足条件,D 错.故选C考点:等比数列的性质,前n 项和7.用)(A C 表示非空集合A 中的元素个数,定义⎩⎨⎧<-≥-=-)()(),()()()(),()(||B C A C A C B C B C A C B C A C B A .若}2,1{=A ,}|32||{2a x x x B =-+=,且1||=-B A ,由a 的所有可能值构成的集合为S ,那么C (S )等于( )A .1B .2C .3D .4 【答案】A【解析】由于a x x =-+|32|2的根可能是2个,3个,4个,而|A -B|=1,故a x x =-+|32|2只有3个根,故4=a ,1C(S)=∴,故选A. 考点:集合的性质8.已知x , y , ∈z R ,且522=+-z y x ,则222)3()1()5(++-++z y x 的最小值是( ) A .20 B .25 C .36 D .47 【答案】C【解析】由于()()()()()()324)]3(21)2(5[)]221][(315[2222222=++--++≥+-+++-++z y x z y x 则()()()222315++-++z y x (当且仅当232115+=--=+z y x 即⎪⎩⎪⎨⎧=-=-=133z y x 时取等号).故选C 考点:柯西不等式,最值9.已知抛物线的一条过焦点F 的弦PQ ,点R 在直线PQ 上,且满足)(21OQ OP OR +=,R 在抛物线准线上的射影为S ,设α,β是△PQS 中的两个锐角,则下列四个式子中一定正确的有( )①1tan tan =βα ②2sin sin ≤+βα ③1cos cos >+βα ④2tan|)tan(|βαβα+>-A .1个B .2个C .3个D .4个 【答案】C【解析】由于△PQS 是直角三角形,则2πβα=+,故①②③都对,当PQ 垂直对称轴时|tan()|0tan2αβαβ+-=<,故选C考点:抛物线性质,平面向量,三角函数性质10.设定义在D 上的函数)(x h y =在点))(,(00x h x P 处的切线方程为)(:x g y l =,当0x x ≠时,若0)()(0>--x x x g x h 在D 内恒成立,则称P 为函数)(x h y =的“类对称点”,则x x x x f ln 46)(2+-=的“类对称点”的横坐标是A .1B .2C .eD .3 【答案】B【解析】由于4()26f x x x '=+-,则在点P 处切线的斜率=切k 642)(000/-+=x x x f . 所以切线方程为()20000004()2664ln y g x x x x x x x x ⎛⎫==+--+-+ ⎪⎝⎭200004264ln 4x x x x x ⎛⎫=+--+- ⎪⎝⎭()()()()()22000000464ln 2664ln x f x g x x x x x x x x x x x ϕ⎛⎫=-=-+-+----+ ⎪⎝⎭, 则0()0x ϕ=,)2)((2)21)((2)642(642)('000000x x x x x x x x x x x x x x --=--=-+--+=ϕ.当0x <()x ϕ在002,x x ⎛⎫⎪⎝⎭上单调递减,所以当002,x x x ⎛⎫∈ ⎪⎝⎭时,0()()0.x x ϕϕ<= 从而有002,x x x ⎛⎫∈ ⎪⎝⎭时,0)(0<-x x x ϕ;当0x >()x ϕ在002,x x ⎛⎫ ⎪⎝⎭上单调递减,所以当002,x x x⎛⎫∈ ⎪⎝⎭时,0()()0.x x ϕϕ>= 从而有002,x x x ⎛⎫∈ ⎪⎝⎭时,()00x x x ϕ<-;所以在(2,)+∞上不存在“类对称点”. 当0x =(22()x x xϕ'=-,所以()x ϕ在(0,)+∞上是增函数,故0()0.x x x ϕ>-所以x =是一个类对称点的横坐标. (可以利用二阶导函数为0,求出24()20f x x''=-=,则2=x )故选择B考点:函数性质,新定义问题 二、填空题11.随机向边长为5,5,6的三角形中投一点P ,则点P 到三个顶点的距离都不小于1的概率是____. 【答案】241π-【解析】分别以三角形的三个顶点为圆心,1为半径作圆,则在三角形内部且在三圆外部的区域即为与三角形三个顶点距离不小于1的部分,即241462112112ππ-=⨯⨯⨯⨯-=P 考点:几何概型12.已知直线)0(:>+=n n my x l 过点)5,35(A ,若可行域⎪⎩⎪⎨⎧≥≥-+≤003y y x n my x 的外接圆直径为20,则n =_____. 【答案】310【解析】如图,∠AOB =30°,要使得外接圆直径为20,根据正弦定理,有020sin 30AB=,即AB =10,而)5,35(A ,B 点在x 轴上,由可行域可知,B (n ,0)于是由|AB|=10推出()10025352=+-n ,则=n 310(n =0舍去) 考点:简单线性规划,正弦定理13.已知函数⎪⎩⎪⎨⎧≤<++-≤≤=31,3210,2)(2x x x x x x f ,将f (x )的图像与x 轴围成的封闭图形绕x 轴旋转一周,则所得旋转体的体积为________. 【答案】203π 【解析】将)(x f 的图像与x 轴围成的封闭图形绕x 轴旋转一周,所得旋转体为一个圆锥和一个半个球的组合体,其中球的半径为2,棱锥的底面半径为2,高为1, 所以所得旋转体的体积为23114202123233πππ=⨯⨯⨯+⨯⨯⨯= 考点:函数图象,旋转体体积14.以(0, m )间的整数∈>m m ,1(N )为分子,以m 为分母组成分数集合A 1,其所有元素和为a 1;以),0(2m 间的整数∈>m m ,1(N )为分子,以2m 为分母组成不属于集合A 1的分数集合A 2,其所有元素和为a 2; ,依次类推以),0(n m 间的整数∈>m m ,1(N )为分子,以n m 为分母组成不属于A 1,A 2, ,1-n A 的分数集合A n ,其所有元素和为a n ;则12n a a a +++=L =________.【答案】12n m -【解析】由题意1a =1m +2m+ +1m m -2a =21m +22m + +21m m -+21m m ++ +221m m -+221m m ++ +21m m- =21m +22m + +21m m --(1m +2m + +1m m -) =21m +22m + +21m m --a 1 a 3=31m +32m + +331m m --a 2-a 1a n =1n m +2n m + +1n nm m--a n -1 -a 2-a 1所以12n a a a ⋅⋅⋅+++=1n m +2n m + +1n nm m -=1n m ·[1+2+ +(m n-1)]=12n m - 考点:整数性质,集合,求和15.(选修4-1:几何证明选讲)如图,C 是以AB 为直径的半圆O 上的一点,过C 的直线交直线AB 于E ,交过A 点的切线于D ,BC ∥OD .若AD =AB = 2,则EB =_________.【答案】23【解析】连接OC ,则COD BCO CBO DOA ∠=∠=∠=∠, 于是COD AOD ∆≅∆,则CD OC ⊥,则CD 是半圆O 的切线 设x EB =,由BC ∥OD 得BOEBCD EC =, 则x EC 2=,所以()()222+⋅=x x x ,有32=x 考点:平面几何,全等三角形,圆的切线 16.(选修4-4:坐标系与参数方程)在极坐标系内,已知曲线C 1的方程为04)sin 2(cos 22=+--θθρρ,以极点为原点,极轴方向为x 正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C 2的参数方程为⎩⎨⎧+=-=t y t x 3185415(t 为参数).设点P 为曲线C 2上的动点,过点P 作曲线C 1的两条切线,则这两条切线所成角余弦的最小值是_______. 【答案】87【解析】曲线1C 的一般方程为044222=++-+y x y x 即()()12122=++-y x ,圆心为()2,1-,半径为1.曲线2C 的一般方程为01543=-+y x 点()2,1-到直线的距离是:451583=--=d ,则这两条切线所成角余弦的最小值是8741212=⎪⎭⎫⎝⎛⨯-.考点:极坐标,参数方程三、解答题17.(本小题满分12分)已知△ABC 的三内角A , B , C 所对边的长依次为a ,b ,c ,若43c o s =A ,81cos =C . (1)求c b a ::;(2)若46||=+BC AC ,求△ABC 的面积.【答案】(1)456;(2)4【解析】 试题分析:(1)由已知求出sinA 和sinC ,进而求出sinB ,再由正弦定理可得三边的比值;(2)根据(1),可设出三边的长,由46||=+BC AC 即可求出三边长,又知道夹角正弦值,可以求出三角形面积.试题解析:(1)依题设:sinA ,sinC=,故cosB =cos[π-(A +C )]=-cos (A +C )=-(cosAcosC -sinAsinC )=-(332-2132)=916.则sinB所以==C B A c b a sin :sin :sin ::456 6分(2)由(1)知:==C B A c b a sin :sin :sin ::456,不妨设:a =4k ,b =5k ,c =6k ,k >0.故知:|AC |=b =5k ,|BC |=a =4k. 依题设知:|AC |2+|BC |2+2|AC ||BC |cosC =46 ⇒ 46k 2=46,又k >0⇒k =1.故△ABC 的三条边长依次为:a =4,b =5,c =6.△ABC 的面积是47158735421=⨯⨯⨯ 12分考点:同角三角函数关系式,正弦定理,三角形面积18.(本小题满分12分)有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排成一组组成.设随机变量ξ表示密码中所含不同数字的个数. (1)求)2(=ξP ;(2)求随机变量ξ的分布列和它的数学期望. 【答案】(1)18;(2)10132. 【解析】 试题分析:(1)先确定ξ=2时,只能取1和2,然后分别找出所有的可能性和满足条件的情况数,即得概率;(2)仿(1),分别找出所有可能情况,再注意计算ξ=2,3,4的概率,分布列和期望得解. 试题解析:(1)密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别总是1,2,即只能取表格第1,2列中的数字作为密码. 3321(2).48P ξ∴===4分(2)由题意可知,ξ的取值为2,3,4三种情形.若3ξ=,注意表格的第一排总含有数字1,第二排总含有数字2则密码中只可能取数字1,2,3或1,2,4.2123332(221)19(3).324A C P ξ++∴=== 若12223232394,(4)432A A A A P ξξ+====则(或用)3()2(1=-=-ξξP P 求得). 8分ξ∴的分布列为:.32101329432193812=⨯+⨯+⨯=∴ξE 12分考点:古典概型,概率分布列,期望19.(本小题满分12分)如图1,平面四边形ABCD 关于直线AC 对称,︒=∠60A ,︒=∠90C ,2=CD ,把△ABD 沿BD 折起,使二面角C BD A --为直二面角(如图2).(1)求AD 与平面ABC 所成的角的余弦值; (2)求二面角D AC B --的大小的正弦值.【答案】(1)772;(2)734.【解析】试题分析:建立空间直角坐标系,利用直线和平面法向量,直线与平面所成角和二面角都不难求得.试题解析:如图2所示,以BD 的中点O 为原点,OC 所在的直线为x 轴,OD 所在的直线为y 轴,OA 所在的直线为z 轴建立空间直角坐标系,则()0,0,0O ,()0,2,0D ()0,2,0-B()0,0,2C ()6,0,0A(1)设面ABC 的法向量为(),,n x y z =⎪⎩⎪⎨⎧=⋅=⋅0BC n AB n 取1=z有()13,n =()6,2,0-=AD , 721-= AD ∴与面ABC 所成角的余弦值是772. 6分 (2)同理求得面ACD的法向量为()13,n=,则71=则二面角D AC B --的正弦值为734. 12分 考点:空间几何体,空间直角坐标系,直线与平面所成角,二面角20.(本小题满分12分)已知等比数列{a n }的公比1>q ,前n 项和为S n ,S 3=7,且31+a ,23a ,43+a 成等差数列,数列{b n }的前n 项和为T n ,2)13(6++=n n b n T ,其中∈n N *. (1)求数列{a n }的通项公式; (2)求数列{b n }的通项公式;图2BDADC B A 图1(3)设1210{,,}A a a a =L ,1240{,,}B b b b =L ,C A B =U ,求集合C 中所有元素之和.【答案】(1)12-=n n a ;(2)32n b n =-;(3)3318.【解析】试题分析:(1)设a n =a 1q n -1,利用已知条件,可求得a 1和q ,从而得到{a n }的通项公式;(2)将2)13(6++=n n b n T 变更序号作差,可得b n +1与b n 的关系,再迭代(或叠乘)可得{b n }的通项公式;(3)分别求出两个集合中元素之和,再减去公共元素之和即可.试题解析:(1)∵73=S ,∴7321=++a a a ①∵31+a ,23a ,43+a 成等差数列,∴231643a a a =+++ ② 2分②-①得,22=a 即21=q a ③又由①得,5211=+q a a ④消去1a 得,02522=+-q q ,解得2=q 或21=q (舍去) ∴12-=n n a 4分(2)当∈n N *时,2)13(6++=n n b n T ,当2≥n 时,2)23(611+-=--n n b n T ∴当2≥n 时,1)23()13(6---+=n n n b n b n b ,即53231--=-n n b b n n 6分 ∴1412=b b ,4723=b b ,71034=b b , ,53231--=-n n b b n n ∴324123147103214735n n b b b b n b b b b n --⋅⋅⋅⋅=⨯⨯⨯⨯-L L ,即231-=n b b n ∵11=b ,∴)2(23≥-=n n b n ,故∈-=n n b n (23N *) 8分(3)1023122121101010=-=--=S ,23808024140340=-⨯⨯=T 10分 ∵A 与B 的公共元素有1,4,16,64,其和为85,∴集合C 中所有元素之和33188510232380851040=-+=-+=T S 12分 考点:等差数列,等比数列,递推数列,数列求和,容斥原理.21.(本小题满分13分)如图,在平面直角坐标系xOy 中,椭圆)0(12222>>=+b a by a x 的离心率为22,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,23=+CD AB .(1)求椭圆的方程;(2)求由A ,B ,C ,D 四点构成的四边形的面积的取值范围.【答案】(1)2212x y +=;(2)⎥⎦⎤⎢⎣⎡∈2,916四边形S . 【解析】试题分析:(1)利用已知离心率和直线AB 斜率为0时,23=+CD AB ,可求得a ,b ,c 的值,从而得到椭圆标准方程;(2)因为AB ⊥CD ,故1||||2S AB CD =⋅⋅四边形,将AB 和CD 所在直线方程分别与椭圆方程联立,用斜率表示出|AB|和|CD|,然后利用函数思想,结合均值不等式可求得S 的范围.试题解析:(1)由题意知,c e a =,则c b c a ==,2,且AB 斜率为0时,2||||22b AB CD a a+=+== 所以1c =.所以椭圆的方程为2212x y +=. 4分 (2)① 当两条弦中一条斜率为0时,另一条弦的斜率不存在, 由题意知22222121=⨯⨯=⋅=CD AB S 四边形; 5分 ②当两弦斜率均存在且不为0时,设11(,)A x y ,22(,)B x y ,且设直线AB 的方程为(1)y k x =-,则直线CD 的方程为1(1)y x k=--. 将直线AB 的方程代入椭圆方程中,并整理得2222(12)4220k x k x k +-+-=,所以)21221|||12k AB x x k +=-==+. 8分同理,2212(1)||21k CD k+==+ 9分所以2242114(1)||||22225k S AB CD k k +=⋅⋅==++四边形 ()()()2221422112121k k k k +==-++++,22121219k k ⎛⎛⎫++≥+= ⎪ ⎝⎭⎝Q 当且仅当1±=k 时取等号 11分 ∴)2,916[∈四边形S 综合①与②可知,⎥⎦⎤⎢⎣⎡∈2,916四边形S 13分 考点:椭圆标准方程,直线与椭圆位置关系,弦长公式,基本不等式. 22.(本小题满分14分)已知0>t ,设函数132)1(3)(23+++-=tx x t x x f . (1)若)(x f 在(0, 2)上无极值,求t 的值;(2)若存在)2,0(0∈x ,使得)(0x f 是)(x f 在[0, 2]上的最大值,求t 的取值范围;(3)若e m xe x f x (2)(+-≤为自然对数的底数)对任意),0[+∞∈x 恒成立时m 的最大值为1,求t 的取值范围.【答案】(1)t =1;(2)5[,)3+∞;(3)⎥⎦⎤ ⎝⎛31,0. 【解析】试题分析:(1)因为f '(x )=(x -1)(x -t ),要使得)(x f 在(0, 2)上无极值,只有t =1时,有f '(x )≥0恒成立;(2)由(1)知t =1时,不满足条件,t ≠1时,因为x =1必定是极值点,对t 的范围分类探究,找出使得f (1)或f (t )(t ∈(0,2)时)为最大值的t 的范围;(3)分离参数m ,找出使得不等式恒成立的m 的范围(与t 相关),注意m 的最大值为1,由此求出t 的取值范围.试题解析:(1)∵2()33(1)33(1)()f x x t x t x x t '=-++=--,又()f x 在(0, 2)无极值 1t ∴= 3分(2)①当01t <<时,()f x 在(0,)t 单调递增,在(,1)t 单调递减,在(1,2)单调递增, ∴()(2)f t f ≥由()(2)f t f ≥得:3234t t -+≥在01t <<时无解②当1t =时,不合题意;③当12t <<时,()f x 在(0,1)单调递增,在(1,)t 单调递减,在(,2)t 单调递增,(1)(2)12f f t ≥⎧∴⎨<<⎩即1332212t t ⎧+≥⎪⎨⎪<<⎩523t ∴≤< ④当2t ≥时,()f x 在(0,1)单调递增,在(1,2)单调递减,满足条件 综上所述:),35[+∞∈t 时,存在)2,0(0∈x ,使得)(0x f 是)(x f 在[0,2]上的最大值. 8分 (3)若323(1)3122x t x x tx xe m +-++≤-+对任意[)0,x ∈+∞恒成立 即3223(1)3(1)313122x x t t m xe x x tx x e x x t ++⎛⎫≤-+-+=-+-+ ⎪⎝⎭对任意[)0,x ∈+∞恒成立 令()23(1)32x t g x e x x t +=-+-,[)0,x ∈+∞ 由于m 的最大值为1, 则()23(1)302x t g x e x x t +=-+-≥恒成立,否则存在()+∞∈,00x 使得()00g x < 则当0x x =,1=m 时,()2x f x xe m ≤-+不恒成立.由于()0310≥-=t g ,则310≤<t 10分 当310≤<t 时,()3(1)22x t g x e x +'=-+,则()2x g x e ''=-,若()20x g x e ''=-= 2ln =x 则()g x '在()2ln ,0上递减,在()+∞,2ln 上递增,则()()()02ln 212322ln min >-++=='t g x g ()x g ∴在[)+∞,0上是递增的函数()()0310≥-=≥∴t g x g ,满足条件∴t 的取值范围是⎥⎦⎤ ⎝⎛31,0 14分 考点:利用导数研究函数性质,最值,范围,不等式恒成立问题,范围.。
2015届湖北省武汉市武昌区高三元月调考文科数学试题(word典藏版)

2015届高三年级调研考试 文 科 数 学 试 卷本试题卷共5页,共22题。
满分150分,考试用时120分钟★祝考试顺利 ★注意事项:1.答题前,考生务必将自己的学校、班级、姓名、准考证号填写在答题卷指定位置,认真核对与准考证号条形码上的信息是否一致,并将准考证号条形码粘贴在答题卷上的指定位置。
2.选择题的作答:选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
3.非选择题的作答:用黑色墨水的签字笔直接答在答题卷上的每题所对应的答题区域内。
答在试题卷上或答题卷指定区域外无效。
4.考试结束,监考人员将答题卷收回,考生自己保管好试题卷,评讲时带来。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集为R ,集合}0|{£=x x A ,}21|{<<-=x x B ,则=B A IA .}0|{£x xB .}01|{£<-x xC .}20|{<£x xD .f2.如果复数)i 1)(i (-+a 的模为10,则实数a 的值为A .2B .22C .2±D .22± 3.一个几何体的三视图如图所示,则该几何体的体积为A .12B .24C .40D .72 4. 根据如下样本数据x34567y4.0 2.5 -0.5 0.5 -2.0 得到的回归方程为ˆybx a =+.若9.7=a ,则b 的值为 A .4.1 B .4.1- C .2.1 D .2.1-5.已知正方形ABCD 的边长为2,E为CD 的中点, F 为AD 的中点,则=×BF AEA .0B .1C .2D .4俯视图 正视图 侧视图6.如图,取一个底面半径和高都为R 的圆柱,从圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥,把所得的几何体与一个半径为R 的半球放在同一水平面a 上.用一平行于平面a 的平面去截这两个几何体,截面分别为圆面和圆环面(图中阴影部分).设截面面积分别为圆S 和圆环S ,那么A .圆S >圆环SB .圆S =圆环SC .圆S <圆环SD .不确定7. 函数ïîïíì³<<-=-)0( e ),01)(sin()(12x x x x f x p 满足2)()1(=+a f f ,则a 的所有可能值为 A .1或22-B .22-C .1D .1或228.函数)0(sin 2)(>=w w x x f 在区间4,0[p上单调递增,且在这个区间上的最大值是3,那么=w A .32 B .34C .2D .4 9.设斜率为22的直线l 与双曲线)0,0(12222>>=-b a by a x 交于不同的两点P 、Q ,若点P 、Q 在x 轴上的射影恰好为双曲线的两个焦点,则该双曲线的离心率是A .2B .2C .3D .3 10.已知函数()f x 的图象如图所示,若函数a xx f y --=1)(在区间]10,10[-上有10个零点(互不相同),则实数a 的取值范围是 A .]4,4[- B .)4,4(- C .1,1[- D . 1,1(-二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位 置上. 答错位置,书写不清,模棱两可均不得分. 11. 已知某地区中小学生人数和近视情况如下表所示:年级 人数 近视率 小学 3500 10% 初中 4500 30% 高中200050%为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则:(Ⅰ)样本容量为___________;(Ⅱ)抽取的高中生中,近视人数为___________. 12.化简oo 10cos 310sin 1-=_____________. 13.已知点M 的坐标),(y x 满足不等式组ïïîïïíì£+£+³³,123,62,0,0y x y x y x 则y x -的取值范围是_____________.14. 阅读如图所示的程序框S 的值为_______.15.以)3,1(为圆心,并且与直线0643=--y x 相切的圆的方程为 . 16.给出以下数对序列:(1,1)(1,2) (2,1)(1,3) (2,2) (3,1)(1,4) (2,3) (3,2) (4,1) ……记第i 行的第j 个数对..为ij a ,如)2,3(43=a ,则(Ⅰ)=54a ________;(Ⅱ)=nm a ________. 17.已知函数x b x a x x f 223)1(31)(+--=,其中}4,3,2,1{Îa ,}3,2,1{Îb ,则函数)(x f 在R 上是增函数的概率为__________.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)已知a ,b ,c 分别为ABC D 三内角A ,B ,C 的对边,3p =B ,8=c , 71cos -=C . (Ⅰ)求b 的值; (Ⅱ)求ABC D 的面积.19.(本小题满分12分)已知数列{}n a 满足11=a ,n n a a 21=+;数列{}n b 满足31=b ,62=b ,且{}n n a b -为等差数列.(Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n b 的前n 项和n T .20.(本小题满分13分)如图,在直四棱柱1111D C B A ABCD -中,底面是边长为2的正方形,31=AA ,点E 在棱B B 1上运动.(Ⅰ)证明:E D AC 1^;(Ⅱ)若三棱锥E D A B 111-的体积为32时,求异面直线AD ,E D 1所成的角.21.(本小题满分14分)已知函数1ln )(-=xxx f . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)设0>m ,求)(x f 在区间]2,[m m 上的最大值; (Ⅲ)证明:对*Î"N n ,不等式nnn n +<+1)1ln(e 成立.22.(本小题满分14分)已知椭圆C :)0(122>>=+b a by a x 的焦距为4,其长轴长和短轴长之比为1:3.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的右焦点,T 为直线)2,(¹Î=t t t x R 上纵坐标不为0的任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(ⅰ)若OT 平分线段PQ (其中O 为坐标原点),求t 的值; (ⅱ)在(ⅰ)的条件下,当||||PQ TF 最小时,求点T 的坐标.12015届高三年级调研考试文科数学参考答案及评分细则一、选择题:1. B2.C 3.C 4. B 5.A 6.B 7. A 8.B 9.A 10.C 二、填空题:11.(Ⅰ)200;(Ⅱ)20 12. 4 13. ]4,3[- 14. 5050- 15. 9)3()1(22=-+-y x 或016222=+--+y x y x 16.(Ⅰ) (4,2);(Ⅱ))1,(+-m n m 17. 43三、解答题:18.解:(Ⅰ)71cos -=C Q ,734cos 1sin 2=-=\C C . B b C c sin sin =Q,3p =B ,237348b=\,即7=b .…………………………(6分) (Ⅱ)方法一:)sin()sin(sin C B C B A +=--=p Q C B C B sin cos cos sin += 14337342171(23=´+-´=, 3614337821sin 21=´´´==\D A bc S ABC .………………………………………(12分)方法二:B ac c a b cos 2222-+=Q ,3cos 8287222pa a ´-+=\, 即01582=+-a a .3=\a 或5=a .当5=a 时,712cos 222=-+=ab c b a C ,不合题意.36238321sin 21=´´´==\D B ac S ABC .…………………………………………(12分) 19.解:(Ⅰ)由题意知数列{}n a 是首项11=a ,公比2=q 的等比数列, 所以12-=n n a ;因为211=-a b ,422=-a b ,所以数列{}n n a b -的公差为2=d .所以n n d n a b a b n n 2)1(22)1()(11=-+=-+-=-. 所以122-+=n n n b .…………………………………………………(6分)(Ⅱ)n n b b b b T ++++=L 321)2421()2642(1-+++++++++=n n L L21)21(12)22(--´++=n n n 12)1(-++=n n n .………………………………………(12分)20.解:(Ⅰ)连接BD .ABCD Q 是正方形,BD AC ^\.Q 四棱柱1111D C B A ABCD -是直棱柱,^\B B 1平面ABCD .ÌAC Q 平面ABCD , AC B B ^\1. ^\AC 平面11BDD B .ÌE D 1Q 平面11BDD B ,\E D AC 1^.…………………………………………………(6分) (Ⅱ)111111D B A E E D A B V V --=Q ,^1EB 平面1111D C B A ,111111131EB S V D B A D B A E ×=\D -.1211111111=×=D D A B A S D B A Q ,32311111==\-EB V D B A E .21=\EB .11//D A AD Q ,111B D A Ð\为异面直线AD ,E D 1所成的角.在D Rt 11D EB 中,求得221=ED .^11A D Q 平面11ABB A ,E A A D 111^\.在D Rt 11D EB 中,求得21222cos 11==ÐE D A ,o 6011=ÐE D A . 所以,异面直线AD ,E D 1所成的角为o60.……………………………………………(13分) 21.解:(Ⅰ))(x f 的定义域为),0(+¥,2ln 1)(x xx f -=¢, 由0ln 1)(2=-=¢xxx f ,得e =x . 当e 0<<x 时,0ln 1)(2>-=¢x x x f ;当e >x 时,0ln 1)(2<-=¢x xx f .所以函数)(x f 在e],0(上单调递增,在),e [+¥上单调递减. ………………………(4分)1(Ⅱ)(1)当e 20£<m ,即2e0£<m 时,)(x f 在]2,[m m 上单调递增,所以 12)2ln()2()(max -==mm m f x f . (2)当e ³m 时,)(x f 在]2,[m m 上单调递减,所以1ln )()(max -==mmm f x f . (3)当2m e <<m ,即e 2e<<m 时,)(x f 在]e ,[m 上单调递增,在]2,e [m 上单调递减,所以1e1)e ()(max -==f x f .…………………………………………………(10分) (Ⅲ)由(Ⅰ)知,当),0(+¥Îx 时,1e1)e ()(max -==f x f ,所以在),0(+¥上,恒有 1e 11ln )(-£-=x x x f ,即e1ln £x x 且当e =x 时等号成立. 因此,对),0(+¥Î"x ,恒有x x e1ln £. 因为01>+n n ,e 1¹+n n ,所以n n n n +×£+1e 11ln ,即n nn n +£+11ln e , 所以nnn n +£+1)1ln(e . 即对*Î"N n ,不等式nnn n +<+1)1ln(e 成立. …………………………………(14分) 22.解:(Ⅰ)由已知可得ïîïíì==-=,3,42222b a b a c解得a 2=6,b 2=2,所以椭圆C 的标准方程是12622=+y x . …………………………………………………(4分)(Ⅱ)(ⅰ)由(Ⅰ)可得,F 点的坐标为(2,0).由题意知直线PQ 的斜率存在且不为0,设直线PQ 的方程为x =my +2. 将直线PQ 的方程与椭圆C 的方程联立,得îïíïìx =my +2,x 26+y 22=1.消去x ,得(m 2+3)y 2+4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0.设P (x 1,y 1),Q (x 2,y 2),则34221+-=+m m y y ,32221+-=m y y . 于是3124)(22121+=++=+m y y m x x . 设M 为PQ 的中点,则M 点的坐标为)32,36(+-+m mm . 因为PQ TF ^,所以直线FT 的斜率为m -,其方程为)2(--=x m y . 当t x =时,()2--=t m y ,所以点T 的坐标为()()2,--t m t ,此时直线OT 的斜率为()tt m 2--,其方程为x t t m y )2(-=.将M 点的坐标为32,36(22+-+m mm 代入x t t m y )2(-=, 得36)2(32+×-=+-m t t m m m .解得3=t . ………………………………………(8分) (ⅱ)由(ⅰ)知T 点的坐标为),3(m -. 于是1||2+=m TF ,221221221221)()]([)()(||y y y y m y y x x PQ -+-=-+-= ]4))[(1(212212y y y y m -++=]324)34)[(1(2222+--+-+=m m m m]324)34)[(1(2222+--+-+=m m m m 3)1(2422++=m m . 所以1)3(241)1(2431||||222222++×=++×+=m m m m m PQ TF14)1(4)1(2411)3(2412222222+++++×=++×=m m m m m414124122++++×=m m 33442241=+׳.当且仅当14122+=+m m ,即1±=m 时,等号成立,此时||||PQ TF 取得最小值33. 故当||||PQ TF 最小时,T 点的坐标是)1,3(或)1,3(-.…………………………………(14分)。
武汉市部分学校2015—2016年九年级四月调研测试数学试卷及答案

2015~2016学年度武汉市部分学校九年级四月调研测试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数3的值在( ) A .0与1之间B .1与2之间C .2与3之间D .3与4之间2.分式21x 有意义,则x 的取值范围是( ) A .x >2B .x =2C .x ≠2D .x <2 3.运用乘法公式计算(a -3)2的结果是( ) A .a 2-6a +9B .a 2-3a +9C .a 2-9D .a 2-6a -94.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件是随机事件的是( )A .掷一次骰子,在骰子向上的一面上的点数大于0B .掷一次骰子,在骰子向上的一面上的点数为7C .掷三次骰子,在骰子向上的一面上的点数之和刚好为18D .掷两次骰子,在骰子向上的一面上的点数之积刚好是11 5.下列计算正确的是( ) A .3x 2-2x 2=1 B .x +x =x 2C .4x 8÷2x 2=2x 4D .x ·x =x 2 6.如图,□ABCD 的顶点坐标分别为A (1,4)、B (1,1)、C (5,2),则点D 的坐标为( )A .(5,5)B .(5,6)C .(6,6)D .(5,4)7.由圆柱体和长方体组成的几何体如图所示,其俯视图是( )8.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表: 年龄(岁) 12 13 14 15 人数(个) 2 4 6 8 根据表中信息可以判断该排球队员的平均年龄为( )A .13B .14C .13.5D .59.如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖, 则不同的覆盖方法有( )A .3种B .5种C .8种D .13种10.如图,在Rt △ABC 中,∠ACB =90°,点O 在BC 上,以点O 为圆心,OC 为半径的⊙O 刚好与AB 相切,交OB 于点D .若BD =1,tan ∠AOC =2,则⊙O 的面积是( ) A .πB .2πC .π49D .π916二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算10+(-6)的结果为__________12.2016年全国两会在3月3日开幕,引起了传媒的极大关注.某网络平台在3月1日至8日,共检测到两会对于民生问题相关信息约290 000条,数290 000用科学记数法表示为__________ 13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机取出一个小球,标号为偶数的概率为__________14.E 为□ABCD 边AD 上一点,将ABE 沿BE 翻折得到FBE ,点F 在BD 上,且EF =DF .若∠C =52°,那么∠ABE =__________15.在平面直角坐标系中,已知A (2,4)、P (1,0),B 为y 轴上的动点,以AB 为边构造△ABC ,使点C 在x 轴上,∠BAC =90°.M 为BC 的中点,则PM 的最小值为__________16.我们把函数A 的图象与直线y =x 的公共点叫做函数A 的不动点,如二次函数x x y 4212-=有两个不动点(0,0)和(10,10).直线y =m 是平行于x 轴的直线,将抛物线x x y 4212-=在直线y =m 下侧的部分沿直线y =m 翻折,翻折后的部分与没有翻折的部分组成的新的函数B 的图象.若函数B 刚好有3个不动点,则满足条件的m 的值为__________ 三、解答题(共8题,共72分)17.(本题8分)解方程:5x +2=2(x +4)18.(本题8分)如图,线段AB 、CD 相交于点E ,AE =BE ,CE =DE ,求证:AD ∥CB19.(本题8分)国家规定,“中小学生每天在校体育锻炼时间不小于1小时”,某地区就“每天在校体育锻炼时间”的问题随机调查了若干名中学生,根据调查结果制作如下统计图(不完整).其中分组情况:A 组:时间小于0.5小时;B 组:时间大于等于0.5小时且小于1小时;C 组:时间大于等于1小时且小于1.5小时;D 组:时间大于等于1.5小时根据以上信息,回答下列问题:(1) A 组的人数是__________人,并不全条形统计图 (2) 本次调查数据的中位数落在组__________(3) 根据统计数据估计该地区25 000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有__________人20.(本题8分)如图,双曲线xky =(k >0)与直线421+-=x y 相交于A 、B 两点(1) 当k =6时,求点A 、B 的坐标 (2) 在双曲线xky =(k >0)的同一支上有三点M (x 1,y 1),N ((x 2,y 2),P (221y y +,y 0),请你借助图象,直接写出y 0与221y y +的大小关系21.(本题8分)已知⊙O 为△ABC 的外接圆,点E 是△ABC 的内心,AE 的延长线交BC 于点F ,交⊙O 于点D(1) 如图1,求证:BD =ED(2) 如图2,AD 为⊙O 的直径.若BC =6,sin ∠BAC =53,求OE 的长22.(本题10分)在一块矩形ABCD 的空地上划一块四边形MNPQ 进行绿化,如图,四边形的顶点在矩形的边上,且AN =AM =CP =CQ =x m ,已知矩形的边BC =200 m ,边AB =a m ,a 为大于200的常数,设四边形MNPQ 的面积为sm 2(1) 求S 关于x 的函数关系式,并直接写出自变量x 的取值范围(2) 若a =400,求S 的最大值,并求出此时x 的值 (3) 若a =800,请直接写出S 的最大值23.(本题10分)如图,在△ABC 中,AC >AB ,AD 是角平分线,AE 是中线,BF ⊥AD 于点G ,交AE 于点F ,交AC 于点M ,EG 的延长线交AB 于点H (1) 求证:AH =BH (2) 若∠BAC =60°,求D GFG 的值24.(本题12分)如图1,在平面直角坐标系xOy 中,抛物线M :5212+-=x y 经过点C (2,3),直线y =kx +b 与抛物线相交于A 、B 两点,∠ACB =90° (1) 探究与猜想 ① 探究:取点B (6,﹣13)时,点A 的坐标为(25-,815),直接写出直线AB 的解析式 ;取点B (4,﹣3),直接写出AB 的解析式为 ② 猜想:我们猜想直线AB 必经过一个定点Q ,其坐标为 .请取点B 的横坐标为n ,验证你的猜想;友情提醒:此问如果没有解出,不影响第(2)问的解答(2) 如图2,点D 在抛物线M 上,若AB 经过原点O ,△ABD 的面积等于△ABC 的面积,试求出一个符合条件的点D 的坐标,并直接写出其余的符合条件的D 点的坐标。
湖北省武汉市2018届高中毕业生四月调研测试理科数学试题及答案

武汉市2018届高中毕业生四月调研测试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数52i -的共轭复数是( ) A .2i + B .2i -+ C .2i -- D .2i -2.已知集合2{|1}M x x ==,{|1}N x ax ==,若N M ⊆,则实数a 的取值集合为( ) A .{1} B .{1,1}- C .{1,0} D .{1,1,0}-3.执行如图所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于( )A .[4,2]-B .[2,2]-C .[2,4]-D .[4,0]-4.某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为( )A C ..5.一张储蓄卡的密码共有6位数字,每位数字都可以从09中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为( )A .25B .310C .15D .1106.若实数a ,b 满足1a b >>,log (log )a a m b =,2(log )a n b =,2log a l b =,则m ,n ,l 的大小关系为( )A .m l n >>B .l n m >>C .n l m >>D .l m n >>7.已知直线1y kx =-与双曲线224x y -=的右支有两个交点,则k 的取值范围为( )A .(0,2B .2C .(22-D .(1,2 8.在ABC ∆中,角A 、B 、C 的对应边分别为a ,b ,c ,条件p :2b c a +≤,条件q :2B C A +≤,那么条件p 是条件q 成立的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件9.在61(1)x x+-的展开式中,含5x 项的系数为( ) A .6 B .6- C .24 D .24-10.若x ,y 满足1212x y -++≤,则2222M x y x =+-的最小值为( ) A .2- B .211 C .4 D .49- 11.函数()2sin()(0)3f x x πωω=+>的图象在[0,1]上恰有两个最大值点,则ω的取值范围为( ) A .[2,4]ππ B .9[2,)2ππ C .1325[,)66ππ D .25[2,)6ππ 12.过点(2,1)P -作抛物线24x y =的两条切线,切点分别为A ,B ,PA ,PB 分别交x 轴于E ,F 两点,O 为坐标原点,则PEF ∆与OAB ∆的面积之比为( )A .2B .3C .12D .34二、填空题:本大题共4小题,每小题5分,共20分.13.已知sin 2cos αα=,则sin cos αα= .14.已知向量a ,b ,c 满足20a b c ++=,且1a =,3b =,2c =,则22a b a c b c ⋅+⋅+⋅= . 15.已知(,)22x ππ∈-,()1y f x =-为奇函数,'()()tan 0f x f x x +>,则不等式()cos f x x >的解集为 .16.在四面体ABCD 中,1AD DB AC CB ====,则四面体体积最大时,它的外接球半径R = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知正数数列{}n a 满足:12a =,11212n n n n n a a a a ---+=+-(2)n ≥. (1)求2a ,3a ;(2)设数列{}n b 满足22(1)n n b a n =--,证明:数列{}n b 是等差数列,并求数列{}n a 的通项n a .18.如图,在棱长为3的正方体1111ABCD A B C D -中,E ,F 分别在棱AB ,CD 上,且1AE CF ==.(1)已知M 为棱1DD 上一点,且11D M =,求证:1B M ⊥平面11A EC .(2)求直线1FC 与平面11A EC 所成角的正弦值.19.已知椭圆Γ:22142x y +=,过点(1,1)P 作倾斜角互补的两条不同直线1l ,2l ,设1l 与椭圆Γ交于A 、B 两点,2l 与椭圆Γ交于C ,D 两点.(1)若(1,1)P 为线段AB 的中点,求直线AB 的方程;(2)记AB CDλ=,求λ的取值范围. 20.在某市高中某学科竞赛中,某一个区4000名考生的参赛成绩统计如图所示.(1)求这4000名考生的竞赛平均成绩x (同一组中数据用该组区间中点作代表);(2)由直方图可认为考生竞赛成绩z 服正态分布2(,)N μσ,其中μ,2σ分别取考生的平均成绩x 和考生成绩的方差2s ,那么该区4000名考生成绩超过84.41分(含84.81分)的人数估计有多少人?(3)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生中随机抽取4名考生,记成绩不超过...84.81分的考生人数为ξ,求(3)P ξ≤.(精确到0.001)附:①2204.75s =14.31=;②2(,)z N μσ,则()0.6826P z μσμσ-<<+=,(22)0.9544P z μσμσ-<<+=;③40.84130.501=.21.已知函数()(ln )xf x xe a x x =-+,a R ∈. (1)当a e =时,求()f x 的单调区间;(2)若()f x 有两个零点,求实数a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,l 的极坐标方程为(cos 2sin )10ρθθ+=,C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数,R θ∈).(1)写出l 和C 的普通方程;(2)在C 上求点M ,使点M 到l 的距离最小,并求出最小值.23.[选修4-5:不等式选讲] 已知()22f x ax x =--+.(1)在2a =时,解不等式()1f x ≤;(2)若关于x 的不等式4()4f x -≤≤对x R ∈恒成立,求实数a 的取值范围.武汉市2018届高中毕业生四月调研测试理科数学参考答案一、选择题1-5: BDABC 6-10: BDABD 11、12:CC二、填空题13.25 14. 13- 15. (0,)2π 16. 6 三、解答题17.(1)由已知212132a a a a +=+-,而12a =, ∴2222232(2)a a -=+-,即222230a a --=.而20a >,则23a =. 又由323252a a a a +=+-,23a =, ∴233952(3)a a -=+-,即233280a a --=.而30a >,则34a =.∴23a =,34a =.(2)由已知条件可知:22112()21n n n n a a a a n ---=-+-,∴22221(1)(1)(1)n n a a n n ----=--,则22221(1)(1)(1)n n a n a n ---=---223(1)2a =⋅⋅⋅=--222(1)1a =--0=,而22(1)n n b a n =--,∴0n b =,数列{}n b 为等差数列.∴22(1)n a n -=.而0n a >,故1n a n =+.18.解:(1)过M 作1MT AA ⊥于点T ,连1B T ,则11AT =.易证:111AA E A B T ∆≅∆,于是111AA E A B T ∠=∠.由111190A B T ATB ∠+∠=,知11190AA E ATB ∠+∠=,∴11A E B T ⊥.显然MT ⊥面11AA B B ,而1A E ⊂面11AA B B ,∴1MT A E ⊥,又1B T MT T =,∴1A E ⊥面MTB ,∴11A E MB ⊥.连11B D ,则1111B D A C ⊥.又111D M A C ⊥,1111B D D M D =,∴11A C ⊥面11MD B ,∴111AC MB ⊥.由11A E MB ⊥,111AC MB ⊥,1111A E A C A =,∴1B M ⊥面11A EC .(2)在11D C 上取一点N ,使11ND =,连接EF . 易知1//A E FN .∴1111A EFC N EFC E NFC V V V ---==11113(23)33332NFC S ∆=⋅⨯=⨯⨯⨯=.对于11A EC ∆,11AC =,1A E而1EC 由余弦定理可知11cos EAC ∠==.∴11A EC ∆的面积11111sin 2S AC A E EAC =⋅∠12=⨯=. 由等体积法可知F 到平面11A EC 之距离h 满足111113A EC A EFC S h V ∆-⋅=,则133h =,∴h =,又1FC =1FC 与平面1AEC 所成角为θ,∴sinθ===. 19.解:(1)设直线AB 的斜率为tan k α=,方程为1(1)y k x -=-,代入2224x y +=中,∴222[(1)]40x kx k +---=. ∴222(12)4(1)2(1)40k x k k x k +--+--=. 判别式222[4(1)]4(21)[2(1)4]k k k k ∆=--+--28(321)k k =++. 设11(,)A x y ,22(,)B x y ,则12221224(1)212(1)421k k x x k k x x k -⎧+=⎪⎪+⎨--⎪=⎪+⎩. ∵AB 中点为(1,1), ∴12212(1)()1221k k x x k -+==+,则12k =. ∴直线的AB 方程为11(1)2y x -=-,即210x y -+=. (2)由(1)知12AB x =-==. 设直线的CD 方程为1(1)(0)y k x k -=--≠.同理可得CD =.∴0)AB k CD λ==≠. ∴2241312k k k λ=++-41132k k=++-. 令13t k k=+, 则4()12g t t =+-,(,[23,)t ∈-∞-+∞.()g t 在(,-∞-,)+∞分别单调递减, ∴2()1gt ≤<或1()2g t <≤故221λ<或212λ<≤+即6(1,λ+∈. 20.解:(1)由题意知:∴450.1550.15650.2750.3x =⨯+⨯+⨯+⨯850.15950.170.5+⨯+⨯=, ∴4000名考生的竞赛平均成绩x 为70.5分.(2)依题意z 服从正态分布2(,)N μσ,其中70.5x μ==, 2204.75D σξ==,14.31σ=,∴z 服从正态分布22(,)(70.5,14.31)N N μσ=, 而()(56.1984.81)0.6826P z P z μσμσ-<<+=<<=,∴10.6826(84.81)0.15872P z -≥==. ∴竞赛成绩超过84.81分的人数估计为0.158********.8⨯=人634≈人.(3)全市竞赛考生成绩不超过84.81分的概率10.15870.8413-=. 而(4,0.8413)B ξ,∴444(3)1(4)10.8413P P C ξξ≤=-==-⋅10.5010.499=-=.21.解:(1)定义域为:(0,)+∞,当a e =时,(1)()'()x x xe e f x x+-=.∴()f x 在(0,1)时为减函数;在(1,)+∞时为增函数.(2)记ln t x x =+,则ln t x x =+在(0,)+∞上单增,且t R ∈. ∴()(ln )x f x xe a x x =-+()te at g t =-=. ∴()f x 在0x >上有两个零点等价于()tg t e at =-在t R ∈上有两个零点. ①在0a =时,()tg t e =在R 上单增,且()0g t >,故()g t 无零点;②在0a <时,'()t g t e a =-在R 上单增,又(0)10g =>,11()10a g e a =-<,故()g t 在R 上只有一个零点; ③在0a >时,由'()0tg t e a =-=可知()g t 在ln t a =时有唯一的一个极小值(ln )(1ln )g a a a =-.若0a e <<,(1ln )0g a a =->最小,()g t 无零点;若a e =,0g =最小,()g t 只有一个零点;若a e >时,(1ln )0g a a =-<最小,而(0)10g =>,由于ln ()x f x x=在x e >时为减函数,可知:a e >时,2a e e a a >>. 从而2()0a g a e a =->,∴()g x 在(0,ln )a 和(ln ,)a +∞上各有一个零点.综上讨论可知:a e >时()f x 有两个零点,即所求a 的取值范围是(,)e +∞.22.解:(1)由l :cos sin 100ρθρϕ+-=,及cos x ρθ=,sin y ρθ=. ∴l 的方程为2100x y +-=.由3cos x θ=,2sin y θ=,消去θ得22194x y +=.(2)在C 上取点(3cos ,2sin )M ϕϕ,则d=05cos()10ϕϕ=--. 其中003cos 54sin 5ϕϕ⎧=⎪⎪⎨⎪=⎪⎩,当0ϕϕ=时,d 此时093sin 3cos 5ϕϕ==,0082sin 2cos 5ϕϕ==,98(,)55M . 23.解:(1)在2a =时,2221x x --+≤.在1x ≥时,(22)(2)1x x --+≤,∴15x ≤≤;在2x ≤-时,(22)(2)1x x --++≤,3x ≥,∴x 无解; 在21x -≤≤时,(22)(2)1x x ---+≤,13x ≥-,∴113x -≤≤. 综上可知:不等式()1f x ≤的解集为1{|5}3x x -≤≤. (2)∵224x ax +--≤恒成立, 而22(1)x ax a x +--≤+, 或22(1)4x ax a x +--≤-+, 故只需(1)4a x +≤恒成立,或(1)44a x -+≤恒成立, ∴1a =-或1a =.∴a 的取值为1或1-.。
湖北省武汉市2018年高三四月调研测试数学理试卷及答案

武汉市2018届高中毕业生四月调研测试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数52i -的共轭复数是( ) A .2i +B .2i -+ C .2i --D .2i -2.已知集合2{|1}M x x ==,{|1}N x ax ==,若N M ⊆,则实数a 的取值集合为( ) A .{1}B .{1,1}-C .{1,0}D .{1,1,0}-3.执行如图所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于( )A .[4,2]-B .[2,2]-C .[2,4]-D .[4,0]-4.某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为( )A ..5.一张储蓄卡的密码共有6位数字,每位数字都可以从09中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为( ) A .25B .310 C .15D .1106.若实数a ,b 满足1a b >>,log (log )a a m b =,2(log )a n b =,2log a l b =,则m ,n ,l 的大小关系为( )A .m l n >>B .l n m >>C .n l m >>D .l m n >>7.已知直线1y kx =-与双曲线224x y -=的右支有两个交点,则k 的取值范围为( ) A. B. C.( D. 8.在ABC ∆中,角A 、B 、C 的对应边分别为a ,b ,c ,条件p :2b c a +≤,条件q :2B CA +≤,那么条件p 是条件q 成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 9.在61(1)x x+-的展开式中,含5x 项的系数为( ) A .6B .6- C .24D .24-10.若x ,y 满足1212x y -++≤,则2222M x y x =+-的最小值为( ) A .2-B .211 C .4D .49- 11.函数()2sin()(0)3f x x πωω=+>的图象在[0,1]上恰有两个最大值点,则ω的取值范围为( )A .[2,4]ππB .9[2,)2ππ C .1325[,)66ππ D .25[2,)6ππ 12.过点(2,1)P -作抛物线24x y =的两条切线,切点分别为A ,B ,PA ,PB 分别交x 轴于E ,F 两点,O 为坐标原点,则PEF ∆与OAB ∆的面积之比为( )A.12 D .34二、填空题:本大题共4小题,每小题5分,共20分. 13.已知sin 2cos αα=,则sin cos αα=.14.已知向量a ,b ,c 满足20a b c ++=,且1a =,3b =,2c =,则22a b a c b c ⋅+⋅+⋅=. 15.已知(,)22x ππ∈-,()1y f x =-为奇函数,'()()tan 0f x f x x +>,则不等式()cos f x x >的解集为. 16.在四面体ABCD 中,1AD DB AC CB ====,则四面体体积最大时,它的外接球半径R =. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知正数数列{}n a 满足:12a =,11212n n n n n a a a a ---+=+-(2)n ≥.(1)求2a ,3a ;(2)设数列{}n b 满足22(1)n n b a n =--,证明:数列{}n b 是等差数列,并求数列{}n a 的通项n a .18.如图,在棱长为3的正方体1111ABCD A BC D -中,E ,F 分别在棱AB ,CD 上,且1AE CF ==.(1)已知M 为棱1DD 上一点,且11D M =,求证:1B M ⊥平面11A EC . (2)求直线1FC 与平面11A EC 所成角的正弦值.19.已知椭圆Γ:22142x y +=,过点(1,1)P 作倾斜角互补的两条不同直线1l ,2l ,设1l 与椭圆Γ交于A 、B 两点,2l 与椭圆Γ交于C ,D 两点.(1)若(1,1)P 为线段AB 的中点,求直线AB 的方程; (2)记AB CDλ=,求λ的取值范围.20.在某市高中某学科竞赛中,某一个区4000名考生的参赛成绩统计如图所示.(1)求这4000名考生的竞赛平均成绩x (同一组中数据用该组区间中点作代表);(2)由直方图可认为考生竞赛成绩z 服正态分布2(,)N μσ,其中μ,2σ分别取考生的平均成绩x 和考生成绩的方差2s ,那么该区4000名考生成绩超过84.41分(含84.81分)的人数估计有多少人?(3)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生中随机抽取4名考生,记成绩不超过...84.81分的考生人数为ξ,求(3)P ξ≤.(精确到0.001)附:①2204.75s =14.31=;②2(,)zN μσ,则()0.6826P z μσμσ-<<+=,(22)0.9544P z μσμσ-<<+=;③40.84130.501=.21.已知函数()(ln )x f x xe a x x =-+,a R ∈. (1)当a e =时,求()f x 的单调区间; (2)若()f x 有两个零点,求实数a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,l 的极坐标方程为(cos 2sin )10ρθθ+=,C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数,R θ∈). (1)写出l 和C 的普通方程;(2)在C 上求点M ,使点M 到l 的距离最小,并求出最小值. 23.[选修4-5:不等式选讲] 已知()22f x ax x =--+.(1)在2a =时,解不等式()1f x ≤;(2)若关于x 的不等式4()4f x -≤≤对x R ∈恒成立,求实数a 的取值范围.武汉市2018届高中毕业生四月调研测试理科数学参考答案一、选择题1-5: BDABC 6-10: BDABD 11、12:CC 二、填空题 13.25 14. 13- 15. (0,)2π三、解答题17.(1)由已知212132a a a a +=+-,而12a =,∴2222232(2)a a -=+-,即222230a a --=. 而20a >,则23a =. 又由323252a a a a +=+-,23a =,∴233952(3)a a -=+-,即233280a a --=. 而30a >,则34a =. ∴23a =,34a =.(2)由已知条件可知:22112()21n n n n a a a a n ---=-+-,∴22221(1)(1)(1)n n a a n n ----=--, 则22221(1)(1)(1)n n a n a n ---=---223(1)2a =⋅⋅⋅=-- 222(1)1a =--0=,而22(1)n n b a n =--,∴0n b =,数列{}n b 为等差数列. ∴22(1)n a n -=.而0n a >, 故1n a n =+.18.解:(1)过M 作1MT AA ⊥于点T ,连1B T ,则11AT =. 易证:111AA E A BT ∆≅∆,于是111AA E A BT ∠=∠. 由111190A BT ATB ∠+∠=,知11190AA E ATB ∠+∠=, ∴11A E BT ⊥.显然MT ⊥面11AA B B ,而1A E ⊂面11AA B B , ∴1MT A E ⊥,又1BT MT T =,∴1A E ⊥面MTB ,∴11A E MB ⊥. 连11B D ,则1111B D AC ⊥. 又111D M AC ⊥,1111B D D M D =,∴11AC ⊥面11MD B , ∴111AC MB ⊥.由11A E MB ⊥,111AC MB ⊥,1111A E AC A =,∴1B M ⊥面11A EC .(2)在11D C 上取一点N ,使11ND =,连接EF . 易知1//A E FN .∴1111A EFC N EFC E NFC V V V ---==11113(23)33332NFC S ∆=⋅⨯=⨯⨯⨯=.对于11A EC ∆,11AC =,1A E =而1EC ,由余弦定理可知11cos EAC ∠==∴11A EC ∆的面积11111sin 2S A C A E EA C =⋅∠12=⨯=由等体积法可知F 到平面11A EC 之距离h 满足111113A EC A EFC S h V ∆-⋅=,则133h =,∴h =,又1FC =1FC 与平面1AEC 所成角为θ,∴sinθ===. 19.解:(1)设直线AB 的斜率为tan k α=,方程为1(1)y k x -=-,代入2224x y +=中,∴222[(1)]40x kx k +---=.∴222(12)4(1)2(1)40k x k k x k +--+--=.判别式222[4(1)]4(21)[2(1)4]k k k k ∆=--+--28(321)k k =++. 设11(,)A x y ,22(,)B x y ,则12221224(1)212(1)421k k x x k k x x k -⎧+=⎪⎪+⎨--⎪=⎪+⎩. ∵AB 中点为(1,1), ∴12212(1)()1221k k x x k -+==+,则12k =. ∴直线的AB 方程为11(1)2y x -=-,即210x y -+=. (2)由(1)知12AB x =-==. 设直线的CD 方程为1(1)(0)y k x k -=--≠.同理可得CD =∴0)ABk CD λ==≠. ∴2241312kk k λ=++-41132k k=++-. 令13t k k=+, 则4()12g t t =+-,(,[23,)t ∈-∞-+∞. ()g t 在(,-∞-,)+∞分别单调递减,∴2()1gt ≤<或1()2g t <≤故221λ≤<或212λ<≤.即6(1,λ+∈. 20.解:(1)由题意知:∴4000名考生的竞赛平均成绩x 为70.5分.(2)依题意z 服从正态分布2(,)N μσ,其中70.5x μ==,2204.75D σξ==,14.31σ=,∴z 服从正态分布22(,)(70.5,14.31)N N μσ=,而()(56.1984.81)0.6826P z P z μσμσ-<<+=<<=, ∴10.6826(84.81)0.15872P z -≥==. ∴竞赛成绩超过84.81分的人数估计为0.158********.8⨯=人634≈人. (3)全市竞赛考生成绩不超过84.81分的概率10.15870.8413-=. 而(4,0.8413)B ξ,∴444(3)1(4)10.8413P P C ξξ≤=-==-⋅10.5010.499=-=.21.解:(1)定义域为:(0,)+∞,当a e =时,(1)()'()x x xe e f x x+-=.∴()f x 在(0,1)时为减函数;在(1,)+∞时为增函数.(2)记ln t x x =+,则ln t x x =+在(0,)+∞上单增,且t R ∈. ∴()(ln )x f x xe a x x =-+()t e at g t =-=.∴()f x 在0x >上有两个零点等价于()t g t e at =-在t R ∈上有两个零点. ①在0a =时,()t g t e =在R 上单增,且()0g t >,故()g t 无零点; ②在0a <时,'()tg t e a =-在R 上单增,又(0)10g =>,11()10a g e a=-<,故()g t 在R 上只有一个零点; ③在0a >时,由'()0t g t e a =-=可知()g t 在ln t a =时有唯一的一个极小值(ln )(1ln )g a a a =-. 若0a e <<,(1ln )0g a a =->最小,()g t 无零点; 若a e =,0g =最小,()g t 只有一个零点;若a e >时,(1ln )0g a a =-<最小,而(0)10g =>, 由于ln ()x f x x=在x e >时为减函数,可知:a e >时,2a e e a a >>. 从而2()0ag a e a =->,∴()g x 在(0,ln )a 和(ln ,)a +∞上各有一个零点.综上讨论可知:a e >时()f x 有两个零点,即所求a 的取值范围是(,)e +∞. 22.解:(1)由l :cos sin 100ρθρϕ+-=,及cos x ρθ=,sin y ρθ=. ∴l 的方程为2100x y +-=.由3cos x θ=,2sin y θ=,消去θ得22194x y +=. (2)在C 上取点(3cos ,2sin )M ϕϕ,则d=05cos()10ϕϕ=--. 其中003cos 54sin 5ϕϕ⎧=⎪⎪⎨⎪=⎪⎩,当0ϕϕ=时,d此时093sin 3cos 5ϕϕ==,0082sin 2cos 5ϕϕ==,98(,)55M . 23.解:(1)在2a =时,2221x x --+≤. 在1x ≥时,(22)(2)1x x --+≤,∴15x ≤≤; 在2x ≤-时,(22)(2)1x x --++≤,3x ≥,∴x 无解; 在21x -≤≤时,(22)(2)1x x ---+≤,13x ≥-,∴113x -≤≤. 综上可知:不等式()1f x ≤的解集为1{|5}3x x -≤≤. (2)∵224x ax +--≤恒成立, 而22(1)x ax a x +--≤+, 或22(1)4x ax a x +--≤-+,故只需(1)4a x +≤恒成立,或(1)44a x -+≤恒成立, ∴1a =-或1a =. ∴a 的取值为1或1-.。
武汉市2023届高中毕业生四月调研考试数学试题(含答案)
武汉市2023届高中毕业生四月调研考试数学试卷武汉市教育科学研究院命制2023.4.11本试题卷共5页,22题,全卷满分150分。
考试用时120分钟。
⋆祝考试顺利⋆注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试春、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A =x |x 2-x -6<0 ,B ={x |2x +3>0},则A ∩B =()A.-2,-32B.32,3C.-32,3 D.-32,2 2.若复数a +3i2+i 是纯虚数,则实数a =()A.-32 B.32C.-23D.233.已知sin α+π3 =35,则sin 2α+π6=()A.2425 B.-2425 C.725D.-7254.正六边形ABCDEF 中,用AC 和AE 表示CD ,则CD=()A.-23AC +13AE B.-13AC +23AE C.-23AC +23AE D.-13AC +13AE 5.“中国剩余定理”又称“孙子定理”,1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”,“中国剩余定理”讲的是一个关于同余的问题.现有这样一个问题:将正整数中能被3除余1且被2除余1的数按由小到大的顺序排成一列,构成数列a n ,则a 10=()A.55B.49C.43D.376.设抛物线y 2=6x 的焦点为F ,准线为l ,P 是抛物线上位于第一象限内的一点,过P 作l 的垂线,垂足为Q ,若直线QF 的倾斜角为120°,则|PF |=()A.3B.6C.9D.127.阅读下段文字:“已知2为无理数,若(2)2为有理数,则存在无理数a =b =2,使得a b 为有理数;若(2)2为无理数,则取无理数a =(2)2,b =2,此时a b =(2)2 2=(2)2⋅2=(2)2=2为有理数,”依据这段文字可以证明的结论是()A.(2)2是有理数B.(2)2是无理数C.存在无理数a ,b ,使得a b 为有理数D.对任意无理数a ,b ,都有a b 为无理数8.已知直线y =kx +t 与函数y =A sin (ωx +φ)(A >0,ω>0)的图像恰有两个切点,设满足条件的k 所有可能取值中最大的两个值分别为k 1和k 2,且k 1>k 2,则()A.k 1k 2>73B.53<k 1k 2<73C.75<k 1k 2<53D.k 1k 2<75二、选择题:本题共4小题,每小题5分,共20分。
湖北省武汉市2018届高中毕业生四月调研测试理科数学试题及答案解析(含选择填空详解)
武汉市2018届高中毕业生四月调研测试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数52i -的共轭复数是( ) A .2i + B .2i -+ C .2i -- D .2i -2.已知集合2{|1}M x x ==,{|1}N x ax ==,若N M ⊆,则实数a 的取值集合为( )A .{1}B .{1,1}-C .{1,0}D .{1,1,0}-3.执行如图所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于( )A .[4,2]-B .[2,2]-C .[2,4]-D .[4,0]-4.某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为( )A B C .D .5.一张储蓄卡的密码共有6位数字,每位数字都可以从09中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为( ) A .25 B .310 C .15 D .1106.若实数a ,b 满足1a b >>,log (log )a a m b =,2(log )a n b =,2log a l b =,则m ,n ,l 的大小关系为( )A .m l n >>B .l n m >>C .n l m >>D .l m n >>7.已知直线1y kx =-与双曲线224x y -=的右支有两个交点,则k 的取值范围为( )A .(0,2 B .[1,]2C .(22-D .(1,2 8.在ABC ∆中,角A 、B 、C 的对应边分别为a ,b ,c ,条件p :2b c a +≤,条件q :2B CA +≤,那么条件p 是条件q 成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件9.在61(1)x x+-的展开式中,含5x 项的系数为( ) A .6 B .6- C .24 D .24-10.若x ,y 满足1212x y -++≤,则2222M x y x =+-的最小值为( ) A .2- B .211 C .4 D .49- 11.函数()2sin()(0)3f x x πωω=+>的图象在[0,1]上恰有两个最大值点,则ω的取值范围为( )A .[2,4]ππB .9[2,)2ππC .1325[,)66ππD .25[2,)6ππ 12.过点(2,1)P -作抛物线24x y =的两条切线,切点分别为A ,B ,PA ,PB 分别交x 轴于E ,F 两点,O 为坐标原点,则PEF ∆与OAB ∆的面积之比为( ) A.2 B.3C .12D .34二、填空题:本大题共4小题,每小题5分,共20分.13.已知sin 2cos αα=,则sin cos αα= .14.已知向量a ,b ,c 满足20a b c ++=,且1a =,3b =,2c =,则22a b a c b c ⋅+⋅+⋅= .15.已知(,)22x ππ∈-,()1y f x =-为奇函数,'()()tan 0f x f x x +>,则不等式()cos f x x >的解集为 .16.在四面体ABCD 中,1AD DB AC CB ====,则四面体体积最大时,它的外接球半径R = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知正数数列{}n a 满足:12a =,11212n n n n n a a a a ---+=+-(2)n ≥.(1)求2a ,3a ;(2)设数列{}n b 满足22(1)n n b a n =--,证明:数列{}n b 是等差数列,并求数列{}n a 的通项n a .18.如图,在棱长为3的正方体1111ABCD A BC D -中,E ,F 分别在棱AB ,CD 上,且1AE CF ==.(1)已知M 为棱1DD 上一点,且11D M =,求证:1B M ⊥平面11A EC .(2)求直线1FC 与平面11A EC 所成角的正弦值.19.已知椭圆Γ:22142x y +=,过点(1,1)P 作倾斜角互补的两条不同直线1l ,2l ,设1l 与椭圆Γ交于A 、B 两点,2l 与椭圆Γ交于C ,D 两点.(1)若(1,1)P 为线段AB 的中点,求直线AB 的方程; (2)记AB CDλ=,求λ的取值范围.20.在某市高中某学科竞赛中,某一个区4000名考生的参赛成绩统计如图所示.(1)求这4000名考生的竞赛平均成绩x (同一组中数据用该组区间中点作代表);(2)由直方图可认为考生竞赛成绩z 服正态分布2(,)N μσ,其中μ,2σ分别取考生的平均成绩x 和考生成绩的方差2s ,那么该区4000名考生成绩超过84.41分(含84.81分)的人数估计有多少人?(3)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生中随机抽取4名考生,记成绩不超过...84.81分的考生人数为ξ,求(3)P ξ≤.(精确到0.001)附:①2204.75s =14.31=; ②2(,)zN μσ,则()0.6826P z μσμσ-<<+=,(22)0.9544P z μσμσ-<<+=;③40.84130.501=.21.已知函数()(ln )x f x xe a x x =-+,a R ∈. (1)当a e =时,求()f x 的单调区间; (2)若()f x 有两个零点,求实数a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,l 的极坐标方程为(cos 2sin )10ρθθ+=,C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数,R θ∈).(1)写出l 和C 的普通方程;(2)在C 上求点M ,使点M 到l 的距离最小,并求出最小值.23.[选修4-5:不等式选讲] 已知()22f x ax x =--+.(1)在2a =时,解不等式()1f x ≤;(2)若关于x 的不等式4()4f x -≤≤对x R ∈恒成立,求实数a 的取值范围.武汉市2018届高中毕业生四月调研测试理科数学答案解析1、B 解析:55(2)1052,2(2)(2)52其共轭复数为i i i i i i i++===----+--+ 2、D 解析:2{|1}{1,1},0,,;110,,,11,11;{1,1,0}当时满足当时因为可得或解得或所以实数的取值集合是M x x a N N M a N N M a aa a ===-==∅⊆⎧⎫≠=⊆=-⎨⎬⎩⎭=-- 3、A 解析:32,03,020,2[40);分段函数当时,t t S t t t t S t <⎧=⎨-⎩-≤<=∈-≥3202,3,()333(1)(1)当时则t S t t S t t t t ≤≤=-'=-=+-[0,1),()0,(),(1,2],()0,(),(0)0,(1)2,(2)2,()[2,2]当时递减当时递增又t S t S t t S t S t S S S S t '∈<'∈>==-=∴∈-,[4,2]综上输出的S ∈-4、B解析:如下图所示,1任意两顶点之间距离的最大值为A D ==5、C 解析:1911101095所求概率为P =+⨯=6、B 解析:4442224411 4,2,log(log2)log,2211(log2),log21,24不妨取则所以a b mn l l n m =====-⎛⎫=====>>⎪⎝⎭7、D解析:222222212212214,(1)250,10420(1)02,1151将代入得:根据题意可得解得y kx x y k x kxkk kk kx xkx xk=--=-+-=⎧-≠⎪∆=+->⎪⎪<<⎨+=>-⎪⎪=>⎪-⎩8、A 解析:222222222,cos222332621,0,8823若则则b cb cb c b c aa Abc bcb c bc bc bcAbc bcπ+⎛⎫+- ⎪++-⎝⎭=+--⎛⎤==∈ ⎥⎝⎦≤≥≥,,,,223,,,,2,1,326.2反过来若即可得举例说明如此时不满足B C AA A AA B C a b cb caπππππ+-======+≤≤≤≤9、B 解析:5551561(1)6展开式中含的项为x C x xx⎛⎫⋅⋅-=-⎪⎝⎭222222220112222222211(,),022.而表示可行域内的动点与之间距离的平方M x y x x t x x t x t P x t P ⎡⎤⎛⎫=+-=+-=-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭002:101,61114221829显然的最小值为点到直线的距离所以的最小值为P P P AB x d M d --==-=-=-11、C 解析:0,;,;33326513925,;,.326326当时令得令得令得x x x x x x x x πππππωωωππππππωωωω=+=+==+==+==()[0,1],13113256,256616因为的图象在上恰有两个最大值点所以解得f x πππωωπω⎧⎪⎪<⎨⎪>⎪⎩≤≤12、C 解析:2222,,4,,,442,()242设切点为由得切线斜率切线方程为①t x x t x y y y t t tk y x t ⎛⎫'=== ⎪⎝⎭=-=-((212(2,1),440,2223,23,将代入①整理得解得所以P t t t t A B ---==-=+--++()(222,322,221(222)(322)(222)(32△所以OABOA OB S =--=+=-+-+-=,0,,2(1(111122△在方程①中令得所以所以PEF P t y x E F EF S EF y ==-+==⋅⋅=⨯= 1.2所以△与△的面积之比为PEF OAB13、25 解析:222sin 2cos ,tan 2,sin cos tan 2sin cos sin cos tan 15由得所以ααααααααααα=====++14、-13 解析:,,,2222341213由题可知向量与方向相同且向量与向量方向相反所以a b a b c a b a c b ca b a c b c ⋅+⋅+⋅=⋅-⋅-⋅=--=-15、(0,)2π 解析:2(,),cos 0,()cos 22()()1,(),cos cos ()cos ()sin ()()tan ()0cos cos 因为所以则不等式等价于设则x x f x x f x f x g x x xf x x f x x f x f x xg x x xππ∈->>>=''++'==>()(),()1cos (0),(0)10,(0)1,(0)1cos 0()1()(0),0,()cos 0,2所以是一个单调递增函数因为是奇函数所以即所以所以即所以所以的解集为f x g x y f x xf f fg g x g x g x f x x π==--====>>>⎛⎫> ⎪⎝⎭16解析:,,,,,,,,如下图易知△≌△取中点连接设则当平面平面时四面体的体积最大ACD BCD CD E BE AE BE AE a ACD BCD ==⊥1313△△BCD A BCD BCDS a V S AEa -==⋅==463532(),()462(23),()0,,30,()0,(),1,()0,(),,(),,设则令得当单调递增时单调递减所以当取得最大值即取得最大值此时A BCD f a a a f a a a a a f a a a f a f a a f a f a a f a V AE CE -'=-=-=-'=='<<>'<<<===22222222222222,,,,,,,1,,33412设△的外心为则在线段上连接设△的外接圆半径为在△中因为所以解得则ACD O O AE CO ACD r CEO CO r EO r CE CO EO CE r r r O E ==-=⎛⎫=+=-+ ⎪ ⎪⎝⎭==O 2ADCOO 21AEB12,,,,过△的外心作平面的垂线过作平面的垂线则两条垂线的交点即为四面体外接球的球心连接BCD O BCD O ACDABCD BO2222211315,824126则所以外接球的半径BO BO OO R BO ⎛=+=+=+= ⎝⎭⎝⎭==武汉市2018届高中毕业生四月调研测试理科数学参考答案一、选择题1-5: BDABC 6-10: BDABD 11-12:CC二、填空题13.2514. 13- 15. (0,)2π 三、解答题17.(1)由已知212132a a a a +=+-,而12a =,∴2222232(2)a a -=+-,即222230a a --=.而20a >,则23a =.又由323252a a a a +=+-,23a =,∴233952(3)a a -=+-,即233280a a --=.而30a >,则34a =.∴23a =,34a =.(2)由已知条件可知:22112()21n n n n a a a a n ---=-+-,∴22221(1)(1)(1)n n a a n n ----=--,则22221(1)(1)(1)n n a n a n ---=---223(1)2a =⋅⋅⋅=--222(1)1a =--0=,而22(1)n n b a n =--,∴0n b =,数列{}n b 为等差数列.∴22(1)n a n -=.而0n a >,故1n a n =+.18.解:(1)过M 作1MT AA ⊥于点T ,连1B T ,则11AT =.易证:111AA E A BT ∆≅∆,于是111AA E A BT ∠=∠.由111190A BT ATB ∠+∠=,知11190AA E ATB ∠+∠=,∴11A E BT ⊥.显然MT ⊥面11AA B B ,而1A E ⊂面11AA B B ,∴1M T A E ⊥,又1B T M T T =,∴1A E ⊥面MTB ,∴11A E MB ⊥.连11B D ,则1111B D AC ⊥. 又111D M AC ⊥,1111BD D M D =,∴11AC ⊥面11MD B ,∴111ACMB ⊥.由11A E MB ⊥,111AC MB ⊥,1111A E AC A =,∴1B M ⊥面11A EC .(2)在11D C 上取一点N ,使11ND =,连接EF .易知1//A E FN .∴1111A EFC N EFC E NFC V V V ---== 11113(23)33332NFC S ∆=⋅⨯=⨯⨯⨯=.对于11A EC ∆,11AC =,1A E =1EC =由余弦定理可知11cos EAC ∠==.∴11A EC ∆的面积11111sin 2S A C A E EA C =⋅∠12=⨯=.由等体积法可知F 到平面11A EC 之距离h 满足111113A EC A EFC S h V ∆-⋅=,则133h =,∴h =,又1FC =1FC 与平面1AEC 所成角为θ,∴sin 95θ===. 19.解:(1)设直线AB 的斜率为tan k α=,方程为1(1)y k x -=-,代入2224x y +=中,∴222[(1)]40x kx k +---=.∴222(12)4(1)2(1)40k x k k x k +--+--=.判别式222[4(1)]4(21)[2(1)4]k k k k ∆=--+--28(321)k k =++.设11(,)A x y ,22(,)B x y ,则12221224(1)212(1)421k k x x k k x x k -⎧+=⎪⎪+⎨--⎪=⎪+⎩.∵AB 中点为(1,1),∴12212(1)()1221k k x x k -+==+,则12k =. ∴直线的AB 方程为11(1)2y x -=-,即210x y -+=.(2)由(1)知12AB x =-==. 设直线的CD 方程为1(1)(0)y k x k -=--≠.同理可得CD =∴0)ABk CD λ==≠.∴2241312k k kλ=++-41132k k=++-. 令13t k k =+,则4()12g t t =+-,(,[23,)t ∈-∞-+∞.()g t 在(,-∞-,)+∞分别单调递减,∴2()1gt ≤<或1()2g t <≤.故221λ≤<或212λ<≤.即6(1,λ+∈. 20.解:(1)由题意知:∴450.1550.15650.2750.3x =⨯+⨯+⨯+⨯850.15950.170.5+⨯+⨯=,∴4000名考生的竞赛平均成绩x 为70.5分.(2)依题意z 服从正态分布2(,)N μσ,其中70.5x μ==,2204.75D σξ==,14.31σ=,∴z 服从正态分布22(,)(70.5,14.31)N N μσ=,而()(56.1984.81)0.6826P z P z μσμσ-<<+=<<=,∴10.6826(84.81)0.15872P z -≥==.∴竞赛成绩超过84.81分的人数估计为0.158********.8⨯=人634≈人.(3)全市竞赛考生成绩不超过84.81分的概率10.15870.8413-=.而(4,0.8413)B ξ,∴444(3)1(4)10.8413P P C ξξ≤=-==-⋅10.5010.499=-=.21.解:(1)定义域为:(0,)+∞, 当a e =时,(1)()'()x x xe e f x x +-=.∴()f x 在(0,1)时为减函数;在(1,)+∞时为增函数.(2)记ln t x x =+,则ln t x x =+在(0,)+∞上单增,且t R ∈.∴()(ln )x f x xe a x x =-+()t e at g t =-=.∴()f x 在0x >上有两个零点等价于()t g t e at =-在t R ∈上有两个零点.①在0a =时,()tg t e =在R 上单增,且()0g t >,故()g t 无零点;②在0a <时,'()t g t e a =-在R 上单增,又(0)10g =>,11()10a g e a=-<,故()g t 在R 上只有一个零点;③在0a >时,由'()0t g t e a =-=可知()g t 在ln t a =时有唯一的一个极小值(ln )(1ln )g a a a =-. 若0a e <<,(1ln )0g a a =->最小,()g t 无零点;若a e =,0g =最小,()g t 只有一个零点;若a e >时,(1ln )0g a a =-<最小,而(0)10g =>,由于ln ()xf x x=在x e >时为减函数,可知:a e >时,2a e e a a >>.从而2()0a g a e a =->,∴()g x 在(0,ln )a 和(ln ,)a +∞上各有一个零点.综上讨论可知:a e >时()f x 有两个零点,即所求a 的取值范围是(,)e +∞.22.解:(1)由l :cos sin 100ρθρϕ+-=,及c o s x ρθ=,sin y ρθ=.∴l 的方程为2100x y +-=.由3cos x θ=,2sin y θ=,消去θ得22194x y +=. (2)在C 上取点(3cos ,2sin )M ϕϕ,则d=05cos()10ϕϕ=--. 其中003cos 54sin 5ϕϕ⎧=⎪⎪⎨⎪=⎪⎩,当0ϕϕ=时,d此时093sin 3cos 5ϕϕ==,0082sin 2cos 5ϕϕ==,98(,)55M .23.解:(1)在2a =时,2221x x --+≤.在1x ≥时,(22)(2)1x x --+≤,∴15x ≤≤; 在2x ≤-时,(22)(2)1x x --++≤,3x ≥,∴x 无解;在21x -≤≤时,(22)(2)1x x ---+≤,13x ≥-,∴113x -≤≤.综上可知:不等式()1f x ≤的解集为1{|5}3x x -≤≤.(2)∵224x a x +--≤恒成立,而22(1)x ax a x +--≤+,或22(1)4x ax ax +--≤-+,故只需(1)4a x +≤恒成立,或(1)44a x -+≤恒成立,∴1a =-或1a =.∴a 的取值为1或1-.。
2017届湖北省武汉市高中毕业生四月调研测试数学(理)试题(解析版)
2017届湖北省武汉市高中毕业生四月调研测试数学(理)试题一、选择题1.已知复数,则复数在复平面内的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】,复数在复平面内的点位于第四象限,选D.2.已知集合,,则()A. B. C. D.【答案】B【解析】,,,选B. 3.若等差数列的前项和满足,,则()A. B. 0 C. 1 D. 3【答案】B【解析】根据等差数列的性质仍成等差数列,则,则,,选B.4.在长为的线段上任取一点,以为邻边作一矩形,则该矩形的面积大于的概率为()A. B. C. D.【答案】A【解析】本题为一维几何概型,设,则,,矩形面积为:,,则该矩形的面积大于的概率为,选A.5.执行如图所示的程序框图,则输出的()A. 7B. 8C. 9D. 10【答案】C【解析】运行程序,不满足,,不满足,,不满足,,不满足…………,,满足,输出,选C.6.如图所示,某地一天6~14时的温度变化曲线近似满足函数,则这段曲线的函数解析式可以为()A. ,B. ,C. ,D. ,【答案】A【解析】由于,,,,过点有:,,,,取,得符合题意,选A.7.已知数列满足,,若,则数列的通项()A. B. C. D.【答案】B【解析】,,,则,数列是首项为2,公比为2的等比数列,,利用叠加法,,,则.选B.8.已知实数满足约束条件,如果目标函数的最大值为,则实数的值为()A. 3B.C. 3或D. 3或【答案】D【解析】先画出线性约束条件所表示的可行域,目标函数化为,目标函数的最大值只需直线的截距最大,当,(1) ,即时,最优解为,,符合题意;(2),即时,最优解为,,不符舍去;当,(3),即时,最优解为,,符合;(4),即时,最优解为,,不符舍去;,,综上:实数的值为3或,选D.9.四棱锥的三视图如图所示,则该四棱锥的外接球的表面积为()A. B. C. D.【答案】C【解析】根据三视图还原几何体为一个四棱锥,平面平面,由于为等腰三角形,四边形为矩形,,过的外心作平面的垂线,过矩形的中心作平面的垂线两条垂线交于一点为四棱锥外接球的球心,在三角形中,,则,,,,,,.选C.【点睛】求几何体的外接球的半径问题,常用方法有三种:(1)恢复长方体,(2)锥体或柱体“套”在球上,(3)过两个面的外心作垂线,垂线的交点即为球心.10.已知圆:和点,若圆上存在两点,使得,则实数的取值范围为()A. B. C. D.【答案】C【解析】过点作圆的两条切线,切点分别为,连接,若圆上存在两点,使得,只需,,解得,选C.11.已知函数(,为自然对数的底数),若与的值域相同,则的取值范围是()A. B. C. D. 或【答案】A【解析】排除法:当时,令,,值域为,在上为增函数,值域为,不合题意舍去;当时,,,的值域为的值域也是,不符合题意,排除C和D.当时,,,函数在上单增,值域为,的值域也为,符合题意,排除B,选A.12.记为中的最小值,若为任意正实数,则的最大值是()A. B. 2 C. D.【答案】D【解析】设,不妨设,则,有,又,,则,当时,,此时最小;当时,,此时最小,则 .选D.二、填空题13.621x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为________.(用数字作答)【答案】15 【解析】()()6212316611rrr rr rr T Cx C xx --+⎛⎫=-=- ⎪⎝⎭, 1230,4r r -== ,常数项为()446115C -=.14.在四面体中,,则该四面体体积的最大值为________.【答案】【解析】由于平面是边长为1的正三角形,,底面面积固定,要使体积最大,只需高最大,故当平面时体积最大,.15.已知直线MN 过椭圆2212x y +=的左焦点F ,与椭圆交于,M N 两点,直线PQ 过原点O 与MN 平行,且PQ 与椭圆交于,P Q 两点,则2||PQ MN=_________.【答案】22【解析】特殊化,设MN x ⊥轴,则2222,42b MN PQ a ====, 2222PQMN==. 【点睛】特殊化法在求解选择题时不失为一种“投机取巧”的良法,很适合应试,特值特例法在很多选择题中应用,省时、准确,备受同学们的欢迎 . 16.已知的外接圆圆心为,且,若,则的最大值为__________.【答案】 【解析】设三个角所对的边分别为,由于,,,所以,解得,.三、解答题17.已知的三个内角的对边分别为,且满足,,.(1)求的值;(2)若平分交于点,求线段的长.【答案】(1);(2).【解析】利用余弦定理和正弦定理解方程组求出,第二步利用与面积和为的面积列方程求出,注意使用三角形面积公式及角平分线平分已知角.(1)由余弦定理得,即,联立,解得.(2),,,由,得,∴.【点睛】利用正弦定理和余弦定理进行“边转角”和“角转边”是高考常见考题,结合面积公式,灵活应用定理公式解题是考纲的基本要求,这类考题属于高考高频考点也是学生最容易得分的题目,要加强训练.18.某鲜花店根据以往某品种鲜花的销售记录,绘制出日销售量的频率分布直方图,如图所示.将日销售量落入各组区间的频率视为概率,且假设每天的销售量相互独立.(1)求在未来的连续4天中,有2天的日销售量低于100枝且另外2天不低于150枝的概率;(2)用表示在未来4天里日销售量不低于100枝的天数,求随机变量的分布列和数学期望.【答案】(1)∴;(2)见解析.【解析】(1)设日销量为,有2天日销售量低于100枝,另外2天不低于150枝为事件.则,,∴.(2)日销售量不低于100枝的概率,则,于是,01234∴.【点睛】频率分布直方图、茎叶图、线性回归、独立性检验是高考需要掌握的统计知识,概率分布问题注意一些常用的概率分布,如二项分布,超几何分布等,会计算概率,正确列出分布列,正确计算数学期望及方差.19.如图,在三棱柱中,平面平面,,,,,为的中点.(1)求证:平面;(2)求二面角的余弦值.【答案】(1)见解析;(2).【解析】(1)证明:∵,为的中点,∴,又平面平面,平面平面,平面,∴平面,又平面,∴.又,,∴面.(2)方法一:由平面平面,作于,则面.作于,连,则,由,,知,而,,故,即.在四边形中,设.则由余弦定理得.,设与交于点,则,,而,则.于是,即,∴或(舍)容易求得:,而.故,由面面,则面,过作于,连,则为二面角的平面角,由平面几何知识易得,.∴.方法二:以点为原点,为轴,过点与平面垂直的直线为轴,建立如图所示的空间直角坐标系,设,,则,,,.∴,.由,得,∴,则,,于是,,∵,∴,即,解得或(舍),故,则,,于是,,设平面的法向量为,则即,取,则,∴.不妨设平面的法向量,则,故二面角的余弦值为.【点睛】证明线面垂直,只需寻求线线垂直,利用题目提供的面面垂直,可以得到线面垂直,进而说明线线垂直;求二面角的方法有两种,传统方法为“作、证、求”,用空间向量,借助法向量更容易一些.20.已知圆:和抛物线:,为坐标原点.(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;(2)过抛物线上一点作两直线和圆相切,且分别交抛物线于两点,若直线的斜率为,求点的坐标.【答案】(1);(2)或.【解析】(1)解:设,,,由和圆相切,得.∴.由消去,并整理得,∴,.由,得,即.∴.∴,∴,∴.∴.∴或(舍).当时,,故直线的方程为.(2)设,,,则.∴.设,由直线和圆相切,得,即.设,同理可得:.故是方程的两根,故.由得,故.同理,则,即.∴,解或.当时,;当时,.故或.21.已知函数.(1)若,其中为自然对数的底数,求函数的单调区间;(2)若函数既有极大值,又有极小值,求实数的取值范围.【答案】(1)见解析;(2)且且.【解析】把值带入后对求导,分子提取公因式是重要的一步,由于的正负不清楚,所以设为二次求导,发现的单调性及零点,最后根据的符号说明单调性;对求导,研究因式,得,这是非常智慧的一步变形.针对函数求导研究单调性求出极值,模拟图象得出解答.(1),由知,设,则,,∴,∴在上单调递增,观察知,∴当时,,单调递增;当时,,单调递减;当时,,单调递增.(2),,由,得.设,则,由,得.当时,,单调递减;当时,,单调递增.∴.又时,时,∴,这是必要条件.检验:当时,既无极大值,也无极小值;当时,满足题意;当时,只有一个极值点,舍去;当时,则,则.综上,符合题意的的范围为且且.【点睛】对函数求导,研究导数的符号,确定函数的单调性是导数应用常规方法,的正负不清楚,所以设为二次求导,发现的单调性及零点,最后根据的符号说明单调性;二次求导或三次求导解题时经常采用,研究因式,得,这是非常智慧的一步变形.针对函数求导研究单调性求出极值,模拟图象研究零点个数也是常规方法.22.选修4-4:坐标系与参数方程已知曲线:(为参数)和直线:(为参数).(1)将曲线的方程化为普通方程;(2)设直线与曲线交于两点,且为弦的中点,求弦所在的直线方程.【答案】(1);(2).【解析】(1)由,得,即,又,两式相除得,代入,得,整理得,即为的普通方程.(2)将代入,整理得.由为的中点,则.∴,即,故,即,所以所求的直线方程为.【点睛】本题参数方程属于选修内容,熟悉万能代换公式的同学都知道,把曲线的方程化为普通方程的方法是换元,令消元更方便,当然本题也可直接消元;第二步为直线的参数方程的几何意义问题,代入参数方程整理为的一元二次方程,由于为弦的中点,则,求出直线方程.23.选修4-5:不等式选讲(1)求不等式的解集;(2)若正实数满足,求证:.【答案】(1);(2)见解析.【解析】(1)当时,,解得,∴;当时,,解得,∴;当时,,解得,舍去.综上,.故原不等式的解集为.(2)证明:要证,只需证,即证,即证,而,所以成立,所以原不等式成立.【点睛】解含绝对值不等式问题,使用零点分区间讨论法;证明不等式常采用综合法、分析法及反证法,证明时常借助几个重要不等式,如均值不等式、柯西不等式、排序不等式等,另外经常边分析、边综合研究证明.。
湖北省武汉市2018届高三毕业生四月调研测试理科数学试题(精编含解析)
武汉市2018届高中毕业生四月调研测试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的共轭复数是( )A. B. C. D.【答案】B【解析】【分析】先化简复数,再求其共轭复数.【详解】由题得,所以其共轭复数为2-i.故答案为:D【点睛】(1)本题主要考查复数的计算和共轭复数,意在考查学生对这些知识的掌握水平和计算推理能力.(2) 复数的共轭复数2.已知集合,,若,则实数的取值集合为()A. B. C. D.【答案】D【解析】【分析】先求出集合M={x|x2=1}={﹣1,1},当a=0时,N=∅,成立;当a≠0时,N={},由N⊆M,得或=1.由此能求出实数a的取值集合.【详解】∵集合M={x|x2=1}={﹣1,1},N={x|ax=1},N⊆M,∴当a=0时,N=∅,成立;当a≠0时,N={},∵N⊆M,∴或=1.解得a=﹣1或a=1,综上,实数a的取值集合为{1,﹣1,0}.故选:D.【点睛】本题考查实数的取值范围的求法,考查子集、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.执行如图所示的程序框图,如果输入的,则输出的属于()A. B. C. D.【答案】A【解析】【分析】根据程序框图的功能进行求解即可.【详解】本程序为条件结果对应的表达式为S=,则当输入的t∈[﹣2,2],则当t∈[﹣2,0)时,S=2t∈[﹣4,0),当t∈[0,2]时,如右图,S=﹣3t+t3=t(t﹣)(t)∈[﹣2,2],综上S∈[﹣4,2],故选:A.【点睛】本题主要考查程序框图的识别和判断,根据条件结构,结合分段函数的表达式是解决本题的关键.4.某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为()A. B. C. D.【答案】B【解析】【分析】在该几何体的所有顶点中任取两个顶点,它们之间距离取最大值时,最大距离相当于一个长宽高分别为2,1,1的长方体的体对角线,进而得到答案.【详解】由已知中的三视图可得该几何体是一个以侧视图为底面的直四棱柱,在该几何体的所有顶点中任取两个顶点,它们之间距离取最大值时,最大距离相当于一个长宽高分别为2,1,1的长方体的体对角线,故d==,故选:B.【点睛】由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.5.一张储蓄卡的密码共有位数字,每位数字都可以从中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过次就按对的概率为()A. B. C. D.【答案】C【解析】【分析】利用互斥事件概率加法公式和相互独立事件概率乘法公式直接求解.【详解】一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,任意按最后一位数字,不超过2次就按对的概率为:p==.故选:C.【点睛】本题考查概率的求法,考查互斥事件概率加法公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6.若实数,满足,,,,则,,的大小关系为()A. B. C. D.【答案】B【解析】【分析】推导出0=log a1<log a b<log a a=1,由此利用对数函数的单调性能比较m,n,l的大小.【详解】∵实数a,b满足a>b>1,m=log a(log a b),,,∴0=log a1<log a b<log a a=1,∴m=log a(log a b)<log a1=0,0<<1,1>=2log a b>.∴m,n,l的大小关系为l>n>m.故选:B.【点睛】本题考查三个数的大小的比较,考查对数函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.已知直线与双曲线的右支有两个交点,则的取值范围为()A. B. C. D.【答案】D【解析】【分析】根据双曲线的渐近线和切线的方程得出k的范围.【详解】双曲线的渐近线方程为y=±x,∴当﹣1<k≤1时,直线与双曲线的右支只有1个交点,当k≤﹣1时,直线与双曲线右支没有交点,把y=kx﹣1代入x2﹣y2=4得:(1﹣k2)x+2kx﹣5=0,令△=4k2+20(1﹣k2)=0,解得k=或k=﹣(舍).∴1<k<.故选:D.【点睛】本题考查了双曲线的简单几何性质,直线与双曲线相切的等价条件,属于中档题.8.在中,角、、的对应边分别为,,,条件:,条件:,那么条件是条件成立的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由条件p:a≤,利用余弦定理与基本不等式的性质可得:cosA=≥,当且仅当b=c=a时取等号.又A∈(0,π),可得.由条件q:A,B,C∈(0,π),A≤.取,C=,B=满足上述条件,但是a.即可判断出结论.【详解】由条件p:a≤,则cosA=≥=≥=,当且仅当b=c=a时取等号.又A∈(0,π),∴.由条件q:A,B,C∈(0,π),A≤.取,C=,B=满足上述条件,但是a.∴条件p是条件q成立的充分不必要条件.故选:A.【点睛】本题考查了余弦定理与基本不等式的性质、倍角公式、三角函数求值,考查了推理能力与计算能力,属于中档题.9.在的展开式中,含项的系数为()A. B. C. D.【答案】B【解析】【分析】把x+看作一项,写出的展开式的通项,再写出的展开式的通项,由x的指数为5求得r、s的值,则答案可求.【详解】的展开式的通项为.的展开式的通项为=.由6﹣r﹣2s=5,得r+2s=1,∵r,s∈N,∴r=1,s=0.∴在的展开式中,含x5项的系数为.故选:B.【点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.10.若,满足,则的最小值为()A. B. C. D.【答案】D【解析】【分析】画出约束条件表示的可行域,通过表达式的几何意义,求出表达式的最小值.【详解】令,,作出可行域,如图所示:,表示可行域上的动点到定点距离的平方,然后减去,故其最小值为定点到直线AB的距离的平方减去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉市2015届高中毕业生四月调研测试
理科数学
第Ⅰ卷
一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一
项是符合题目要求的)
1、复数2(12)ii
A.43i B.43i C.34i D.34i
2、已知集合1{|0,}2xAxxRx,则RCA
A.|21xx B.|21xx C.|21xx D.|21xx
3、若4(2)(1)axx展开式中3x的系数为2,则a
A.1 B.-1 C.13 D.2
4、若命题200:,230PxRxx,则命题P的否定P是
A.2,230xRxx B.2,230xRxx
C.2,230xRxx D.2,230xRxx
5、已知某产品连续4个月的广告费ix(千元)与销售额iy(万元)(1,2,3,4i)满足4118iix,
4
114iiy
,若广告费x和销售量y之间具有线性相关关系,且回归直线方程为ˆ0.8yxa,
那么广告费用为6千元时,可预测的销售量为
A.3.5万元 B.4.7万元 C.4.9万元 D.6.5万元
6、如图,矩形OABC的四个顶点坐标依次为(0,0),(,0),2OA
(,0),(0,1)2BC,记线段OC、CB以及sin(0)2yxx
的图象
围成的区域(图中阴影部分)为,若向矩形OABC内任意投一点M,
则点M落在区域内的概率为
A.2 B.11 C.21 D.12
7、执行如图所示的程序框图,如果输入的N是10,那么输出的S是
A.2 B.101 C.111 D.231
8、已知点P在直线320xy上,点Q在直线360xy上,
线段PQ的中点为00(,)Mxy,且002yx,则00yx的取值范围是
A.1[,0)3 B.1(,)(0,)3
C.1(,0)3 D.1(,)3
9、已知函数2sincossincos(0)52fxxxxxx,则函数
fx
的最大值为
A.1 B.75 C.3825 D.4325
10、过点(2,3)A作抛物线24yx的两条切线12,ll,设12,ll与y轴分别交于点B、C,则
ABC
的外接圆的方程为
A.22340xyx B.222310xyxy
C.22320xyxy D.223210xyxy
第Ⅱ卷
二、填空题:本大题共6小题,考试工学作答5个小题,每小题5分,共25分, 请把答案填在
答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分。
(一)必考题(11-14题)
11、7个人排成一排,其中甲乙两人相邻且与丙不相邻的方法种数
是 (结果用数字作答)
12、若na是一个以3为首项,-1为公比的等比数列,则数列2na
的前n项和nS
13、一个几何体的三视图如图所示,则该几何体的表面积为
14、已知圆O的半径为1,点A、B、C是圆O上的动点,满足AOB等于120,
(,)OCmOAnOBmnR
,则43mn的取值范围是
(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定的位置,将你选的题
目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分。
15、如图,AB是圆O的直径,直线CD与圆O相切与M,AD垂直CD于D,BCCD于C,MNAB,
又AD=3,BC=1,则MN=
16、在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴
建立极坐标系,圆1:4sinC,直线2:cos()224C,
则直线2C与截圆1C所得的弦长为
三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤
17、(本小题满分12分)
已知等差数列na的前n项和为38,5,64nSaS
(1)求数列na的通项公式;
(2)证明:123111112(1,)nnnNSSSSn
18、(本小题满分12分)
已知ABC的内角,,ABC的对边分别为,,abc,且满足2cos(2sinsin),bAaAB
27
7,cos7cB
。
(1)求sinA;
(2)求,ab的值。
19、(本小题满分12分)
某同学在篮球场上进行投篮训练,先投“2分的蓝”2次,每次投中的概率为45,每投中一次
得2分,不中得0分;再投“3分的蓝”1次,每次投中的概率为23,投中得分,不中得0分,
该同学每次投篮的结果相互独立,假设该同学要完成以上三次投篮。
(1)求该同学恰好有2次投中的概率;
(2)求该同学所得分X的分布列和数学期望。
19、(本小题满分12分)
如图,在四面体P-ABC,底面ABC是边长为1的正三角形,ABBP,点P在底面ABC上的
射影为H,33BH,二面角C-AB-P的正切值为5。
(1)求证:PABC
(2)求异面直线PC与AB所成角的余弦值。
21、(本小题满分13分)
已知椭圆2222:1(0)xyCabab的离心率为32,短轴长为2.
(1)求椭圆C的方程;
(2)若A、B是椭圆C上的两动点,O为坐标原点,OA、OB的斜率分别为12,kk,问是否存在非
零常数,使12kk时,AOB的面积为S为定值,若存在,求的值;若不存在,请说
明理由。
22、(本小题满分14分)
已知函数2ln(1)(0,2axfxaxaax为常数)
(1)当102a时,求fx的单调区间;
(2)当0x时,若不等式32ln22fx恒成立,求实数a的取值范围。