九年级上学期期末数学复习试卷(北师大)

合集下载

北师大版九年级(上)期末数学试卷(含答案)

北师大版九年级(上)期末数学试卷(含答案)

主视方向(D )(C )(B )(A ) 5 题FEDCBA7 题FEDCBA北师大版九年级数学第一学期期末考试试题及答案1.在1-,0,2-,1这四个数中,最小的数是( )A . 2-B . 1-C . 0D .1 2. 如图所示几何体的左视图是( )3.从编号为1 ~ 10的10个完全相同的球中,任取一球,其号码能被3整除的概率是 ( ) (A )101 (B )151 (C )103 (D )52 4.如图是一个支架(一种小零件),支架的两个台阶的高度个宽度都是同一长度,则它的三种视图是 ( )5.如图,在平行四边形ABCD 中,AB = 2,BC = 3,∠ABC 、∠BCD 的平分线分别交AD 于点E 、F ,则EF 的长是 ( ) (A )3 (B )2 (C )1.5 (D ) 16.某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x ,则下列方程中正确的是 ( )(A )256)1(2892=-x (B )289)1(2562=-x (C )256)21(289=-x (D )289)21(256=-x 7.如图,在房子屋檐E 处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是( ) (A )⊿ACE (B )⊿ADF (C ) ⊿ABD (D )四边形BCED8.若反比例函数图象经过点(1-,6),则下列点也在此函数上的是( ) (A )(3-,2) (B )(3,2) (C )(2,3) (D )(6,1)9.从1,2,3-三个数中,随机抽取两个数相乘,积是正数的概率是 ( ) (A )0 (B )31 (C )32(D )1 A . B .15题图yx-3-2-1123321-1-2-310 题10.反比例函数xky =的图象如图所示,则当1>x 时,函数值y 的取值范围是 ( )(A )1>y (B )10<<y (C )2<y (D )20<<y二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案直接填写在题中的横线上.11.︒2cos30=___________.12.为估计某地区黄羊的只数,先捕捉20只黄羊分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊 _只.13.反比例函数xm y 3-=的图象在第二、四象限内,那么m 的取值范围是 _. 14.小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,则路灯灯泡距离地面的高度为 _米.15.如图,是二次函数2(0)y ax bx c a =++≠的图象的一部分,给出下列命题 :①0abc <;②2b a >;③0a b c ++= ④20ax bx c ++=的两根分别为-3和1;⑤80a c +>.其中正确的命题是 _.16.某商场出售甲、乙、丙三种型号的电动车,已知甲型车在第一季度销售额占这三种车总销售额的56%,第二季度乙、丙两种型号的车的销售额比第一季度减少了a %,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%,则a 的值为 三、解答题:(本大题4个小题,每小题6分,共24分) 下列各题解答时必须给出必要的演算过程或推理步骤.17.(6分)解方程: 2(2)x x x -=-18.(6分)如图,在ABC ∆中,AB = AC ,D 是底边BC 的中点,作DE ⊥AB 于E ,DF ⊥AC 于F求证:DE = DF.证明:C B AC AB ∠=∠∴=, (① )在∆BDE 和CDF ∆中,CD BD CFD BED C B =∠=∠∠=∠,,,BDE ∆∴≌CDF ∆(② ) DF DE =∴(③ )⑴上面的证明过程是否正确?若正确,请写出①、②和③的推理根据. ⑵请你写出另一种证明此题的方法.FE DCBA19.如图,已知四边形ABCD 是平行四边形,P 、Q 是对角线BD 上的两个点,且AP ∥QC . 求证:BP =DQ ..20.为了打造重庆市“宜居城市”, 某公园进行绿化改造,准备在公园内的一块四边形 ABCD 空地里栽一棵银杏树(如图),要 求银杏树的位置点P 到点A 、D 的距离相 等,且到线段AD 的距离等于线段a 的长. 请用尺规作图在所给图中作出栽种银杏树 的位置点P .(要求不写已知、求作和作法, 只需在原图上保留作图痕迹).QPBCDA19题图四、解答题:(本大题4个小题,每小题10分,共40分) 下列各题解答时必须给出必要的演算过程或推理步骤.21.某中学九年级学生在学习“直角三角形的边角关系”时,组织开展测量物体高度的实践活动.要测量学校一幢教学楼的高度(如图),他们先在点C 测得教学楼 AB 的顶点A 的仰角为︒37,然后向教学楼前进10米到达点D ,又测得点A 的仰角 为45°.请你根据这些数据,求出这幢教学楼的高度. (参考数据:,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒41.12≈)22.如图,在平面直角坐标系xOy 中,一次函数b kx y +=与反比例函数xmy =的图象交于点A ,与x 轴交于点B , AC ⊥x 轴于点C ,2tan =∠ABC ,AB =132,OB =OC . (1)求反比例函数和一次函数的解析式; (2)若一次函数与反比例函数的图象的 另一交点为D ,作DE ⊥y 轴于点E , 连结OD ,求△DOE 的面积.23.小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字3、4、5,现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.如果和为奇数,则小明胜;和为偶数,则小亮胜.ABCD(1)请你用画树状图或列表的方法,求出这两数和为8的概率; (2)你认为这个游戏对双方公平吗?说说你的理由.24.如图,在梯形ABCD 中,AB //CD ,︒=∠90A BD ,AB =BD ,在BC 上截取BE ,使BE =BA ,过点B 作BC BF ⊥于B ,交AD 于点F .连接AE ,交BD 于点G ,交BF 于点H . (1)已知AD =24,CD =2,求D B C sin ∠的值; (2)求证:BH +CD =BC .EDCBAFH G五、解答题:(本大题2个小题,25题10分,26题12分)下列各题解答时必须给出必要的演算过程或推理步骤.25. 2011年11月28日至12月9日,联合国气候变化框架公约第17次缔约方会议在南非德班召开,大会通过了“德班一揽子决议”(DurbanPackageOutcome ),建立德班增强行动平台特设工作组,决定实施《京都议定书》第二承诺期并启动绿色气候基金,中国的积极态度赢得与会各国的尊重.在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活逐渐成为人们的共识.某企业采用技术革新,节能减排. 从去年1至6月,该企业二氧化碳排放量1y (吨)与月份x (61≤≤x ,且x 取整数)之间的函数关系如下表:去年7至12月,二氧化碳排放量2y (吨)与月份x (127≤≤x ,且x 取整数)的变化情况满足二次函数)0(22≠+=a bx ax y ,且去年7月和去年8月该企业的二氧化碳排放量都为56吨. (1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出1y 与x 之间的函数关系式.并且直接写出2y 与x 之间的函数关系式;(2) 政府为了鼓励企业节能减排,决定对每月二氧化碳排放量不超过600吨的企业进行奖励. 去年1至6月奖励标准如下,以每月二氧化碳排放量600吨为标准,不足600吨的二氧化碳排放量每吨奖励z (元)与月份x 满足函数关系式x x z -=2(61≤≤x ,且x 取整数),如该企业去年3月二氧化碳排放量为200吨,那么该企业得到奖励的吨数为(200600-)吨;去年7至12月奖励标准如下:以每月二氧化碳排放量600吨为标准,不足600吨的二氧化碳排放量每吨奖励30元,如该企业去年7月份的二氧化碳排放量为56吨,那么该企业得到奖励的吨数为(56600-)吨.请你求出去年哪个月政府奖励该企业的资金最多,并求出这个最多资金;(3)在(2)问的基础上,今年1至6月,政府继续加大对节能减排企业的奖励,奖励标准如下:以每月二氧化碳排放量600吨为标准,不足600吨的部分每吨补助比去年12月每吨补助提高m %.在此影响下,该企业继续节能减排,1至3月每月的二氧化碳排放量都在去年12月份的基础上减少24吨.4至6月每月的二氧化碳排放量都在去年12月份的基础上减少m %,若政府今年1至6月奖励给该企业的资金为162000元,请你参考以下数据,估算出 m 的整数值. (参考数据:1024322=,1089332=,1156342=,1225352=,1296362=)26. 如图,已知:△ABC 为边长是34的等边三角形,四边形DEFG 为边长是6的正方形.现将等边△ABC 和正方形DEFG 按如图1的方式摆放,使点C 与点E 重合,点B 、C (E )、F 在同一条直线上,△ABC 从图1的位置出发,以每秒1个单位长度的速度沿EF 方向向右匀速运动,当点C 与点F 重合时暂停运动,设△ABC 的运动时间为t 秒(0≥t ).(1)在整个运动过程中,设等边△ABC 和正方形DEFG 重叠部分的面积为S ,请直接写出S 与t之间的函数关系式;(2)如图2,当点A 与点D 重合时,作ABE ∠的角平分线EM 交AE 于M 点,将△ABM 绕点A逆时针旋转,使边AB 与边AC 重合,得到△ACN .在线段AG 上是否存在H 点,使得△ANH 为等腰三角形.如果存在,请求出线段EH 的长度;若不存在,请说明理由.(3)如图3,若四边形DEFG 为边长为34的正方形,△ABC 的移动速度为每秒3个单位长度,其余条件保持不变.△ABC 开始移动的同时,Q 点从F 点开始,沿折线FG -GD 以每秒32个单位长度开始移动,△ABC 停止运动时,Q 点也停止运动.设在运动过程中,DE 交折线BA -AC 于P 点,则是否存在t 的值,使得EQ PC ⊥,若存在,请求出t 的值;若不存在,请说明理由.26题图1FG26题图2FG参考答案一、ADCAD ACABD11.3; 12. 600; 13.3m <; 14. 4.5;15.①③④⑤(答对一个得1分,答错一个倒扣一分);16.2 17.(6分)解:2(2)x x x -=- x -2=x 2-2xx 2-3x +2=0 …… (4分) 解得:x 1=1,x 2=2 ……(6分)18.(6分)解:(1)①等边对等角; …… (1分)②AAS ;③全等三角形的对应边相等。

2024—2025学年北师大版九年级上册数学期末考试模拟试卷 (1)

2024—2025学年北师大版九年级上册数学期末考试模拟试卷 (1)

数学期末考试模拟试卷北师大版2024—2025学年九年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟题号一二三总分17 18 19 20 21 22 23 24 25得分第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分1.下列方程是一元二次方程的是()A.x+y=5B.3x2﹣x=2C.x(x2+1)=2D.2.用配方法解方程x2﹣4x+1=0时,应将其变形为()A.(x﹣4)2=3B.(x+4)2=0C.(x﹣2)2=0D.(x﹣2)2=3 3.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=10,则CD=()A.10B.6C.8D.54.下列立体图形中,从前面看得到的平面图形与从左面看得到的平面图形不相同的是()A.长方体B.正方体C.圆柱D.球5.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现有69次摸到红球,请估计这个口袋中白球的数量为()A.7B.6C.4D.36.已知kb>0,一次函数y=kx﹣b与反比例函数在同一平面直角坐标系中的图象可能是()A.B.C.D.7.下列说法正确的是()A.对角线互相垂直的平行四边形是正方形B.一组对边平行另一组对边相等的四边形是平行四边形C.一组对边平行且一组对角相等的四边形是平行四边形D.对角线互相垂直的四边形是菱形8.已知正比例函数y1=﹣2x与反比例函数.对于实数m,当x=m时,y1>y2;当x=m+1时,y1<y2,则m的取值范围为()A.m<﹣2或0<m<2B.﹣2<m<2C.﹣3<m<﹣2或1<m<2D.﹣2<m<0或m>29.如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.1810.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为()A.5B.4C.D.3二、填空题(6小题,每题3分,共18分)11.两个相似三角形的面积比是4:9,其中一个三角形的周长为6,则另一个三角形的周长是.12.已知等腰三角形的两边长分别是一元二次方程x2﹣6x+8=0的两根,则该三角形的周长为.13.若反比例函数的图象的一个分支在第二象限,则m的取值范围是.14.若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值是.15.如图,反比例函数y=(x<0)的图象经过平行四边形ABCO的顶点A,OC在x轴上,若点B(﹣1,3),S▱ABCO=3,则实数k的值为.16.如图,正方形MNPQ内接于△ABC,点M、N在BC上,点P、Q分别在AC和AB边上,且BC边上的高AD=6cm,BC=12cm,则正方形MNPQ的边长为.第II卷数学期末考试模拟试卷北师大版2024—2025学年九年级上册姓名:____________ 学号:____________准考证号:___________题号一二三总分17 18 19 20 21 22 23 24 25得分一、选择题(每题只有一个正确选项,每小题3分,满分36分)题号12345678910答案二、填空题(6小题,每题3分,共18分)11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.解方程:(1)x2﹣8x+1=0;(2)2x2+1=3x.18.一个几何体由若干个棱长为1cm的小正方体搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数.(1)请画出从正面、左面看到的这个几何体的形状图;(2)求该几何体的表面积.19.如图,在平行四边形ABCD中,H是BC的中点,连接AH并延长交DC的延长线于点M,连接BM,且BD⊥BM.(1)求证:C为线段DM的中点;(2)若AB=5,BD=6,求平行四边形ABCD面积.20.已知关于x的方程x2﹣4x+k+1=0有两实数根.(1)求k的取值范围;(2)设方程两实数根分别为x1、x2,且+=x1x2﹣4,求实数k的值.21.如图,AB=4,CD=6,F在BD上,BC、AD相交于点E,且AB∥CD∥EF.(1)若AE=3,求ED的长.(2)求EF的长.22.某校九年级三班助农兴趣小组针对本班级同学,就新区草莓节的关注程度进行了调查统计,将调查结果分为不关注,关注,比较关注,非常关注四类(分别用A,B,C,D表示),并根据调查结果绘制了如下两幅不完整的统计图:根据图表信息,解答下列问题:(1)九年级三班一共人,其中B类所对应的圆心角为.(2)九年级一共有600名学生,根据上述调查结果,估计九年级学生选择D 类的有多少人.(3)为了能够更好的宣传新区草莓节,现从非常关注草莓节的甲乙丙丁四名学生中任选两人撰写宣传稿,请用树状图或列表法求恰好选到甲和乙的概率.23.某公司2月份销售新上市的A产品20套,由于该产品的经济适用性,销量快速上升,4月份该公司销售A产品达到45套,并且2月到3月和3月到4月两次的增长率相同.(1)求该公司销售A产品每次的增长率;(2)若A产品每套盈利2万元,则平均每月可售30套,为了尽量减少库存,该公司决定采取适当的降价措施,经调查发现,A产品每套每降0.5万元,公司平均每月可多售出20套;若该公司在5月份要获利70万元,则每套A产品需降价多少?24.在边长为1的正方形ABCD中,点E在边AD上(不与点A,D重合),射线BE与射线CD交于点F.(1)若ED=,求DF的长.(2)求证:AE•CF=1.(3)以点B为圆心,BC长为半径画弧,交线段BE于点G.若EG=ED,求ED的长.25.如图,直线y1=2x+2与坐标轴交于A、B两点,与双曲线交于C、D两点,并且DA=AB.(1)求反比例函数的解析式;(2)若P,Q分别是第一、三象限内反比例函数图象上的两点,连接DP,PQ,QC,当四边形DPQC为平行四边形时,求点Q的坐标;(3)在(2)的条件下,将CQ所在的直线向上平移m(m>0)个单位长度,平移后的直线与双曲线交于H,R两点,与直线AB交于点G,设H,R,G的横坐标分别为x H,x R,x G,若x H,x R,x G满足等式,求m的值.。

北师大版九年级上学期期末考试数学试卷(含答案)

北师大版九年级上学期期末考试数学试卷(含答案)

北师大版九年级数学第一学期期末考试试题及答案本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共3页,满分为48分;第Ⅱ卷共5页,满分为102分.本试题共8页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I卷(选择题共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,该几何体的主视图是()A.B.C.D.2.如图,练习本中的横格线都平行且相邻两条横格线间的距离都相等,同一条直线上的三个点A,B,C都在横格线上.若线段AB=6,则线段AC的长为()A.12 B.18 C.24 D.30第2题图第3题图3.如图,在△ABC中,∠C=90°,∠A=30°,则cos B的值为()A.B.C.D.4.下列函数是y关于x的反比例函数的是()A.B.C.D.5.如图,点A,B,C是⊙O上的三个点,若∠AOB=76°,则∠C的度数为()A.24°B.33°C.38°D.76°第5题图第6题图6.抛物线y=ax2+bx+c(a≠0)的位置如图所示,则关于x的一元二次方程ax2+bx+c=0(a≠0)根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根D.没有实数根7.如图所示,△ADE∽△ABC,若AD=1,AB=2,则△ADE与△ABC的相似比是()A.1:2 B.1:3 C.2:1 D.3:28.已知点A(﹣1,y1),B(1,y2),C(2,y3)是函数y图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.无法确定9.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是()A.32π﹣16 B.16π﹣32 C.8π﹣16 D.4π﹣16第9题图第10题图10.如图,在平行四边形ABCD中,点F是AD上的点,AF=2FD,直线BF交AC于点E,交CD的延长线于点G,则的值为()A.B.C.D.11.为了疫情防控工作的需要,某学校在学校门口的大门上方安装了一个人体体外测温摄像头,学校大门高ME=7.5米,学生身高BD=1.5米,当学生准备进入识别区域时,在点B时测得摄像头M的仰角为30°,当学生刚好离开识别区域时,在点A时测得摄像头M的仰角为60°,则体温监测有效识别区域AB的长()A.米B.米C.5米D.6米12.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1,下列结论:①abc>0;②a+c﹣b>0;③3a+c>0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 共102分)注意事项:1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图,过原点O 的直线与反比例函数xky的图象相交于点A (1,3)、B (x ,y ),则x = .第13题图 第14题图14.如图,D 为△ABC 的边AC 上的一点,若要使△ABD ∽△ACB 相似,可添加一个条件: . 15.将二次函数y =x 2的图象向左平移1个单位,再向下平移2个单位后,所得图象的函数解析式是 .16.如图,河坝的横断面AB 的坡比是1:2,坝高BC =3米,则坡面AB 的长度是 米.第16题图 第17题图17.如图,AB 是半圆的直径,C 、D 是半圆上的两点,∠CAB =24°,则∠ADC 的度数为 °.18.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG S △FGH ;④AG +DF =FG .其中正确的是 .(把所有正确结论的序号都选上)三、解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本小题6分)计算:sin30°+(π﹣3.14)0+tan45°﹣(﹣1)2018.20.(本小题6分)已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如表:x…﹣2 ﹣1 0 2 …y…﹣3 ﹣4 ﹣3 5 …求该二次函数的表达式.21.(本小题6分)如图,BD、AC相交于点P,连接BC、AD,且∠1=∠2,若PB=3,PC=1,PD=2,求P A的长度.22.(本小题8分)如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置OA,A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x(x>0).(1)柱子OA的高度是米;(2)若不计其他因素,水池的半径至少为多少米,才能使喷出的水流不至于落在池外?23.(本小题8分)如图,AB是⊙O的直径,点F是AB上方半圆上的一动点(F不与A,B重合),弦AD平分∠BAF,DE是⊙O的切线,交射线AF于点E.(1)求证:DE⊥AF;(2)若AE=8,AB=10,求AD长.24.(本小题10分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动,他们制订了测量方案,并利用课余时间完成了实地测量.他们在旗杆底部所在的平地上,放置一个平面镜E来测量学校旗杆的高度,当镜子中心与旗杆的距离EB=20米,镜子中心与测量者的距离ED=2米时,测量者刚好从镜子中看到旗杆的顶端点A.已知测量者的身高为1.6米,测量者的眼睛距地面的高度为1.5米,求学校旗杆的高度是多少米.(1)在计算过程中C,D之间的距离应是米.(2)根据以上测量结果,请你帮助“综合与实践”小组求出学校旗杆AB的高度.(3)该“综合与实践”小组在定制方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)25.(本小题10分)如图1,在平面直角坐标系中,直线AB与反比例函数y(x>0)的图象交于点A(1,3)和点B(3,n),与x轴交于点C,与y轴交于点D.(1)求反比例函数的表达式及n的值;(2)将△OCD沿直线AB翻折,点O落在第一象限内的点E处,EC与反比例函数的图象交于点F,①请求出点F的坐标;②在x轴上是否存在点P,使得△DPF是以DF为斜边的直角三角形?若存在,请求出所有符合条件的点P的坐标,若不存在,请说明理由.26.(本小题12分)如图,Rt△ABC和Rt△ADE中,∠ACB=∠ADE=90°,ABC=∠AED=α°.(1)当α=30°时,①当点D,E分别落在边AC,AB上,猜想BE和CD的数量关系是;②当△ADE绕点A旋转到如图2的位置时(45°<∠CAD<90°).分别连接CD,BE,则①的结论是否仍然成立?若成立,请给出证明;若不成立.请说明理由.(2)当α=45°时,将△ADE绕点A旋转到∠DEB=90°,若AC=10,AD=2,直接写出线段CD的长.27.(本小题12分)如图(1),直线y=﹣x+3与x轴、y轴分别交于点B(3,0)、点C(0,3),经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式与点P的坐标;(2)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值;(3)连接AC,点N在x轴上,点M在对称轴上,①是否存在使以B、P、N为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由;②是否存在点M,N,使以C、P、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.(图(2)、图(3)供画图探究)。

北师大版九年级上学期期末考试数学试卷(含答案)

北师大版九年级上学期期末考试数学试卷(含答案)

北师大版九年级数学上册期末考试卷试卷说明:本试卷共4页,满分120分,考试时间90分钟.答题前,学生务必将自己的姓名等信息按要求填写在答题卡...上;答案必须写在答题卡...各题目指定区域内;考试结束后,只需将答题卡...交回.一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确) 1.下列方程中没有实数根的是( ) A .0222=+-x x B .0442=+-x x C .()02=-x xD .()312=-x2.矩形、菱形都具有的性质是( )A .对角线互相垂直B .对角线互相平分C .对角线相等D .对角线互相垂直且相等 3.已知反比例函数x ky =经过点A ()2,3、B ()m ,1-,则m 的值为( ) A .6- B .32- C .32D .64.身高1.6m 的小刚在阳光下的影长是1.2m ,在同一时刻,阳光下旗杆的影长是l5m ,则旗杆高为( )A .14米B .16米C .18米D .20米5.在一个不透明纸箱中放有除了数字不同外,其它完全相同的2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( )A .41 B .31 C .21 D .436.如图,D 为△ABC 中AC 边上一点,则添加下列条件 不能..判定△ABC ∽△BDC 的是( ) A .CD AC BC ⋅=2 B .BC BD AC AB =C .∠ABC =∠BDCD .∠A =∠CBD 7.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为a ,最多需要正方体个数为b , 则a+b 的值为( ) A .14 B .15 C .16D .17 8.已知215+是一元二次方程02=+-m x x 的一个根,则方程的另外一根为( )A .215-B .253-C .251-D .235-9.2002年国际数学家大会在北京召开,大会的会标是我国古代数学家 赵爽画的“弦图”(如图),体现了数学研究的继承和发展,弦图 中四边形ABCD 与EFGH 均为正方形,若,a DF CE BH AG ==== ,b DE CH BG AF ====且正方形EFGH 的面积为正方形ABCD 的面积的一半,则a :b 的值为( )A .32- B .2C .2D .32+10.如图,已知E ,F 分别为正方形ABCD 的边AB 、BC 的中点,AF 与DE 交于点M ,则下列结论:①AF ⊥DE ;②EG AE =;③AM =32MF ;④41=∆∆ADM AEM S S .其中正确的结论有( )题9图题7图题6图A .4个B .3个C .2个D .1个 二、填空题(本大题共7小题,每小题4分,共28分) 11.如果2:3:=b a ,那么ba ba -+=_________. 12.矩形ABCD 的对角线AC 和BD 相交于点O ,∠ACB =40°,则∠AOB =_________°.13.一个不透明的袋子中放有若干个红球,小亮往其中放入10个黑球,并采用以下实验方式估算其数量:每次摸出一个小球记录下颜色并放回,实验数据如下表:实验次数 100 200 300 400 摸出红球78161238321则袋中原有红色小球的个数约为__________个. 14.正比例函数x y 21-=和反比例函数xky =2的图象都经过点A (-1, 2),若21y y >,则x 的取值范围是__________________. 15.已知02322=--x x .则________122=+xx . 16.如图,菱形ABCD 边长为4,∠B =60°,AD DE 41=,BC BF 41=,连接EF 交菱形的对角线AC 于点O ,则图中阴影部分面积等于________________.17.如图,△ABC 中AB =AC ,A (0,8),C (6,0),D 为射线AO 上一点,一动点P 从A 出发,运动路径为A →D →C ,点P 在AD 上的运动速度是在CD 上的35倍,要使整个运动时间最少,则点D 的坐标应为____________.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.解方程:()()333-=-+x x x .19.小明家客厅里装有一种三位开关,分别控制着A (餐厅)、B (客厅)、C (走廊)三盏电灯,按下任意一个开关均可打开对应的一盏灯,由于刚搬进新房不久,小明不熟悉情况. (1)若小明任意按下一个开关,能打开客厅灯的概率为___________. (2)若任意按下一个开关后,再按下剩下两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法说明.20.如图,△ABC 中,∠ACB =90°,CA =CB =22,D 、E 为AB 上两点,且∠DCE =45°,(1)求证:△ACE ∽△BDC . (2)若AD =1,求DE 的长.题17图题10图题16图四、解答题(二)(本大题共3小题,每小题8分,共24分)21.如图,一次函数y =ax +b 的图象与反比例函数xky =的图象交于C 、D 两点,与x 、y 轴分别交于B 、A 两点,CE ⊥x 轴,且OB =4,CE =3,21=BE CE .(1)求一次函数的解析式和反比例函数的解析式. (2)求△OCD 的面积.22.为响应国家“国际国内双循环”号召,南海广场购进一批国产高档服装,进价为500元/件,售价为1000元/件时,每天可以出售40件,经市场调查发现每降价50元,一天可以多售出10件. (1)售价为850元时,当天的销售量为多少件?(2)如果每天的利润要比原来多4000元,并使顾客得到更大的优惠,问每件售价为多少元?23.如图,公路旁有两个高度相等的路灯AB 、CD ,小明上午上学时发现路灯AB 在太阳光下的影子恰好落在路牌底部E 处,他自己的影子恰好落在路灯CD 的底部C 处;晚自习放学时,站在上午同一个地方,发现在路灯CD 的灯光下自己的影子恰好落在E 处. (1)在图中画出小明的位置(用线段FG 表示).(2)若上午上学时,高1米的木棒的影子为2米,小明身高为1.5米,他距离路牌底部E 恰好2米,求路灯高.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图,四边形OABC 为正方形,反比例函数x k y =的图象过AB 上一点E ,BE =2,53=OE AE (1)求k 的值.(2)反比例函数的图象与线段BC 交于点D ,直线y =ax +b 过点D 及线段AB 的中点F ,探究直线OF 与直线DF 的位置关系,并证明.(3)点P 是直线OF 上一点,当PD +PC 的值最小时,求点P 的坐标.题21图题20图题23图题24图25.如图1,在矩形ABCD 中,AB =8,AD =4,点P 是对角线BD 上一点上,连接AP ,AE ⊥AP ,且21AE AP ,连接BE .(1)当DP =2时,求BE 的长.(2)四边形AEBP 可能为矩形吗?如果不可能,请说明理由;如果可能,求出此时四边形AEBP 的面积. (3)如图2,作AQ ⊥PE ,垂足为Q ,当点P 从点D 运动到点B 时,直接写出点Q 运动的距离.题25图1题25图2参考答案与评分标准一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案ABADCBCCDB二、填空题(每题4分,共28分)11.5; 12.80°; 13.40; 14.x <-1或0<x<1; 15.417; 16.235; 17.⎪⎭⎫ ⎝⎛29,0.三、解答题(一)(本大题3小题,每小题6分,共18分)以下评分细则仅供参考.18.解: ()()()0333=---+x x x ………………1分()()[]0133=-+-x x ………………2分即 ()()023=+-x x ………………3分 ∴03=-x 或02=+x ,………………4分 ∴31=x 或22-=x .………………6分(其他解法酌情给分)19.解:(1)31.…………………2分(2)共有6种等可能的结果,其中客厅灯和走廊灯同时亮的结果为有2种:(B,C ), (C,B ), 所以P (客厅灯和走廊灯同时亮)=3162=.……6分(列表或树状图2分,满足要求的结果1分,概率1分) 20.(1)证明:∵∠ACB =90°,CA =CB ,∴()︒=︒-︒=∠=∠459018021B A ,………………1分 又∵ACE ACD ACD A CDB ∠=∠+︒=∠+∠=∠45, ………………2分 ∴△ACE ∽△BDC . ………………3分(2)解:由勾股定理得()()4222222=+=AB ,………………4分设DE 长为x , ∵△ACE ∽△BDC , ∴BCAE BDAC =,即221322x +=,………………5分解得35=x ,即35=DE .………………6分(其他解法酌情给分)第一盏灯第二盏灯A B C A (B ,A ) (C ,A ) B (A ,B ) (C ,B ) C(A ,B )(B ,C )四、解答题(二)(本大题3小题,每小题8分,共24分)21.解:(1)∵21=BE CE ,CE =3,∴62==CE BE ,∴2=-=OB BE OE , ………………1分 将C )3,2(-代入x ky =得:632-=⨯-=k ,………………2分将C )3,2(-,B )0,4(代入y =ax +b 得⎩⎨⎧=+=+-0432b a b a ,解得⎪⎩⎪⎨⎧=-=221b a ,………4分 一次函数的解析式为221+-=x y ,反比例函数的解析式为x y 6-=.………5分2.联立得⎪⎪⎩⎪⎪⎨⎧-=+-=x y x y 6221,解得⎩⎨⎧=-=3211y x ,⎩⎨⎧-==1622y x ,…………6分 834211421=⨯⨯+⨯⨯=+=∆∆∆BOC BOD COD S S S .…………8分22.解:(1)()3508501000=÷-,7010340=⨯+.答:售价为850元时,当天的销售量为70件. …………………2分(2) 设每件服装降价x 元.(1000﹣500﹣x )×(40+0.2x )=40×(1000﹣500)+4000,……………………4分 解得:x 1=100,x 2=200, ……………………6分 ∵使顾客得到尽可能大的实惠,∴x =200, ……………………7分 80020010001000=-=-x .答:每件应定价800元. ……………………8分.23.解:(1)如图,FG 就是所求作的线段. ……………4分(BE 、DE 、CF 、FG 每条线1分,垂足没标记不扣分) (2)∵上午上学时,高1米的木棒的影子为2米, ∴32==FG CG ,……………5分∵FG ∥CD ,∴∠EFG=∠D ,∠EGF=∠ECD , ∴△EFG ∽△EDC ,……………6分∴EC EG CD FG =即525.1=CD , ……………7分解得75.3=CD . ……………8分 因此,路灯高3.75米.五、解答题(三)(本大题2小题,每小题10分,共20分) 24.(1)证明:∵四边形OABC 是正方形,∴AO =AB ,∠OAB =90°,∵53=OE AE , 设x AE 3=,则x OE 5=,由勾股定理得x AO 4=,…………1分 ∴x x 423=+.∴2=x ,∴63==x AE ,84==x AO , ∴点E 坐标为)8,6(,…………2分∴4886=⨯=k .…………3分 (2) OF ⊥DF ,理由如下: 将8=x 代入xy 48=得6=y ,∴268=-=-=CD BC BD∵点F 是线段AB 的中点, ∴4==BF AF ,∵BFBD AOAF ==21,∠OAF =∠FBD=90° ∴△AOF ∽△BFD , ………………5分 ∴∠AOF =∠BFD ,∴∠AFO+∠BFD=∠AFO+∠AOF =90°, ∴∠OFD =180°-(∠AFO+∠BFD )=90°, ∴OF ⊥DF . ……………………6分(本小题也可以用勾股逆定理解决,酌情给分。

北师大版2023-2024学年九年级上学期数学期末达标测试卷A卷(含答案)

北师大版2023-2024学年九年级上学期数学期末达标测试卷A卷(含答案)

2023-2024学年九年级上学期数学北师大版期末达标测试卷A 卷【满分:120】一、选择题:(本大题共12小题,每小题4分,共48分,给出的四个选项中,只有一项是符合题目要求的)1.如图,这个几何体的左视图是()A. B. C. D.2.已知点(2,3)P -在反比例函数(0)k y k x =≠的图象上,则k 的值是()A.6 B.-6 C.13 D.-133.已知三个数1,2,4,若添一个数使得四个数成比例,这个数可以是()A.8B.-8C.3D.-35.在一个不透明的布袋中,共有红色,黑色,白色的小球50个,且小球除颜色外其他完全相同,乐乐通过多次摸球试验后发现,摸到红色球,黑色球的频率分别稳定在0.26和0.44,则口袋中白色球的个数很可能是()A.20B.15C.10D.56.如图,已知12∠=∠,那么添加下列一个条件后,仍不能判定ABC ADE ∽△△的是()A.B D ∠=∠B.C AED ∠=∠C.AB BC AD DE =D.AB AC AD AE=7.下列说法正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等的菱形是正方形D.对角线互相垂直且相等的四边形是正方形 A.y 与S 之间满足的函数关系式为B.点B 的坐标为()2,60C.若面条的总长度为100m ,则面条的横截面面积为D.若面条的横截面面积不超过A.512- B.512+ C.10.如图,以点O 为位似中心,把ABC △的各边长放大为原来的2倍得到A B C '''△,以下说法中错误的是()A.:1:2AO AA '= B.点A ,O ,A '三点在同一条直线上C.:1:4ABC A B C S S '''=△△ D.//BC B C ''11.如图,Rt ABC △中,90ACB ∠=︒,顶点A 在第一象限,点C ,B 分别在x ,y 轴上,3OC =,4OB =,10AC =.将ABC △绕点O 顺时针旋转,每次旋转90︒,若旋转后点A 的对应点A '的坐标是(5,6),则旋转的次数可能是()A.2022B.2023C.2024D.202512.如图,菱形ABCD 中,60BAD ∠=︒,AC 与BD 交于点O ,E 为CD 延长线上一点,且CD DE =,连结BE ,分别交AC ,AD 于点F ,G ,连结OG ,①12OG AB =;②ABF ODGF S S =四边形△;③由点A 、B 、D 、E 构成的四边形是菱形;④2ACD ABG S S =△△.中正确的结论是()A.①③B.②④C.①②③D.①②③④二、填空题(每小题3分,共15分)14.若m ,n 为一元二次方程2220x x --=的两个实数根,则15.如图,在ABCD 中,点E 在DC 上,若:2:3EC AB =,则:B F ECF A S S =△△________.16.如图,在菱形ABCD 中,5AB =,对角线AC 与BD 相交于点O ,且6AC =.AE CD ⊥于点E ,则AE 的长是______.17.如图,点A ,B 分别在x 轴正半轴、y 轴正半轴上,点C ,D 为线段AB 的三等分点,点D 在等腰Rt OAE △的斜边OE 上,反比例函数k y x =过点C ,D ,交AE 于点F .若53DEF S △,则k =__________.三、解答题(本大题共6小题,共计57分,解答题应写出演算步骤或证明过程)根据图表信息,解答下列问题:(1)本次调查的学生总人数为_________,表中(2)补全频数分布直方图;(3)本次调查中,等级为A 的4人中有一名男生和三名女生,若从中随机抽取两人作为安徽历史知识的宣传员,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率20.(8分)如图,在ABC △中,BD AC ⊥(1)求证:BCD BDE ∽△△;(2)若10BC =,6AD =,求AE 的长.21.(10分)如图,Rt OAB △的直角顶点B 在x 轴的正半轴上,点A 在第一象限内,已知反比例函数(0)k y x x=>的图象经过线段OA 的中点D ,交直线AB 于点C .若OAB △的面积为6.(1)求k 的值;(2)若AC OB =,求点A 的坐标.22.(12分)如图,在平行四边形ABCD 中,点P 是AB 边上一点(不与A ,B 重合),CP CD =,过点P 作PQ CP ⊥,交AD 边于点Q ,连结CQ .(1)若BPC AQP ∠=∠,求证:四边形ABCD 是矩形;(2)在(1)的条件下,当4AP =,12AD =时,求AQ 的长.(1)求反比例函数的表达式;(2)在第二象限内,当y y<时,直接写出x的取值范围;12(3)点P在x轴负半轴上,连接PA,且PA AB⊥,求点P坐标.答案以及解析1.答案:B解析:因为物体的左侧高,所以会将右侧图形完全遮挡,看不见的直线要用虚线代替.故选B.2.答案:B解析: 点()2,3P -在反比例函数()0k y k x=≠的图象上,32k∴-=解得6k =-.故选:B.3.答案:A解析:设添加的数是x ,根据题意得,241x ⨯=⋅或142x ⨯=,解得:8x =或2x =,故选:A.5.答案:B解析: 多次摸球试验后发现其中摸到红色球,黑色球的频率分别稳定在0.26和0.44∴摸到红色球,黑色球的概率分别为0.26和0.44∴摸到白球的概率为10.260.440.3--=∴口袋中白色球的个数可能为0.35015⨯=.故选:B.6.答案:C解析:12∠=∠ ,BAC DAE ∴∠=∠,A 、B D ∠=∠ ,ABC ADE ∴∽△△,故本选项不符合题意;B 、C AED ∠=∠ ,ABC ADE ∴∽△△,故本选项不符合题意;C 、AB BC AD DE= ,B ∠与D ∠的大小无法判定,∴无法判定ABC ADE ∽△△,故本选项符合题意;D 、AB AC AD AE =,ABC ADE ∴∽△△,故本选项不符合题意.故选:C.7.答案:C解析:A 、对角线相等的平行四边形是矩形,故错误,不合题意;B 、对角线互相垂直的平行四边形是菱形,故错误,不合题意;C 、对角线相等的菱形是正方形,故正确,符合题意;D 、对角线互相平分且垂直且相等的四边形是正方形,故错误,不合题意;故选:C.10.答案:A解析: 点O 为位似中心,把ABC △中放大到原来的2倍得到A B C '''△,~ABC A B C '''∴△△,//BC B C '',::1:2AO OA AB A B '''==,点A ,O ,A '三点在同一条直线上.2:1:4ABC A B C AB S S A B '''⎛⎫∴== ⎪''⎝⎭△△,:1:3AO AA '=,综上,只有选项A 错误,符合题意.故选:A.11.答案:C解析:如图,过点A 作AT x ⊥轴于点T ,连接OA .3OC = ,4OB =,90AOB ∠=︒,5BC ∴=,。

北师大版九年级(上)期末数学试卷及答案一

北师大版九年级(上)期末数学试卷及答案一

北师大版九年级(上)期末数学试卷及答案一、选择题(本大题有16小题,共42分.1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中)1.下列图形中,不是中心对称图形的是()A.B.C.D.2.下列事件中,是随机事件的是()A.实心铁球投入水中会沉入水底B.从车间刚生产的产品中任意抽取一个是次品C.早上的太阳从西方升起D.从一个只装有红球的盒子里摸出一个球是红球3.正方形地板由9块边长均相等的小正方形组成,米粒随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区域的概率是()A.B.C.D.4.在平面直角坐标系中,有A(2,﹣1),B(﹣1,﹣2),C(2,1),D(﹣2,1)四点.其中,关于原点对称的两点为()A.点A和点B B.点B和点C C.点C和点D D.点D和点A5.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR6.如图,矩形ABCD~矩形DEFC,且面积比为4:1,则AE:ED的值为()A.4:1B.3:1C.2:1D.3:27.新冠肺炎传染性很强,曾有1人同时患上新冠肺炎,在一天内一人平均能传染x人,经过两天传染后64人患上新冠肺炎,则x的值为()A.4B.5C.6D.78.如图,在⊙O中,直径AB⊥弦CD,若∠OCD=25°,则..的度数是()A.25°B.65°C.32.5°D.50°9.一个圆锥的底面半径为k m,侧面积为4πcm2,现将其侧面展开平铺成的扇形的圆心角为()A.90°B.135°C.60°D.45°10.给出一种运算:对于函数y=x n,规定y′=n×x n﹣1.若函数y=x4,则有y′=4×x3,已知函数y=x3,则方程y′=9x的解是()A.x=3B.x=﹣3C.x1=0,x2=3D.x1=0,x2=﹣311.如图,AB是⊙O的直径,BC是弦,OD∥AC交于点D交BC于点E,若BC=8,ED=2,⊙O半径是()A.3B.4C.5D.212.如图,抛物线y=ax2与直线y=bx+c的两个交点分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c =0的解为()A.﹣4,3B.﹣5,2C.﹣3,2D.﹣2,113.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为()A.B.C.D.14.某学校对教室采用药熏消毒,已知药物燃烧时,室内每立方米空气的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y与x成反比例(如图),现测得药物8min燃毕,此时室内空气中每立方米含药量为6mg.研究表明,当空气中每立方米的含药量不低于3mg才有效,那么此次消毒的有效时间是()A.10分钟B.12分钟C.14分钟D.16分钟15.如图,已知抛物线y=ax2+bx+c(a≠0)交x轴于点A(﹣1,0)和x轴正半轴于点B,且BO=3AO,交y轴正半轴于点C.有下列结论:①abc>0;②2a+b=0;③x=1时y有最大值﹣4a;④3a+c=0.其中,正确结论的个数是()A.1B.2C.3D.416.如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.已知⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且GE:EF=:2,当边AD或BC所在的直线与⊙O相切时,AB的长是()A.9B.4C.12或4D.12或9二、填空题(本大题有3小题,每小题有2个空,每空2分,共12分.请把答案写在题中横线上)17.将方程x2﹣2(3x﹣2)+x+1=0化成一般形式是,方程根的情况是.18.定义:如果几个全等的正n边形依次有一边重合,排成一圈,中间可以围成一个正多边形,那么我们称作正n 边形的环状连接.如图1,我们可以看作正八边形的环状连接,中间围成一个正方形.(1)若正六边形作环状连接,如图2,中间可以围成的正多边形的边数为;(2)若边长为a的正n边形作环状连接,中间围成的是等边三角形,则这个环状连接的外轮廓长为.(用含a的代数式表示)19.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为2,4,6,8,…分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,…,则S1+S2+S3=,S1+S2+S3+…+S n=(用含n的代数式表示,n为正整数).三、解答题(本大题有7小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.小明同学解一元二次方程x2﹣6x﹣1=0的过程如图所示.解:x2﹣6x=1①x2﹣6x+9=1②(x﹣3)2=1③x﹣3=±1④x1=4,x2=2⑤(1)小明解方程的方法是.(填选项字母)A.直接开平方法B.因式分解法C.配方法D.公式法他的求解过程从第步开始出现错误.(2)解这个方程.21.为庆祝中国共产党成立100周年,某校团委将举办文艺演出.小明和小亮计划结伴参加该文艺演出.小明想参加唱红歌节目,小亮想参加朗诵节目.他们想通过做游戏来决定参加哪个节目,于是小明设计了一个游戏,如图,分别把转盘A,B分成4等份和5等份,并在每一份内标上数字.游戏规则是:小明转动A转盘,同时小亮转动B转盘,当两个转盘停止后,指针所在区域的数字之积为奇数时,则按照小明的想法参加唱红歌节目;当数字之积为偶数时,则按照小亮的想法参加朗诵节目.如果指针恰好在分割线上时,则需要重新转动转盘.(1)A转盘停止后,指针指向奇数的概率为;(2)请利用画树状图或列表的方法,分别求他们参加唱红歌和朗诵节目的概率,并说明这个游戏规则对小明、小亮双方公平吗?22.如图,在△ABC中,AF⊥BC于点F.将△ABC绕点A按顺时针旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上.(1)若∠B=50°,求∠DAF的度数;(2)若∠E=∠CAD,求证:AD=CD.23.如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y=的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.(1)求反比例函数的解析式;(2)若点P是反比例函数y=图象上的一点,且满足△OPC与△ABC的面积相等,求点P的坐标.24.如图,点E为△ABC边BC上一点,过点C作CD⊥BA,交BA的延长线于点D,交EA的延长线于点F,且DF•DC=DB•DA.(1)求证:AE⊥BC;(2)如果BE=CE,求证:BC2=2BD•AC.25.在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP,BP的连接点P在⊙O上,当点P在⊙O上转动时,带动点A,B分别在射线OM,ON上滑动,OM⊥ON.当AP与⊙O相切时,点B恰好落在⊙O上,如图2.请仅就图2的情形解答下列问题.(1)求证:∠P AO=2∠PBO;(2)若⊙O的半径为5,AP=,求BP的长.26.如图,抛物线y=ax2+bx+3(a,b是常数,且a≠0)与x轴交于A,B两点,与y轴交于点C.并且A,B两点的坐标分别是A(1,0),B(﹣3,0),抛物线顶点为D.(1)①求出抛物线的解析式;②顶点D的坐标为;③直线BD的解析式为;(2)若E为线段BD上的一个动点,其横坐标为m,过点E作EF⊥x轴于点F,求当m为何值时,四边形EFOC 的面积最大?(3)若点P在抛物线的对称轴上,若线段P A绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,请直接写出点P的坐标.。

(北师大版)九年级上册数学各章测试题及期中、期末测试题及答案(全共10套)

北师大版九年级数学上册第一章测试题 班级: 姓名: 考号:一、填空题(本大题有10小题,每小题3分,共30分.将答案填在题中横线上)1.在ABC ∆中,边AB 、BC 、AC 的垂直平分线相交于P ,则PA 、PB 、PC 的大小关系是 .2.如果等腰三角形的一个角是80°,那么顶角是 度.3.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为 .4. ABC ∆中,90=∠C ,AD 平分BAC ∠,交BC 于点D ,若7=DC ,则D 到AB 的距离是 .5.如图,ABC ∠=DCB ∠,需要补充一个直接条件才能使ABC ∆≌DCB ∆.甲、乙、丙、丁四位同学填写的条件分别是:甲“DC AB =”;乙“DB AC =”;丙“D A ∠=∠”;丁“ACB ∠=DBC ∠”.那么这四位同学填写错误的是 .6. 用反证法证明 “三角形中至少有一个角不小于60°时,假设“ ”,则与“ ”矛盾,所以原命题正确.7.补全“求作AOB ∠的平分线”的作法:①在OA 和OB 上分别截取OD 、OE ,使OD =OE .②分别以D 、E 为圆心,以 为半径画弧,两弧在AOB ∠内交于点C .③作射线OC 即为AOB ∠的平分线.8.一轮船以每小时20海里的速度沿正东方向航行.上午8时,该船在A 处测得某灯塔位于它的北偏东30°的B 处(如图),上午9时行到C 处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是 海里(结果保留根号).9.在ABC ∆中,A ∠=90°,AC AB =,BD 平分B ∠交AC 于D ,BC DE ⊥于E ,若10=BC ,则DEC ∆的周长是 .10.如图是2002年8月在北京召开的第24届国际数学家大会的会标,它是由4个相同的直角三角形拼和而成.若图中大小正方形的面积分别为522cm 和42cm ,则直角三角形的两条直角边的和是 cm . 二、选择题(本大题有10小题,每小题3分,共30分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分)11.两个直角三角形全等的条件是( )(A )一锐角对应相等; (B )两锐角对应相等; (C )一条边对应相等; (D )两条边对应相等. 12.到ABC ∆的三个顶点距离相等的点是ABC ∆的( ). (A )三边垂直平分线的交点; (B )三条角平分线的交点; (C )三条高的交点; (D )三边中线的交点. 13.如图,由21∠=∠,DC BC =,EC AC =,得ABC ∆≌EDC ∆的根据是( )(A )SAS (B )ASA (C )AAS (D )SSSA BC D(第15题)(第18题)(第20题)(第3题)14.ABC ∆中,AC AB =,BD 平分ABC ∠交AC 边于点D ,75=∠BDC ,则A∠的度数为( )(A )35° (B )40° (C )70° (D )110° 15.下列两个三角形中,一定全等的是( ) (A )有一个角是40°,腰相等的两个等腰三角形;(B )两个等边三角形; (C )有一个角是100°,底相等的两个等腰三角形;(D )有一条边相等,有一个内角相等的两个等腰三角形.16.适合条件A ∠=B ∠ =C ∠31的三角形一定是( )(A )锐角三角形; (B )钝角三角形; (C )直角三角形; (D )任意三角形. 17.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍?”请你计算后帮小明在标牌的“▇”填上适当的数字是( ).(A )3米 (B )4米 (C )5米 (D )6米18. 一个三角形如果有两边的垂直平分线的交点在第三边上,那么这个三角形是( ).(A )等腰三角形; (B )等边三角形; (C )直角三角形; (D )等腰直角三角形.19.如图,已知AC 平分PAQ ∠,点B 、B '分别在边AP 、AQ 上,如果添加一个条件,即可推出AB =B A ',那么该条件不可以是( )(A)AC B B ⊥' (B)C B BC '=(C)ACB ∠=B AC '∠ (D)ABC ∠ =C B A '∠20.如图,AO FD ⊥于D ,BO FE ⊥于E ,下列条件:①OF 是AOB ∠的平分线;②EF DF =;③EO DO =;④OFD ∠=OFE ∠.其中能够证明DOF ∆≌EOF ∆的条件的个数有( )(A)1个 (B)2个 (C)3个 (D)4个三、解答题(本大题有6小题,共60分.解答需写出必要的文字说明、演算步骤或证明过程)21.(8分)已知:如图,A ∠=90=∠D ,BD AC =.求证:OC OB =.AB7(第7题)(第9题)(第10题)22.(8分)如图,OCB OBC ∠=∠,AOC AOB ∠=∠,请你写一个能用全部已知条件才能推出的结论,并证明你的结论.23.(10分)已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使 CE =CD .求证:BD =DE .24.(10分)已知:如图,ABC ∆中,AC AB =,120=∠A .(1)用直尺和圆规作AB 的垂直平分线,分别交BC 、AB 于点M 、N (保留作图痕迹,不写作法).(2)猜想CM 与BM 之间有何数量关系,并证明你的猜想.AB COA B C25. (本题满分12分)阅读下面的题目及分析过程,并按要求进行证明. 已知:如图,E 是BC 的中点,点A 在DE 上,且CDE BAE ∠=∠. 求证:CD AB =. 分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证CD AB =,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.AB C D E F A B C D E EF =DE (3)F GA B C D E (1) AB C D ECF ∥AB (2) F26.(12分)已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,可以说明:ACN ∆≌MCB ∆,从而得到结论:BM AN =.现要求:(1)将ACM ∆绕C 点按逆时针方向旋转180°,使A 点落在CB 上.请对照原题图在下图中画出符合要求的图形(不写作法,保留作图痕迹).(2)在(1)所得到的图形中,结论“BM AN =”是否还成立?若成立,请给予证明;若不成立,请说明理由.(3)在(1)所得到的图形中,设MA 的延长线与BN 相交于D 点,请你判断△ABD 与四边形MDNC 的形状,并说明你的结论的正确性.A BC MNBC N参考答案一、DAABCDDCBD二、11.PC PB PA ==; 12. 80或 20; 13.75; 14.7; 15.乙;16.三角形的三个内角都小于 60,三角形的内角和是180;17.大于DE 21的长为半径;18. 320;19.10;20. 10.三、21由A ∠=90=∠D ,BD AC =,BC BC =知BAC ∆≌CDB ∆,因此有DC AB =.又DOC AOB ∠=∠(对顶角),A ∠=90=∠D ,所以BAC ∆≌CDB ∆,所以OD AO =.又BD AC =,所以BO BD AO AC -=-,即OC OB =.22.∵ ∠OBC =∠OCB ,∴ OB =OC .又∵ ∠AOB =∠AOC ,OA =OA , ∴ △AOB ≌△AOC ,∴AB =AC .23. BD 是正三角形ABC 的AC 边的中线得AC BD ⊥,BD 平分ABC ∠,30=∠DBE .由CE CD =知∠CDE =∠E .由∠ACE = 120°,得∠CDE +∠E =60°,所以∠CDE =∠E =300,则有BD = DE .24.(1)作图略;(2)连接AM ,则BM =AM .∵ AB =AC ,∠BAC =120°,∴ ∠B =∠C =30°于是 ∠MAB =∠B =30°,∠MAC =90°.∴ .21CM AM =故CM BM 21=,即CM =2BM .25.方法一:作BF ⊥DE 于点F ,CG ⊥DE 于点G . ∴ ∠F =∠CGE =90°.又∵ ∠BEF =∠CEG ,BE =CE ,∴ △BFE ≌△CGE .∴ BF =CG .在△ABF 和△DCG 中,∵ ∠F =∠DGC =90°,∠BAE =∠CDE ,BF =CG ,∴ △ABF ≌△DCG .∴ AB =CD .方法二:作CF ∥AB ,交DE 的延长线于点F .∴ ∠F =∠BAE .又∵ ∠ABE =∠D ,∴ ∠F =∠D .∴ CF =CD .∵ ∠F =∠BAE ,∠AEB =∠FEC ,BE =C E ,∴ △ABE ≌△FCE .∴ AB =CF . ∴ AB =CD .方法三:延长DE 至点F ,使EF =DE .又∵ BE =CE ,∠BEF =∠CED ,∴ △BEF ≌△CED . ∴ B F=CD ,∠D =∠F . 又∵ ∠BAE =∠D ,∴ ∠BAE =∠F . ∴ AB =BF .∴ AB =CD .26.(1)作图略.(2)结论“AN =BM ”还成立. 证明:∵ CN =CB ,∠ACN =∠MCB =60°,CA =CM ,∴ △ACN ≌△MCB .∴ AN =BM . (3)△ABD 是等边三角形,四边形MDNC 是平行四边形.证明: ∵ ∠DAB =∠MAC =60°,∠DBA =60°∴ ∠ADB =60°.∴ △ABD 是等边三角形.∵ ∠ADB =∠AMC =60°,∴ ND ∥CM .∵ ∠ADB =∠BNC =60°,∴ MD ∥CN . ∴ 四边形MDNC 是平行四边形.班级: 姓名: 考号:一、选择题(每题3分,计30分)1.下列方程中,一元二次方程共有( ).①2320x x += ②22340x xy -+= ③214x x -= ④21x =⑤2303xx -+= A . 2个 B .3个 C .4个 D . 5个 2.方程2(3)5(3)x x x -=-的根为( ). A . 52x =B .3x =C .125,32x x ==D . 125,32x x =-=- 3.若方程()a x =-24有解,则a 的取值范围是( ). A .0≤a B .0≥a C .0>a D .无法确定4.若分式2926x x --的值为零,则x 的值为( ).A .3B .3或-3C .0D .-35.用配方法将二次三项式a 2+ 4a +5变形,结果是( ).A.(a –2)2+1B.(a +2)2+1C.(a –2)2-1D.(a +2)2-1 6.一元二次方程x 2-x+2=0的根的情况是( ).A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .只有一个实数根7.已知一个三角形的两边长是方程x 2-8x+15=0的两根,则第三边y 的取值范围是( ). A .y<8 B .3<y<5 c .2<y<8 D .无法确定8.方程x 2+4x=2的正根为( ).A .2-6B .2+6C .-2-6D .-2+69.有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,则原来的两位数中较大的数为( ). A .62 B .44 C .53 D .3510.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为( ). A .5% B .20% C .15% D .10% 二、填空题(每题3分,计30分) 11.把方程(2x+1)(x —2)=5-3x 整理成一般形式后,得 ,其中常数项是 .12.方程22(2)250x x --=用 法较简便,方程的根为12____,____x x ==. 13.方程22(2)(3)20mm x m x --+--=是一元二次方程,则____m =.14.已知方程22155k x x =+-的一个根是2,则k 的值是 ,方程的另一个根为 .15.当x=________时,代数式3x 2-6x 的值等于12.16.请你给出一个c 值, c= ,使方程x 2-3x+c=0无解. 17.已知x 2+4x -2=0,那么3x 2+12x +2002的值为 .18.菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的周长为 . 19.第二象限内一点A (x —1,x 2—2),关于x 轴的对称点为B ,且AB=6,则x=_________. 20.两个正方形,小的正方形的边长是大的正方形的边长一半多4cm ,大的正方形的面积是小的正方形的面积2倍少32cm 2.则大、小两正方形的边长分别为____________. 三、解答题(共40分) 21.(6分)用适当的方法解方程: (1) 2)2)(113(=--x x ; (2) 4)2)(1(13)1(+-=-+x x x x .22.(5分)已知222a ax x y --=,且当1=x 时,0=y ,求a 的值.23.(5分)已知关于x 的方程x 2+kx -2=0的一个解与方程311=-+x x 解相同. (1)求k 的值;(2)求方程x 2+kx -2=0的另一个根.24.(8分)我们知道:对于任何实数x ,①∵2x ≥0,∴2x +1>0;②∵2)31(-x ≥0,∴2)31(-x +21>0. 模仿上述方法解答:求证:(1)对于任何实数x ,均有:3422++x x >0;(2)不论x 为何实数,多项式1532--x x 的值总大于2422--x x 的值.25.(8分)若把一个正方形的一边增加2 cm ,把另一边增加1 cm ,所得的矩形比正方形面积多14 cm 2,求原来得正方形边长. 26.(8分)三个连续正奇数,最大数与最小数的积比中间一个数的6倍多3,求这三个正奇数.四、拓广提高(共20分) 27.(10分)某校2006年捐款1万元给希望工程,以后每年都捐款,计划到2008年共捐款4.75万元,问该校捐款的平均年增长率是多少?28.(10分)为了开阔学生视野,某校组织学生从学校出发,步行6km到科技展览馆参观.返回时比去时每小时少走1千米,结果返回时比去时多用了半小时.求学生返回时步行的速度.北师大版九年级数学上册第二章测试题参考答案一、选择题1.B 2.C 3.B 4.D 5.B 6.C 7.C 8.D 9.C 10. D 二、填空题11.7,0722-=-x 12.因式分解法,21,31-13.—2 14.3,3±15.51± 16.3等 17.2008 18.16 19.5- 20.16cm ,12cm 三、解答题21.(1)020173,222116322=+-=+--x x x x x ,4,3521==x x ; (2),6331244),2)(1(312)1(422-+=-++-=-+x x x x x x x x062=-+x x ,3,221-==x x22.把x=1,y=0代入得2,1,20212-==--=a a a a 23.(1)方程311=-+x x 的解为,x=2,把x=2代入方程x 2+kx -2=0得:4+2k-2=0,k=—1; (2)x 2—x -2=0的根为1,221-==x x ,所以方程x 2+kx -2=0的另一个根为—1. 24.(1)01)1(234222>++=++x x x ;(2)043)21(1)242(1532222>+-=+-=-----x x x x x x x 即1532--x x >2422--x x .25.设原正方形的边长为x ,则4,14)1)(2(2=+=++x x x x . 所以,原来得正方形边长为4cm .26.设中间一个正奇数为x ,则1,7,36)2)(2(21-==+=-+x x x x x 由于x 为正奇数,x=—1舍去,三个正奇数为5,7,9 四、拓广提高27.设该校捐款的平均年增长率是x ,则75.4)1(1)1(112=+⨯++⨯+x x , 整理,得75.132=+x x ,解得),(5.3%,505.021舍去不合题意-===x x ,所以,该校捐款的平均年增长率是50%. 28.设返回的速度为xkm/h ,则4,3,012,62116212-===-+=++x x x x xx (舍去) 所以,学生返回时步行的速度为3km/h .北师大版九年级数学上册第三章测试题 班级: 姓名: 考号:A 1 个B 2 个C 3 个D 4 个 2、四边形具有的性质是A 对边平行B 轴对称性C 稳定性D 不稳定性 3、一个多边形的每一个外角都等于720,则这个多边形的边数是A 四边B 五边C 六边D 七边 4、下列说法不正确的是A 平行四边形对边平行B 两组对边平行的四边形是平行四边形C 平行四边形对角相等D 一组对角相等的四边形是平行四边形 5、一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为A ︒30B ︒45C ︒60D ︒756、平行四边形的两条对角线将此平行四边形分成全等三角形的对数是A 2 对B 3对C 4对D 5 对 7、 菱形具有而平行四边形不具有的性质是A .内角和是360°; B. 对角相等; C. 对边平行且相等; D. 对角线互相垂直.8、 平行四边形各内角的平分线围成一个四边形,则这个四边形一定是 A. 矩形; B.平行四边形; C.菱形; D.正方形9、 如图,在等腰梯形ABCD 中,AB∥CD ,AD=BC= a cm ,∠A=60°,BD 平分∠ABC ,则这个梯形的周长是A. 4a cm ;B. 5a cm ;C.6a cm ;D. 7a cm ;10、等边三角形的一边上的高线长为cm 32,那么这个等边三角形的中位线长为 A cm 3 B cm 5.2 C cm 2 D cm 4 二、耐心填一填:(把答案填放相应的空格里。

北师大版九年级(上)期末数学试卷及答案

北师大版九年级(上)期末数学试卷及答案第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列图形中,是中心对称图形的是( )A. B. C. D.2.下列关于x的函数是二次函数的是( )B. y=4x3+5A. y=9xC. y=3x−2D. y=2x2−x+13.如图,将一块含45°角的三角板ABC绕点A按逆时针方向旋转到△AB′C′的位置.若∠CAB′=20°,则旋转角的度数为( )A. 20°B. 25°C. 65°D. 70°4.一元二次方程3x2+2x−1=0的根的情况是( )A. 无法确定B. 无实数根C. 有两个相等的实数根D. 有两个不等的实数根5.如图,PA,PB与⊙O分别相切于点A,B,PA=2,∠P=60°,则AB=( )A. √3B. 2C. 2√3D. 36.下列事件为随机事件的是( )A. 一个图形旋转后所得的图形与原图形全等B. 直径是圆中最长的弦第2页,共19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………C. 方程ax 2+x =0是关于x 的一元二次方程D. 任意画一个三角形,其内角和为360°7. 一次函数y =x +a 与二次函数y =ax 2−a 在同一平面直角坐标系中的图象可能是( )A. B.C. D.8. 为响应国家传统文化进校园的号召,某校准备购进一批毕加索笔来奖励经典诵读优秀生.某文具超市为让利给学校,经过两次降价,每支毕加索笔单价由121元降为100元,两次降价的百分率相同,设每次降价的百分率为x ,根据题意列方程得( )A. 121(1−x 2)=100B. 121(1+x)2=100C. 121(1−2x)=100D. 121(1−x)2=1009. 数学活动课上,同学们想测出一个残损轮子的半径,小的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于点C ,交AB⏜于点D ,测出AB ,CD 的长度,即可计算得出轮子的半径.现测出AB =40cm ,CD =10cm ,则轮子的半径为( )A. 50cmB. 35cmC. 25cmD. 20cm10. 从−1,0,1,2中任取一个数作为a 的值,既要使关于x 的方程x 2+2x −2a =0有实数根,又要满足2a −1<−a +2,则a 符合条件的概率为( )A. 14 B. 12 C. 34 D. 111. 已知⊙O 是正六边形ABCDEF 的外接圆,P 为⊙O 上除C 、D 外任意一点,则∠CPD 的度数为( )A. 30°B. 30°或150°C. 60°D. 60°或120°12. 如图,已知二次函数y =ax 2+bx +c 的图象过点(−1,0)和(m,0),下列结论:①abc <0;②4a +c <2b ;③b =a −am ;④bc =1−1m .其中正确的是( )A. ①②④B. ①②③C. ①③④D. ①②③④第II卷(非选择题)二、填空题(本大题共4小题,共16.0分)13.若点A(1,a)与点B(−1,−2)关于原点对称,则a的值为______.14.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了图②所示的折线统计图,由此他估计不规则图案的面积大约为______ m2(结果取整数).15.已知抛物线y=(x−1)2−4如图1所示,现将抛物线在x轴下方的部分沿x轴翻折,图象其余部分不变,得到一个新图象如图2.当直线y=m与新图象有四个交点时,m的取值范围是______.16.如图,在平面直角坐标系中,点A在y轴的正半轴上,OA=1,将OA绕点O顺时针旋转45°到OA1,扫过的面积记为S1,A1A2⊥OA1交x轴于点A2;将OA2绕点O顺时针旋转45°到OA3,扫过的面积记为S2,A3A4⊥OA3交y轴于点A4;将OA4绕点O顺时针旋转45°到OA5,扫过的面积记为S3,A5A6⊥OA5交x轴于点A6;…;按此规律,则S2022的值为______.第4页,共19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………三、解答题(本大题共9小题,共98.0分。

北师大版九年级(上)期末数学试卷(含答案)

北师大版九年级(上)期末数学试卷及答案一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.(3分)下列既是轴对称图形又是中心对称图形的是( ) A .菱形B .平行四边形C .等边三角形D .等腰梯形2.(3分)若一元二次方程220x x --=的两根为1x ,2x ,则121(1)(1)x x x ++-的值是( ) A .4B .2C .1D .2-3.(3分)在如图所示的电路中,随机闭合开关1S ,2S ,3S 中的两个,能让灯泡1L 发光的概率是( )A .12B .13C .14D .254.(3分)如图,小李打网球时,球恰好打过网,且落在离网4m 的位置上,则球拍击球的高度h 为( )A .0.6mB .1.2mC .1.3mD .1.4m5.(3分)如图,把抛物线2y x =沿直线y x =平移2个单位后,其顶点在直线上的A 处,则平移后的抛物线解析式是( )A .2(1)1y x =+-B .2(1)1y x =++C .2(1)1y x =-+D .2(1)1y x =--6.(3分)如图,等边三角形ABC 的边长为4,点O 是ABC ∆的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBE 的面积始终等于433;④BDE ∆周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)已知α,β均为锐角,且满足21|sin |(tan 1)02αβ-+-=,则αβ+= .8.(3分)已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是 . 9.(3分)某校九(1)班的学生互赠新年贺卡,共用去1560张贺卡,则九(1)班有 名学生.10.(3分)如图,菱形ABCD 中,60DAB ∠=︒,DF AB ⊥于点E ,且DF DC =,连接FC ,则ACF ∠的度数为 度.11.(3分)如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n ,则n 的所有可能的值之和为 .12.(3分)如图,矩形ABCD 中,6AB =,43AD =,点E 是BC 的中点,点F 在AB 上,2FB =,P 是矩形上一动点.若点P 从点F 出发,沿F A D C →→→的路线运动,当30FPE ∠=︒时,FP 的长为 .三、解答题(本大题共5小题,每小题6分,共30分) 13.(6分)解方程: (1)2(21)9x +=; (2)2(4)3(4)x x +=+.14.(6分)如图,在ABCD 中,AE BC ⊥,CF AD ⊥,E ,F 分别为垂足. (1)求证:BE DF =;(2)求证:四边形AECF 是矩形.15.(6分)如图,反比例函数(0)k y k x=≠的图象与正比例函数2y x =的图象相交于点(1,)A a ,B 两点,点C 在第四象限,//CA y 轴,90ABC ∠=︒. (1)求k 的值及B 点坐标; (2)求ABC ∆的面积.16.(6分)如图,在矩形ABCD 中,点E 为AD 的中点,请只用无刻度的直尺作图 (1)如图1,在BC 上找点F ,使点F 是BC 的中点;(2)如图2,在AC 上取两点P ,Q ,使P ,Q 是AC 的三等分点.17.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M 处垂直海面发射,当火箭到达点A 处时,海岸边N 处的雷达站测得点N 到点A 的距离为8千米,仰角为30︒.火箭继续直线上升到达点B 处,此时海岸边N 处的雷达测得B 处的仰角增加15︒,求此时火箭所在点B 处与发射站点M 处的距离.(结果精确到0.1千米)(参考数据:2 1.41≈,3 1.73)≈四、(本大题共3小题,每小题8分,共24分)18.(8分)已知如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,点E 在AB 上,且2BD BE BC =; (1)求证:BDE C ∠=∠; (2)求证:2AD AE AB =.19.(8分)如图,//AB CD ,点E ,F 分别在AB ,CD 上,连接EF ,AEF ∠、CFE ∠的平分线交于点G ,BEF ∠、DFE ∠的平分线交于点H .(1)求证:四边形EGFH 是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G 作//MN EF ,分别交AB ,CD 于点M ,N ,过H 作//PQ EF ,分别交AB ,CD 于点P ,Q ,得到四边形MNQP ,此时,他猜想四边形MNQP 是菱形,他的猜想是否正确,请予以说明.20.(8分)小聪同学周六到某欢乐谷玩迷宫游戏,从迷宫口A到达迷宫口D有多个路口,如图所示(迷宫的一部分),规定从迷宫口A到达D处不能重复走同一路线,且小聪走每一条路线的可能性相同.(1)请用画树状图的方法,求小聪同学从迷宫口A到达D处所走的所有可能路线;(2)求小聪同学从迷宫口A到达D处经过路口B的概率.五、(本大题共2小题,每小题9分,共18分)21.(9分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?22.(9分)对于两个不相等的有理数a,b,我们规定符号{max a,}b表示a,b中的较大值,如{2max,3}2-=,{1max-,0}0=.请解答下列问题:(1)2{1,1}5max--=;(2)如果{max x,2}x x-=,求x的取值范围;(3)如果{max x ,2}2|1|5x x -=--,求x 的值. 六、(本大题共12分)23.(12分)如图,抛物线2(0)y ax bx a =+≠经过点(2,0)A ,点(3,3)B ,BC x ⊥轴于点C ,连接OB ,等腰直角三角形DEF 的斜边EF 在x 轴上,点E 的坐标为(4,0)-,点F 与原点重合 (1)求抛物线的解析式并直接写出它的对称轴;(2)DEF ∆以每秒1个单位长度的速度沿x 轴正方向移动,运动时间为t 秒,当点D 落在BC 边上时停止运动,设DEF ∆与OBC ∆的重叠部分的面积为S ,求出S 关于t 的函数关系式;(3)点P 是抛物线对称轴上一点,当ABP ∆是直角三角形时,请直接写出所有符合条件的点P 坐标.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.(3分)下列既是轴对称图形又是中心对称图形的是( ) A .菱形B .平行四边形C .等边三角形D .等腰梯形【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A .菱形既是轴对称图形又是中心对称图形,故此选项符合题意;B .平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;C .等边三角形不是中心对称图形,是轴对称图形,故此选项不合题意;D .等腰梯形是轴对称图形不是中心对称图形,故此选项不合题意.故选:A .【点评】本题考查了中心对称图形和轴对称图形的定义,能熟记中心对称图形和轴对称图形的定义是解此题的关键. 2.(3分)若一元二次方程220x x --=的两根为1x ,2x ,则121(1)(1)x x x ++-的值是( ) A .4B .2C .1D .2-【分析】根据根与系数的关系得到121x x +=,122x x =-,然后利用整体代入的方法计算121(1)(1)x x x ++-的值. 【解答】解:根据题意得121x x +=,122x x =-, 所以1211212(1)(1)111(2)4x x x x x x x ++-=++-=+--=. 故选:A .【点评】本题考查了根与系数的关系:若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠的两根时,12b x x a+=-,12cx x a=. 3.(3分)在如图所示的电路中,随机闭合开关1S ,2S ,3S 中的两个,能让灯泡1L 发光的概率是( )A .12 B .13C .14D .25【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让灯泡1L 发光的情况,再利用概率公式求解即可求得答案. 【解答】解:画树状图得:共有6种等可能的结果,能让灯泡1L 发光的有2种情况,∴能让灯泡1L 发光的概率为2163=, 故选:B .【点评】本题考查了列表法、树状图法求概率,画出树状图得出所有可能出现的结果情况是正确解答的关键. 4.(3分)如图,小李打网球时,球恰好打过网,且落在离网4m 的位置上,则球拍击球的高度h 为( )A .0.6mB .1.2mC .1.3mD .1.4m【分析】利用平行得出三角形相似,运用相似比即可解答. 【解答】解://AB DE ,∴AB CBDE CD =, ∴40.87h=, 1.4h m ∴=,经检验: 1.4h =是原方程的根. 故选:D .【点评】此题主要考查了相似三角形的判定,根据已知得出AB CBDE CE=是解决问题的关键. 5.(3分)如图,把抛物线2y x =沿直线y x =平移2个单位后,其顶点在直线上的A 处,则平移后的抛物线解析式是( )A .2(1)1y x =+-B .2(1)1y x =++C .2(1)1y x =-+D .2(1)1y x =--【分析】首先根据A 点所在位置设出A 点坐标为(,)m m 再根据2AO =,利用勾股定理求出m 的值,然后根据抛物线平移的性质:左加右减,上加下减可得解析式. 【解答】解:A 在直线y x =上,∴设(,)A m m ,2OA =222(2)m m ∴+=,解得:1(1m m =±=-舍去), 1m ∴=,(1,1)A ∴,∴平移后的抛物线解析式为:2(1)1y x =-+,故选:C .【点评】此题主要考查了二次函数图象的几何变换,关键是求出A 点坐标,掌握抛物线平移的性质:左加右减,上加下减.6.(3分)如图,等边三角形ABC 的边长为4,点O 是ABC ∆的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBE 的433④BDE ∆周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4【分析】连接OB 、OC ,如图,利用等边三角形的性质得30ABO OBC OCB ∠=∠=∠=︒,再证明BOD COE ∠=∠,于是可判断BOD COE ∆≅∆,所以BD CE =,OD OE =,则可对①进行判断;利用BOD COE S S ∆∆=得到四边形ODBE 的面积14333ABC S ∆==则可对③进行判断;作OH DE ⊥,如图,则DH EH =,计算出23ODE S ∆=,利用ODE S ∆随OE 的变化而变化和四边形ODBE 的面积为定值可对②进行判断;由于BDE ∆的周长443BC DE DE OE =+=+=,根据垂线段最短,当OE BC ⊥时,OE 最小,BDE ∆的周长最小,计算出此时OE的长则可对④进行判断.【解答】解:连接OB 、OC ,如图, ABC ∆为等边三角形, 60ABC ACB ∴∠=∠=︒,点O 是ABC ∆的中心,OB OC ∴=,OB 、OC 分别平分ABC ∠和ACB ∠,30ABO OBC OCB ∴∠=∠=∠=︒120BOC ∴∠=︒,即120BOE COE ∠+∠=︒,而120DOE ∠=︒,即120BOE BOD ∠+∠=︒, BOD COE ∴∠=∠,在BOD ∆和COE ∆中 BOD COEBO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩, BOD COE ∴∆≅∆,BD CE ∴=,OD OE =,所以①正确; BOD COE S S ∆∆∴=,∴四边形ODBE 的面积21134433343OBC ABC S S ∆∆===⨯⨯=,所以③正确; 作OH DE ⊥,如图,则DH EH =,120DOE ∠=︒,30ODE OEH ∴∠=∠=︒,12OH OE ∴=,332HE OH OE ==, 3DE OE ∴=,21133224ODE S OE OE OE ∆∴=⋅⋅=, 即ODE S ∆随OE 的变化而变化,而四边形ODBE 的面积为定值,ODE BDE S S ∆∆∴≠;所以②错误;BD CE =,BDE ∴∆的周长443BD BE DE CE BE DE BC DE DE OE =++=++=+=+=+,当OE BC ⊥时,OE 最小,BDE ∆的周长最小,此时233OE =, BDE ∴∆周长的最小值426=+=,所以④正确.故选:C .【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)已知α,β均为锐角,且满足21|sin |(tan 1)02αβ-+-=,则αβ+= 75︒ . 【分析】直接利用绝对值的非负性和偶次方的非负性得出1sin 02α-=,tan 10β-=,再结合特殊角的三角函数值得出答案.【解答】解:21|sin |(tan 1)02αβ-+-=, 1sin 02α∴-=,tan 10β-=, 1sin 2α∴=,tan 1β=, 30α∴=︒,45β=︒,则304575αβ+=︒+︒=︒.故答案为:75︒.【点评】此题主要考查了特殊角的三角函数值以及非负数的性质,正确记忆特殊角的三角函数值是解题关键.8.(3分)已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是(1,3)-- .【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(1,3)--.故答案为:(1,3)--.【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.9.(3分)某校九(1)班的学生互赠新年贺卡,共用去1560张贺卡,则九(1)班有 40 名学生.【分析】设九(1)班有x 名学生,则每名学生需送出(1)x -张新年贺卡,利用九(1)班共用去贺卡的数量=人数⨯每人送出新年贺卡的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【解答】解:设九(1)班有x 名学生,则每名学生需送出(1)x -张新年贺卡,依题意得:(1)1560x x -=,整理得:215600x x --=,解得:140x =,239x =-(不合题意,舍去),∴九(1)班有40名学生.故答案为:40.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.(3分)如图,菱形ABCD 中,60DAB ∠=︒,DF AB ⊥于点E ,且DF DC =,连接FC ,则ACF ∠的度数为 15度.【分析】利用菱形的性质得出DCB∠的度数,进而得出答案.∠的度数,再利用等腰三角形的性质得出DCF【解答】解:菱形ABCD中,60∠=︒,DF DC=,DAB∠=∠,AB CD,DFC DCF∴∠=︒,//60BCD⊥于点E,DF AB90∴∠=︒,FDCDFC DCF∴∠=∠=︒,45菱形ABCD中,DCA ACB∠=∠,∴∠=∠=︒,30DCA ACB︒-︒=︒.ACF∴∠的度数为:453015故答案为:15︒.【点评】此题主要考查了菱形的性质以及等腰三角形的性质等知识,得出45∠=∠=︒是解题关键.DFC DCF11.(3分)如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的所有可能的值之和为38.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:主视图最右边可能有4或5或6个小正方体;由主视图最左边看到只有一列,俯视图也只有一列,则左边有一个小正方体;主视图中间有两列,俯视图亦有两列,则中间可以有3或4个小正方形.n∴的值可能为:1438++=,16411++=,++=,15410++=,1539++=,16310++=,1449则n的所有可能的值之和89101138=+++=.故本题答案为:38.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.12.(3分)如图,矩形ABCD 中,6AB =,43AD =,点E 是BC 的中点,点F 在AB 上,2FB =,P 是矩形上一动点.若点P 从点F 出发,沿F A D C →→→的路线运动,当30FPE ∠=︒时,FP 的长为 4或8或43 .【分析】如图,连接DF ,AE ,DE ,取DF 的中点O ,连接OA 、OE .以O 为圆心画O 交CD 于3P .只要证明12330EPF FP F FP E ∠=∠=∠=︒,即可推出14FP =,28FP =,343FP=解决问题. 【解答】解:如图,连接DF ,AE ,DE ,取DF 的中点O ,连接OA 、OE .以O 为圆心OE 的长度为半径,画O 交CD 于3P .四边形ABCD 是矩形,90BAD B ∴∠=∠=︒,2BF =,23BE =4AF =,43AD =3tan tan FEB ADF ∴∠=∠=, 30ADF FEB ∴∠=∠=︒, 易知4EF OF OD ===,OEF ∴∆是等边三角形,12330EPF FP F FP E ∴∠=∠=∠=︒, 14FP ∴=,28FP=,343FP =, 故答案为4或8或3【点评】本题考查矩形的性质、锐角三角函数、圆的有关知识、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考填空题中的压轴题.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)解方程:(1)2(21)9x +=;(2)2(4)3(4)x x +=+.【分析】(1)两边直接开平方,继而得到两个关于x 的一元一次方程,解之即可;(2)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x 的一元一次方程,再进一步求解即可.【解答】解:(1)2(21)9x +=,213x ∴+=或213x +=-,解得11x =,22x =-;(2)2(4)3(4)x x +=+,2(4)3(4)0x x ∴+-+=,则(4)(1)0x x ++=,40x ∴+=或10x +=,解得14x =-,21x =-.【点评】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.14.(6分)如图,在ABCD 中,AE BC ⊥,CF AD ⊥,E ,F 分别为垂足.(1)求证:BE DF =;(2)求证:四边形AECF 是矩形.【分析】(1)由平行四边形的性质得出B D ∠=∠,AB CD =,//AD BC ,由已知得出90AEB AEC CFD AFC ∠=∠=∠=∠=︒,由AAS 证明ABE CDF ∆≅∆即可;(2)证出90EAF AEC AFC ∠=∠=∠=︒,即可得出结论.【解答】(1)证明:四边形ABCD 是平行四边形,B D ∴∠=∠,AB CD =,//AD BC ,AE BC ⊥,CF AD ⊥,90AEB AEC CFD AFC ∴∠=∠=∠=∠=︒,在ABE ∆和CDF ∆中,B D AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE CDF AAS ∴∆≅∆,BE DF ∴=;(2)证明://AD BC ,90EAF AEB ∴∠=∠=︒,90EAF AEC AFC ∴∠=∠=∠=︒,∴四边形AECF 是矩形.【点评】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.15.(6分)如图,反比例函数(0)k y k x=≠的图象与正比例函数2y x =的图象相交于点(1,)A a ,B 两点,点C 在第四象限,//CA y 轴,90ABC ∠=︒.(1)求k 的值及B 点坐标;(2)求ABC ∆的面积.【分析】(1)先把(1,)A a 代入2y x =中求出a 得到(1,2)A ;再把A 点坐标代入k y x=中可确定k 的值,然后利用反比例函数和正比例函数图象的性质确定B 点坐标;(2)设(1,)C t ,根据两点间的距离公式和勾股定理得到22222(11)(2)(11)(22)(2)t t +++++++=-,求出t 得到(1,3)C -,从而得到AC 的长,然后关键三角形面积公式求得即可.【解答】解:(1)把(1,)A a 代入2y x =得2a =,则(1,2)A ;把(1,2)A 代入k y x =得122k =⨯=, 点A 与点B 关于原点对称,(1,2)B ∴--;(2)//CA y 轴,C ∴点的横坐标为1,设(1,)C t ,90ABC ∠=︒.222BC AC AB ∴+=,即22222(11)(2)(11)(22)(2)t t +++++++=-,解得3t =-,(1,3)C ∴-,5AC ∴=,11()5(11)522ABC A B S AC x x ∆∴=-=⨯⨯+=. 【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.16.(6分)如图,在矩形ABCD 中,点E 为AD 的中点,请只用无刻度的直尺作图(1)如图1,在BC 上找点F ,使点F 是BC 的中点;(2)如图2,在AC 上取两点P ,Q ,使P ,Q 是AC 的三等分点.【分析】(1)根据矩形的对角线相等且互相平分作出图形即可;(2)根据矩形的性质和三角形中位线定理作出图形即可.【解答】解:(1)如图1,连接AC 、BD 交于点O ,延长EO 交BC 于F ,则点F 即为所求;(2)如图2,BD 交AC 于O ,延长EO 交BC 于F ,连接EB 交AC 于P ,连接DF 交AC 于Q ,则P 、Q 即为所求.【点评】本题考查的是作图的应用,掌握矩形的性质和三角形中位线定理、正确作出图形是解题的关键.17.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M 处垂直海面发射,当火箭到达点A 处时,海岸边N 处的雷达站测得点N 到点A 的距离为8千米,仰角为30︒.火箭继续直线上升到达点B 处,此时海岸边N 处的雷达测得B 处的仰角增加15︒,求此时火箭所在点B 处与发射站点M 处的距离.(结果精确到0.1千米)(参考数据:2 1.41≈,3 1.73)≈【分析】利用已知结合锐角三角函数关系得出BM 的长.【解答】解:如图所示:连接MN ,由题意可得:90AMN ∠=︒,30ANM ∠=︒,45BNM ∠=︒,8AN km =, 在直角AMN ∆中,3cos30843()MN AN km =︒==. 在直角BMN ∆中,tan 4543 6.9BM MN km km =︒=≈.答:此时火箭所在点B 处与发射站点M 处的距离约为6.9km .【点评】本题考查解直角三角形的应用-仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.四、(本大题共3小题,每小题8分,共24分)18.(8分)已知如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,点E 在AB 上,且2BD BE BC =;(1)求证:BDE C ∠=∠;(2)求证:2AD AE AB =.【分析】(1)根据角平分线的定义得到ABD CBD ∠=∠,由2BD BE BC =,得到BD BC BE BD=,推出EBD DBC ∆∆∽,根据相似三角形的性质即可得到结论;(2)由BDE C ∠=∠,推出DBC ADE ∠=∠,等量代换得到ABD ADE ∠=∠,证得ADE ABD ∆∆∽,根据相似三角形的性质即可得到结论.【解答】证明:(1)BD 平分ABC ∠,ABD CBD ∴∠=∠, 2BD BE BC =, ∴BD BC BE BD=, EBD DBC ∴∆∆∽,BDE C ∴∠=∠;(2)BDE C ∠=∠,DBC C BDE ADE ∠+∠=∠+∠,DBC ADE ∴∠=∠,ABD CBD ∠=∠,ABD ADE ∴∠=∠,ADE ABD ∴∆∆∽, ∴AD AE AB AD=, 即2AD AE AB =.【点评】本题考查了相似三角形的判定和性质,角平分线的性质,熟练掌握相似三角形的性质即可得到结论.19.(8分)如图,//AB CD ,点E ,F 分别在AB ,CD 上,连接EF ,AEF ∠、CFE ∠的平分线交于点G ,BEF ∠、DFE ∠的平分线交于点H .(1)求证:四边形EGFH 是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G 作//MN EF ,分别交AB ,CD 于点M ,N ,过H 作//PQ EF ,分别交AB ,CD 于点P ,Q ,得到四边形MNQP ,此时,他猜想四边形MNQP 是菱形,他的猜想是否正确,请予以说明.【分析】(1)根据角平分线的性质进行导角,可求得四边形EGFH 的四个内角均为90︒,进而可说明其为矩形.(2)根据题目条件可得四边形MNQP 为平行四边形,要证菱形只需邻边相等,连接GH ,由于MN EF GH ==,要证MN MP =,只需证GH MP =,只需证四边形MFHP 为平行四边形,可证G 、H 点分别为MN 、PQ 中点,即可得出结果.【解答】(1)证明:EH 平分BEF ∠,FH 平分DFE ∠,12FEH BEF ∴∠=∠,12EFH DFE ∠=∠, //AB CD ,180BEF DFE ∴∠+∠=︒,11()1809022FEH EFH BEF DFE ∴∠+∠=∠+∠=⨯︒=︒, 180FEH EFH EHF ∠+∠+∠=︒,180()1809090EHF FEH EFH ∴∠=︒-∠+∠=︒-︒=︒,同理可得:90EGF ∠=︒,EG 平分AEF ∠,EH 平分BEF ∠,12GEF AEF ∴∠=∠,12FEH BEF ∠=∠, 点A 、E 、B 在同一条直线上,180AEB ∴∠=︒,即180AEF BEF ∠+∠=︒,11()1809022FEG FEH AEF BEF ∴∠+∠=∠+∠=⨯︒=︒, 即90GEH ∠=︒,∴四边形EGFH 是矩形(2)解:他的猜想正确,理由是:////MN EF PQ ,//MP NQ ,∴四边形MNQP 为平行四边形.如图,延长EH 交CD 于点O ,PEO FEO ∠=∠,PEO FOE ∠=∠,FOE FEO ∴∠=∠,EF FD ∴=,FH EO ⊥,HE HO ∴=,EHP OHQ ∠=∠,EPH OQH ∠=∠,EHP OHQ ∴∆≅∆,HP HQ ∴=,同理可得GM GN =,MN PQ =,MG HP ∴=,∴四边形MGHP 为平行四边形,GH MP ∴=,//MN EF ,//ME NF ,∴四边形MEFN 为平行四边形,MN EF ∴=,四边形EGFH 是矩形,GH EF ∴=,MN MP∴=,∴平行四边形MNQP为菱形.【点评】本题考查矩形、菱形的性质与判定,属于综合题,熟练掌握菱形和矩形的性质及判定方法是解题关键.20.(8分)小聪同学周六到某欢乐谷玩迷宫游戏,从迷宫口A到达迷宫口D有多个路口,如图所示(迷宫的一部分),规定从迷宫口A到达D处不能重复走同一路线,且小聪走每一条路线的可能性相同.(1)请用画树状图的方法,求小聪同学从迷宫口A到达D处所走的所有可能路线;(2)求小聪同学从迷宫口A到达D处经过路口B的概率.【分析】(1)根据题意得出小聪同学从迷宫口A到达D处所走的所有可能路线共有4种;(2)根据概率公式进行求解即可.【解答】解:(1)根据题意画图如下:小聪同学从迷宫口A到达D处所走的所有可能路线共有4种;(2)一共有4种情况,而过B的有3种,故小聪同学从迷宫口A到达D处经过路口B的概率为34.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.五、(本大题共2小题,每小题9分,共18分)21.(9分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,100)、(45,70)代入一次函数表达式,即可求解;(2)由题意得2(30)(2160)2(55)1250w x x x =--+=--+,即可求解;(3)由题意得(30)(2160)800x x --+,解不等式即可得到结论.【解答】解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b =+⎧⎨=+⎩, 解得:2160k b =-⎧⎨=⎩, 故函数的表达式为:2160y x =-+;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+,20-<,故当55x <时,w 随x 的增大而增大,而3050x ,∴当50x =时,w 有最大值,此时,1200w =,故销售单价定为50元时,该商店每天的利润最大,最大利润1200元;(3)由题意得:(30)(2160)800x x --+,解得:4070x ,又216020y x =-+,则y 的最小值为27016020-⨯+=,每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量⨯每件的利润w =得出函数关系式是解题关键.22.(9分)对于两个不相等的有理数a ,b ,我们规定符号{max a ,}b 表示a ,b 中的较大值,如{2max ,3}2-=,{1max -,0}0=.请解答下列问题:(1)2{1,1}5max --= 1- ; (2)如果{max x ,2}x x -=,求x 的取值范围;(3)如果{max x ,2}2|1|5x x -=--,求x 的值.【分析】(1)根据定义即可得;(2)由已知等式知2x x >-,解之可得;(3)分2x x >-和2x x <-两种情况分别求解可得.【解答】解:(1)2115->-, ∴2{1,1}15max --=-. 故答案为:1-;(2){max x ,2}x x -=,2x x ∴>-.1x ∴>.x ∴的取值范围是1x >.(3)由题意,得:2x x ≠-.①若2x x >-,即1x >时,{max x ,2}x x -=,|1|1x x -=-.{max x ,2}2|1|5x x -=--,2(1)5x x ∴=--.解得7x =符合题意;)②若2x x <-,即1x <时,{max x ,2}2x x -=-,|1|(1)1x x x -=--=-.{max x ,2}2|1|5x x -=--,22(1)5x x ∴-=--.解得5x =-符合题意.综上所述,7x =或5x =-.【点评】本题主要考查解一元一次不等式,解题的关键是理解新定义,并根据新定义列出关于x 的不等式及分类讨论思想的运用.六、(本大题共12分)23.(12分)如图,抛物线2(0)y ax bx a =+≠经过点(2,0)A ,点(3,3)B ,BC x ⊥轴于点C ,连接OB ,等腰直角三角形DEF 的斜边EF 在x 轴上,点E 的坐标为(4,0)-,点F 与原点重合(1)求抛物线的解析式并直接写出它的对称轴;(2)DEF ∆以每秒1个单位长度的速度沿x 轴正方向移动,运动时间为t 秒,当点D 落在BC 边上时停止运动,设DEF ∆与OBC ∆的重叠部分的面积为S ,求出S 关于t 的函数关系式;(3)点P 是抛物线对称轴上一点,当ABP ∆是直角三角形时,请直接写出所有符合条件的点P 坐标.【分析】(1)根据待定系数法解出解析式和对称轴即可;(2)从三种情况分析①当03t 时,DEF ∆与OBC ∆重叠部分为等腰直角三角形;②当34t <时,DEF ∆与OBC ∆重叠部分是四边形;③当45t <时,DEF ∆与OBC ∆重叠部分是四边形得出S 关于t 的函数关系式即可;(3)直接写出当ABP ∆是直角三角形时符合条件的点P 坐标.【解答】解:(1)根据题意得042393a b a b=+⎧⎨=+⎩, 解得1a =,2b =-,∴抛物线解析式是22y x x =-,对称轴是直线1x =;(2)有3种情况:①当03t 时,DEF ∆与OBC ∆重叠部分为等腰直角三角形,如图1:214S t =; ②当34t <时,DEF ∆与OBC ∆重叠部分是四边形,如图2:219342S t t =-+-; ③当45t <时,DEF ∆与OBC ∆重叠部分是四边形,如图3:211322S t t =-+-; (3)当ABP ∆是直角三角形时,可得符合条件的点P 坐标为(1,1)或(1,2)或1(1,)3或11(1,)3. 【点评】此题考查了难度较大的函数与几何的综合题,关键是根据03t ,34t <,45t <三种情况进行分析.。

北师大版九年级数学上册期末压轴题综合复习题(含答案)

2021-2022年北师大版九年级数学上册期末压轴题综合复习题1、如图,矩形ABCD中,AD=3,AB=4,点P是对角线AC上一动点(不与A,C重合),连结BP,作PE⊥PB,交射线DC于点E,以线段PE,PB为邻边作矩形BPEF.过点P 作GH⊥CD,分别交AB、CD于点G、H.(1)求证:△PGB∽△EHP;(2)求的值;(3)求矩形BPEF的面积的最小值.2、已知:如图,菱形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且BE=BF=DH=DG.(1)求证:四边形EFGH是矩形;(2)已知∠B=60°,AB=6.请从A,B两题中任选一题作答,我选择题.A题:当点E是AB的中点时,矩形EFGH的面积是.B题:当BE=时,矩形EFGH的面积是8.3、在△ABC中,∠ABC=90°,ABnBC,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:CP BM.PQ BQ②如图3,若M是BC的中点,求证:∠BPQ =∠BAC.4、已知:矩形OABC的顶点O在平面直角坐标系的原点,边OA、OC分别在x、y轴的正半轴上,且OA=3cm,OC=4cm,点M从点A出发沿AB向终点B运动,点N从点C 出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求点N的坐标;(2)试求出多边形OAMN的面积S与t的函数关系式;(3)t为何值时,以△OAN的一边所在直线为对称轴翻折△OAN,翻折前后的两个三角形所组成的四边形为菱形?5、已知:如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.6、如图,已知菱形ABCD中,AB=5,点E是BC边上一点(不与B,C重合),以BE为边构造菱形BEFG,使点G落在AB的延长线上,连接BD,GE,射线FE交BD于点H.(1)求证:四边形BGEH是平行四边形;(2)请从下面A,B两题中任选一题作答.我选择题.A.若四边形BGEH为菱形,则BD的长为.B.连接HC,CF,BF,若BD=6,且四边形BHCF为矩形,则CF的长为3.7、如图,在平面直角坐标系中,点A(﹣4,2),点B在第一象限,AB平行于x轴且AB=5.(1)点B的坐标为.(2)如图1,过点A作AC⊥x轴于C,在x轴上是否存在点D,使得△AOC与△BOD 相似?(3)如图2,将△AOB折叠,使得点A刚好落在O处,此时折痕交AB于点D,交AO 于点E,在直线AO上有两个动点P,Q(点P在点Q的左侧),且线段PQ=,求四边形BDPQ的周长最小值.8、如图1,已知四边形ABCD的对角线AC,BD相交于点O,点M是BC边的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.(1)如图2,若四边形ABCD是菱形,求证:四边形OEMF是矩形;(2)如图3,若四边形ABCD是矩形,则四边形OEMF是(在横线上填一个特殊平行四边形的名称)(3)如图4,若四边形ABCD是矩形,点M是BC延长线上的一个动点,点F落在AC的延长线上,点E落在线段OD上,其余条件不变,写出OB,ME,MF三条线段之间存在的数量关系,并说明理由.9、如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:BG=DG;(2)求C′G的长;(3)如图2,再折叠一次,使点D与A重合,折痕EN交AD于M,求EM的长.10、如图(1)是矩形纸片ABCD连续两次对折展开平铺后的图形,折痕分别为EF,MN,GH.(1)如图(2),连接BD,与折痕GH,EF,MN分别交于点S,O,T,求证:OE=OF;(2)如图(3),连接ET并延长交CD于点Q,连接FS并延长交AB于点P,连接EP,FQ.求证:四边形EPFQ是菱形;(3)若四边形EPFQ是正方形,则矩形ABCD需满足的条件是.12、如图1,在正方形ABCD的外部,分别以AB,CD为边作菱形ABEF和菱形CDGH,连接EH,FG(1)求证:FG=EH(2)请从A,B两个题目中任选一题作答A 如图2,若AB=4,∠BAF=60°,∠CDG=30°,求四边形AFGD的面积B 如图3,若∠BAF=∠CDG,求证;四边形EFGH是矩形13、问题情境:如图1,在菱形ABCD中,点E、F分别为AB,BC边上的点,连接AF,DE相交于点O,且∠AOE=∠ADC,试探究:AF与DE的数量关系.特例探究:如图2,当菱形ABCD是正方形时,AF与DE有怎样的数量关系呢?请你直接写出结论,不必证明;类比解答:类比特例探究的结论,猜想问题情境中AF与DE的数量关系,并说明理由;拓展延伸:将图1中的菱形ABCD改为▱ABCD(如图3)其中AB=a,AD=b,点E、F、G、H 分别为AB、BC、CD、DA边上的动点,连接EG、HF相交于点O,且∠HOE=∠ADC,试探究:EG与FH的数量关系,用含a、b的式子直接写出的值,不必说明理由.14、问题情境:已知,菱形ABCD,点B关于直线AD的对称点为点E,连接AE、CE,线段CE交直线AD于点F,连接BF.(1)特例研究:如图1,当∠ABC=90°时,点A、B、E在同一条直线上,求证:BF=CE.(2)类比思考:请从下列A、B两题中任选一题作答:我选择A或B题.当90°<∠ABC<180°时,小彬提出如下问题:A、若点E、D、C三点在同一直线上,请在下面画出符合条件的图形,并直接写出∠ABC的度数;B、如图2,若点E、D、C三点不在同一直线上,判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,说明理由.(3)拓展分析:请从下列A、B两题中任选一题作答,我选择A或B题.A:如图3,当∠ABC=135°时,CD的延长线交AE于点G,直接写出的值;B:当∠ABC=45°时,直线AE与CD相交于点G,请在下面画出符合条件的图形,并直接写出的值.15、阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=或(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).16、综合与实践问题情境:正方形折叠中的数学已知正方形纸片ABCD中,AB=4,点E是AB边上的一点,点G是CE的中点,将正方形纸片沿CE所在直线折叠,点B的对应点为点B′.(1)如图1,当∠BCE=30°时,连接BG,B′G,求证:四边形BEB′G是菱形;深入探究:(2)在CD边上取点F,使DF=BE,点H是AF的中点,再将正方形纸片ABCD沿AF 所在直线折叠,点D的对应点为D′,顺次连接B′,G,D′,H,B',得到四边形B′GD′H.请你从A,B两题中任选一题作答,我选择题.A题:如图2,当点B',D′均落在对角线AC上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直写出此时点H,G之间的距离.B题:如图3,点M是AB的中点,MN∥BC交CD于点N,当点B',D′均落在MN上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直接写出此时点H,G之间的距离.17、如图,直线y=x+n交x轴于点A(﹣8,0),直线y=﹣x﹣4经过点A,交y轴于点B,点P是直线y=﹣x﹣4上的一个动点,过点P作x轴的垂线,过点B作y轴的垂线,两条垂线交于点D,连接PB,设点P的横坐标为m.(1)若点P的横坐标为m,则PD的长度为(用含m的式子表示);(2)如图1,已知点Q是直线y=x+n上的一个动点,点E是x轴上的一个动点,是否存在以A,B,E,Q为顶点的平行四边形,若存在,求出E的坐标;若不存在,说明理由;(3)如图2,将△BPD绕点B旋转,得到△BD′P′,且旋转角∠PBP′=∠OCA,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.18、如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.19、在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连接OB,点D为OB的中点,点E是线段AB上的动点,连接DE,作DF⊥DE,交OA于点F,连接EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,的大小是否发生变化?如果变化,请说明理由;如果不变,请求出的值.(3)连接AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.20、如图①,已知点A(﹣1,0),B(0,﹣2),▱ABCD的边AD与y轴交于点E,且E为AD的中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,直接写出满足要求的所有点Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图③),点T是边AF上一动点,M是HT 的中点,MN⊥HT,交AB于N,当点T在AF上运动时,的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.参考答案1、如图,矩形ABCD中,AD=3,AB=4,点P是对角线AC上一动点(不与A,C重合),连结BP,作PE⊥PB,交射线DC于点E,以线段PE,PB为邻边作矩形BPEF.过点P 作GH⊥CD,分别交AB、CD于点G、H.(1)求证:△PGB∽△EHP;(2)求的值;(3)求矩形BPEF的面积的最小值.1、【解答】(1)证明:∵∠PGB=∠EHP=∠BPE=90°,∴∠PBG=∠EPH(同角的余角相等),∴△PGB∽△EHP;(2)解:连接BE,∵PE⊥PB,∴∠BPE=90°,∵∠BCE=90°,∴∠BCE+∠BPE=180°,∴P,B,E,C四点共圆,∴∠PBE=∠PCE,在Rt△BPE与Rt△ADC中,∠D=∠BP E=90°,∠ACD=∠PBE,∴Rt△BPE∽Rt△ADC,∴=,即==;(3)设AP的长为x.∵AD=3,AB=4,∴由勾股定理得到:AC===5∵cos∠GAP===,∴AG=AP=x.同理,sin∠GAP===.则GP=x.在Rt△PBG中,PB2=BG2+PG2=(4﹣x)2+(x)2=x2﹣x+16,∵==.∴PE=PB,∴S矩形BPEF=PB•PE=PB2=(x2﹣x+16)=(x﹣)2+,∵0<x<5,∴x=时,S有最小值.2、已知:如图,菱形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且BE=BF=DH=DG.(1)求证:四边形EFGH是矩形;(2)已知∠B=60°,AB=6.请从A,B两题中任选一题作答,我选择A或B题.A题:当点E是AB的中点时,矩形EFGH的面积是9.B题:当BE=2或4时,矩形EFGH的面积是8.2、【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AB=BC=CD=AD,∴∠A+∠B=180°,∵BE=BF=DH=DG,∴AE=AH=CF=CG,∴∠AEH=∠AHE=(180°﹣∠A),∠BEF=∠BFE=(180°﹣∠B),∴∠AEH+∠BEF=(180°﹣∠A)+(180°﹣∠B)=90°,同法可证:∠EFG=∠EHG=90°,∴四边形EFGH是矩形.(2)解:A题:连接AC,BD交于点O.∵AE=BE,∴AH=DH,BF=CF,CG=GD,∴EF=AC,EH=BD,∵AB=BC=6,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=6,∵OB⊥AC,∴OB=3,BD=2OB=6,∴EF=3,EH=3,∴S矩形EFGH=EF•EH=9.故答案为9.B题:设BE=x,则AE=6﹣x,EF=x,EH=(6﹣x),由题意:x•(6﹣x)=8,解得x=4或2,∴BE=2或4.故答案为A或B,9,2或4.3、在△ABC中,∠ABC=90°,ABnBC=,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:CP BMPQ BQ=.②如图3,若M是BC的中点,求证:∠BPQ =∠BAC.3、【解答】(1)证明:如图1中,延长AM交CN于点H.∵AM⊥CN,∴∠AHC=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∠BCN+∠CMH=90°,∵∠AMB=∠CMH,∴∠BAM=∠BCN,∵BA=BC,∠ABM=∠CBN=90°,∴△ABM≌△CBN(ASA),∴BM=BN.(2)①证明:如图2中,作CH∥AB交BP的延长线于H.∵BP⊥AM,∴∠BPM=∠ABM=90°,∵∠BAM+∠AMB=90°,∠CBH+∠BMP=90°,∴∠BAM=∠CBH,∵CH∥AB,∴∠HCB+∠ABC=90°,∵∠ABC=90°,∴∠ABM=∠BCH=90°,∵AB=BC,∴△ABM≌△BCH(ASA),∴BM=CH,∵CH ∥BQ , ∴==.②简解:(射影定理)证2BM PM AM = 由BM =CM 得2CM PM AM = 则△PMC ∽△CMA 可得∠BPQ =∠BAC4、已知:矩形OABC 的顶点O 在平面直角坐标系的原点,边OA 、OC 分别在x 、y 轴的正半轴 上,且OA =3cm ,OC =4cm ,点M 从点A 出发沿AB 向终点B 运动,点N 从点C 出发沿CA 向终点A 运动,点M 、N 同时出发,且运动的速度均为1cm /秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t 秒. (1)当点N 运动1秒时,求点N 的坐标;(2)试求出多边形OAMN 的面积S 与t 的函数关系式;(3)t 为何值时,以△OAN 的一边所在直线为对称轴翻折△OAN ,翻折前后的两个三角形所组成的四边形为菱形?4、【解答】解:(1)∵t =1∴CN =1,AM =1 过N 作NE ⊥y 轴,作NF ⊥x 轴 ∴△CEN ∽△COA ,∴,即,∴EN =.(1分) 由勾股定理得:,,∴.(2分)(2)由(1)得,∴∴N 点坐标为. ∵多边形OAMN 由△ONA 和△AMN 组成 ∴=(3分) =(4分) ∴多边形OAMN 的面积S =.(0≤t≤4)(5分)(3)①直线ON为对称轴时,翻折△OAN得到△OA′N,此时组成的四边形为OANA′,当AN=A′N=A′O=OA,四边形OANA’是菱形.即AN=OA,∴5﹣t=3∴t=2.(6分)②直线OA为对称轴时,翻折△OAN得到△OAN′,此时组成的四边形为ONAN′,连接NN′,交OA于点G.当NN′与OA互相垂直平分时,四边形ONAN′是菱形.即OA⊥NN′,OG=AG=,∴NG∥CO,∴点N是AC的中点,∴CN=,∴(7分)③直线AN为对称轴时,翻折△OAN得到△O′AN,此时组成的四边形为ONO′A,连接OO’,交AN于点H.当OO′与AN互相垂直平分时,四边形ONO’A是菱形.即OH⊥AC,AH=NH=,由面积法可求得OH=,在Rt△OAH中,由勾股定理得,AH=.∴,∴.(8分)综上所述,t的值为.5、已知:如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.5、【解答】解:(1)在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,∴AB=6,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,∵△APC∽△ACB,∴,∴,∴t=;(2)存在,理由:如图②,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,CQ=3﹣t,∵点P是CQ的垂直平分线上,∴QM=CM=CQ=(3﹣t)=(3﹣t),∴AM=AQ+QM=t+(3﹣t)=(t+3)过点P作PM⊥AC,∵∠ACB=90°,∴PM∥BC,∴,∴∴t=1(3)不存在,理由:由运动知,BP=2t,AQ=t,∴AP=6﹣2t,假设线段BC上是存在一点G,使得四边形PQGB为平行四边形,∴PQ∥BG,PQ=BG,∴△APQ∽△ABC,∴,∴,∴t=,PQ=,∴BP=2t=3,∴PQ≠BP,∴平行四边形PQGB不可能是菱形.即:线段BC上不存在一点G,使得四边形PQGB为菱形.6、如图,已知菱形ABCD中,AB=5,点E是BC边上一点(不与B,C重合),以BE为边构造菱形BEFG,使点G落在AB的延长线上,连接BD,GE,射线FE交BD于点H.(1)求证:四边形BGEH是平行四边形;(2)请从下面A,B两题中任选一题作答.我选择A题.A.若四边形BGEH为菱形,则BD的长为5.B.连接HC,CF,BF,若BD=6,且四边形BHCF为矩形,则CF的长为3.6、【解答】(1)证明:∵四边形ABCD和四边形BEFG是菱形,∴CD∥AG∥FH,BC∥GF,∠ABD=∠ABC,∠BGE=∠BGF,∴∠ABC=∠BGF,∴∠ABD=∠BGE,∴BH∥GE,∵EH∥BG,∴四边形BGEH是平行四边形;(2)解:A、∵四边形ABCD和四边形BGEH为菱形,∴AB=AD,∠ABD=∠CBD=∠GBE=60°,∴△ABD是等边三角形,∴BD=AB=5;故答案为:A,5;B、如图所示:∵四边形BHCF为矩形,∴CE=BE,∵EH∥BG,∴EH∥CD,∴EH是△BCD的中位线,∴BH=BD=3,∴CF=3;故答案为:3;8、如图,在平面直角坐标系中,点A(﹣4,2),点B在第一象限,AB平行于x轴且AB=5.(1)点B的坐标为(1,2).(2)如图1,过点A作AC⊥x轴于C,在x轴上是否存在点D,使得△AOC与△BOD 相似?(3)如图2,将△AOB折叠,使得点A刚好落在O处,此时折痕交AB于点D,交AO 于点E,在直线AO上有两个动点P,Q(点P在点Q的左侧),且线段PQ=,求四边形BDPQ的周长最小值.7、【解答】解:(1)∵点A(﹣4,2),点B在第一象限,AB平行于x轴且AB=5,∴点B(1,2),故答案为:B(1,2);(2)如图1,过点B作BD⊥CO,则点D(1,0),∴OD=1,BD=2,∵AC⊥x轴,点A(﹣4,2),∴AC=2,CO=4,∴,且∠ACO=∠ODB=90°,∴△ACO∽△ODB,∴当点D为(1,0)时,△AOC与△BOD相似;∵△ACO∽△ODB,∴∠AOC=∠OBD,∠CAO=∠BOD,∵∠AOC+∠CAO=90°,∴∠AOC+∠BOD=90°,∴AO⊥BO,∵AC=2,CO=4,∴AO===2,∵OD=1,BD=2,∴OB===,过点B作BD'⊥OB,交x轴于D',∵∠ACO=∠OBD',∠BOD=∠CAO,∴△ACO∽△OCD',∴,∴OD'==5,∴D'(5,0)综上所述:当点D为(1,0)或(5,0)时,△AOC与△BOD相似;(3)连接DO,∵将△AOB折叠,使得点A刚好落在O处,∴AD=DO,∵DN2+ON2=DO2,∴DN2+4=(4﹣DN)2,∴DN=,∴点D坐标(﹣,2),∴BD=2+=,∵四边形BDPQ的周长=BD+PQ+PD+BQ=++PD+BQ,∴当PD+BQ最小时,四边形BDPQ的周长有最小值,作点B关于AO的对称点B'(﹣1,﹣2),过点D作DH∥AO,且DH=,∴H(,1),∴B'H为PD+BQ的最小值,∴B'H==,∴四边形BDPQ的周长最小值=++=.8、如图1,已知四边形ABCD的对角线AC,BD相交于点O,点M是BC边的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.(1)如图2,若四边形ABCD是菱形,求证:四边形OEMF是矩形;(2)如图3,若四边形ABCD是矩形,则四边形OEMF是菱形(在横线上填一个特殊平行四边形的名称)(3)如图4,若四边形ABCD是矩形,点M是BC延长线上的一个动点,点F落在AC的延长线上,点E落在线段OD上,其余条件不变,写出OB,ME,MF三条线段之间存在的数量关系,并说明理由.8、【解答】证明:(1)如图2,∵ME∥AC,MF∥BD,∴四边形OEMF是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠BOC=90°,∴▱OEMF是矩形;(2)如图3,若四边形ABCD是矩形,则四边形OEMF是菱形,理由是:由(1)得:四边形OEMF是平行四边形,∵四边形ABCD是矩形,∴OB=BD,OC=AC,AC=BD,∴OB=OC,∴∠OBC=∠OCB,∵EM∥OC,∴∠EMB=∠OCB,∴∠EMB=∠OBC,∴BE=EM,∵BM=MC,EM∥OC,∴BE=OE,∴OE=EM,∴▱OEMF是菱形;故答案为:菱形;(3)如图4,ME=OB+MF,理由是:由(2)得:OB=OC,∴∠OBC=∠OCB,∵MF∥BE,∴∠OBC=∠BMF,∴∠OCB=∠BMF,∵∠OCB=∠FCM,∴∠FCM=∠BMF,∴FC═FM,由(1)得四边形OEMF是平行四边形,∴OF=EM,∵OF=OC+FC=OB+FM,∴ME=OB+MF.9、如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:BG=DG;(2)求C′G的长;(3)如图2,再折叠一次,使点D与A重合,折痕EN交AD于M,求EM的长.9、【解答】解:(1)∵沿对角线BD对折,点C落在点C′的位置,∴∠A=∠C′,AB=C′D,∴在△GAB和△GC′D中,,∴△GAB≌△GC′D(AAS),∴BG=DG;(2)∵△GAB≌△GC′D,∴AG=C′G,设C′G=x,则GD=BG=8﹣x,∴x2+62=(8﹣x)2,解得:,∴;(3)∵点D与点A重合,得折痕EN,∴DM=4cm,∵AD=8cm,AB=6cm,∴在Rt△ABD中,BD=10cm,∵EN⊥AD,AB⊥AD,∴EN∥AB,∴MN是△ABD的中位线,∴DN=BD=5cm,在Rt△MND中,MN==3(cm),由折叠的性质可知∠NDE=∠NDC,∵EN∥CD,∴∠END=∠NDC,∴∠END=∠NDE,∴EN=ED,设EM=x,则ED=EN=x+3,由勾股定理得ED2=EM2+DM2,即(x+3)2=x2+42,解得x=,即EM=cm.10、如图(1)是矩形纸片ABCD连续两次对折展开平铺后的图形,折痕分别为EF,MN,GH.(1)如图(2),连接BD,与折痕GH,EF,MN分别交于点S,O,T,求证:OE=OF;(2)如图(3),连接ET并延长交CD于点Q,连接FS并延长交AB于点P,连接EP,FQ.求证:四边形EPFQ是菱形;(3)若四边形EPFQ是正方形,则矩形ABCD需满足的条件是AB=AD.11、【解答】证明:(1)如图(2),∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD,由折叠得:G、E、M将AD四等分,∴ED=BF,∵∠EOD=∠FOB,∴△EOD≌△FOB,∴OE=OF;(2)由(1)得:△EOD≌△FOB,∴OD=OB,连接AC,∴A、O、C共线,∵GT∥EO,∴=1,∴DT=OT,∵AE=ED,OT=DT,∴ET∥AC,ET=AO,即EQ∥AC,同理得:TQ=OC,∴EQ=AC,同理得:PF=AC,PF∥AC,∴PF=EQ,PF=EQ,∴四边形EPFQ是平行四边形,∵PF∥AC,F是BC的中点,∴P为AB的中点,同理得:Q为DC的中点,∴AP=QD=AB,∵AE=AD,∠BAD=∠ADC=90°,∴△APE≌△DQE,∴PE=EQ,∴▱EPFQ是菱形.(3)当AB=AD时,四边形EPFQ是正方形,理由是:∵E是AD的中点,P是AB的中点,∴AE=AD,AP=AB,∵AB=AD,∴AP=AE,∴△APE是等腰直角三角形,∴∠AEP=45°,同理∠QED=45°,∴∠PEQ=90°,由(2)得:四边形EPFQ是菱形,∴四边形EPFQ是正方形;故答案为:AB=AD.12、如图1,在正方形ABCD的外部,分别以AB,CD为边作菱形ABEF和菱形CDGH,连接EH,FG(1)求证:FG=EH(2)请从A,B两个题目中任选一题作答A 如图2,若AB=4,∠BAF=60°,∠CDG=30°,求四边形AFGD的面积B 如图3,若∠BAF=∠CDG,求证;四边形EFGH是矩形12、【解答】解:(1)∵AB,CD为边作菱形ABEF和菱形CDGH,∴EF∥AB,EF=AB,HG∥CD,HG=CD,∵四边形ABCD是正方形,∴AB∥CD,AB=CD,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,∴FG=EH;(2)A、如图2,延长FA,GD交于M,∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,∴∠BAF+∠DAM=90°,∠CDG+∠ADM=90°,∵∠BAF=60°,∠CDG=30°,∴∠DAM=30°,∠ADM=60°,∴∠ADM=180°﹣∠DAM﹣∠ADM=90°在Rt△ADM中,∠DAM=30°,AD=4,∴DM=AD=2,AM=2,∵AF=DG=4,∴FM=AF +AM=4+2,MG=MD +DG=6,∴S 四边形AFGD =S △FMG ﹣S △MAD=×FM ×GM ﹣×AM ×DM=×(4+2)×6﹣×2×2=12+4,B 、方法1、如图3.连接FD ,AG (简化图),∵∠BAF=∠CDG ,∴∠DAF=∠ADG在△ADF 和△ADG 中,,∴△ADF ≌△ADG ,∴∠ADF=∠DAG ,DF=AG ,∴∠ADF=(180°﹣∠AOD )在△AFG 和△DGF 中,, ∴△AFG ≌△DGF ,∠AGF=∠DFG ,∴∠DFG=(180°﹣∠FOG )∵∠FOG=∠AOD ,∴∠ADF=∠DFG ,∴AD ∥FG ,∵AB ⊥AD ,∴AB ⊥FG ,∵AB ∥EF ,∴EF ⊥FG ,∴∠EFG=90°,由(1)知,四边形EFGH 为平行四边形,∴平行四边形EFGH 是矩形,即:四边形EFGH是矩形.方法2、延长FA,GD交于M,∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,∵∠BAF=∠CDG,∴∠MAD=∠MDA,∴MA=MD,∵四边形ABCD是正方形,∴AB=CD,∵四边形ABEF,CDGH是菱形,∴MF=MG,∠AFE=∠DGH,∴∠EFG=∠HGF,由(1)知,四边形EFGH是平行四边形,∴∠AFE+∠HGF=180°,∴∠EFG=90°,∴平行四边形EFGH是矩形.13、问题情境:如图1,在菱形ABCD中,点E、F分别为AB,BC边上的点,连接AF,DE相交于点O,且∠AOE=∠ADC,试探究:AF与DE的数量关系.特例探究:如图2,当菱形ABCD是正方形时,AF与DE有怎样的数量关系呢?请你直接写出结论,不必证明;类比解答:类比特例探究的结论,猜想问题情境中AF与DE的数量关系,并说明理由;拓展延伸:将图1中的菱形ABCD改为▱ABCD(如图3)其中AB=a,AD=b,点E、F、G、H 分别为AB、BC、CD、DA边上的动点,连接EG、HF相交于点O,且∠HOE=∠ADC,试探究:EG与FH的数量关系,用含a、b的式子直接写出的值,不必说明理由.13、【解答】解:(1)特例探究:AF=DE.理由:如图2,∵四边形ABCD是正方形,∴AD=BA,∠DAE=∠B=90°,∵∠AOE=∠ADC=90°,∴∠ADE+∠DAO=∠BAF+∠DAO=90°,∴∠ADE=∠BAF,∴在ADE和△BAF中,,∴△ADE≌△BAF(ASA),∴AF=DE;(2)类比解答:AF与DE的数量关系为AF=DE.理由:如图1,在AB上取点M使得DM=DA,连接DM,交AF于N,则∠DAM=∠DMA,DM=AD=AB,∵∠DAB+∠B=180°,∠DMA+∠DME=180°,∴∠DME=∠B,∵∠AOE=∠ADC,∴∠ADO+∠DAO=∠ADO+∠CDO,∴∠DAO=∠CDO,又∵CD∥AB,AD∥BC,∴∠CDO=∠MED,∠DAO=∠BFA,∴∠MED=∠BFA,在△MED和△BFA中,,∴△MED≌△BFA(AAS),∴AF=DE;(3)拓展延伸:=.如图3,过G作GM⊥AB于M,过H作HN⊥BC于N,∵四边形ABCD是平行四边形,∴AD∥BC,DC∥AB,∵平行四边形ABCD的面积=AB×GM=BC×HN,∵AB=a,AD=b,∴=,∵GM⊥AB,HN⊥BC,∴∠GME=∠HNF=90°,∵∠ADC=∠HOE,∴∠ADC+∠HOG=∠EOH+∠HOG=180°,∴∠DHO+∠DGE=360°﹣180°=180°,∵AD∥BC,DC∥AB,∴∠NFH=∠DHF,∠DGE+∠GEM=180°,∴∠HFN=∠GEM,∴△GME∽△HNF,∴==.14、问题情境:已知,菱形ABCD,点B关于直线AD的对称点为点E,连接AE、CE,线段CE交直线AD于点F,连接BF.(1)特例研究:如图1,当∠ABC=90°时,点A、B、E在同一条直线上,求证:BF=CE.(2)类比思考:请从下列A、B两题中任选一题作答:我选择A或B题.当90°<∠ABC<180°时,小彬提出如下问题:A、若点E、D、C三点在同一直线上,请在下面画出符合条件的图形,并直接写出∠ABC的度数;B、如图2,若点E、D、C三点不在同一直线上,判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,说明理由.(3)拓展分析:请从下列A、B两题中任选一题作答,我选择A或B题.A:如图3,当∠ABC=135°时,CD的延长线交AE于点G,直接写出的值;B:当∠ABC=45°时,直线AE与CD相交于点G,请在下面画出符合条件的图形,并直接写出的值.14、【解答】解:(1)如图1中,∵∠ABC=90°,四边形ABCD是菱形,∴四边形ABCD是正方形,根据对称性可知,AE=AB,BE⊥AD,∴B、A、E共线,∵AF∥BC,∴EF=FC,∴BF=EC.(2)A、如图2中,当E、D、C共线时,由(1)可知:DE=DC,∵EB⊥AD,AD∥BC,∴EB⊥BC,∴∠EBC=90°,∴BD=DC=DE=CB,∴△BDC是等边三角形,∴∠C=60°,∵AB∥CD,∴∠ABC=180°﹣60°=120°.B、(1)中结论成立.理由如下:如图3中,设BE交AD于H.∵B、E关于AD对称,∴BE⊥AD,EH=BH,∵AD∥BC,∴BE⊥BC,∴∠EBC=90°,∵EH=HB,HF∥BC,∴EF=FC,∴BF=EC.故答案为A或B.(3)A、如图4中,作FH⊥CD于H.∵∠ABC=135°,AD∥BC,∴∠EAF=∠BAF=45°,∠ADC=135°,∠ADG=45°,∴∠AGD=90°,∵∠FHC=90°,∴∠FHC=∠EGC=90°,∴FH∥FG,∵FE=FC,∴HC=HG,∴FH=EG,∵△DFH是等腰直角三角形,∴DF=FH,∴EG=DF,∴=.B、如图5中,作FH⊥CD于H.同法可证:EG=2FH,DF=FH,∴=.故答案为A或B.15、阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择A或B题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=或(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=b 或b(用含m,n,b的式子表示).15、【解答】解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.16、综合与实践问题情境:正方形折叠中的数学已知正方形纸片ABCD中,AB=4,点E是AB边上的一点,点G是CE的中点,将正方形纸片沿CE所在直线折叠,点B的对应点为点B′.(1)如图1,当∠BCE=30°时,连接BG,B′G,求证:四边形BEB′G是菱形;深入探究:(2)在CD边上取点F,使DF=BE,点H是AF的中点,再将正方形纸片ABCD沿AF 所在直线折叠,点D的对应点为D′,顺次连接B′,G,D′,H,B',得到四边形B′GD′H.请你从A,B两题中任选一题作答,我选择A或B题.A题:如图2,当点B',D′均落在对角线AC上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直写出此时点H,G之间的距离.B题:如图3,点M是AB的中点,MN∥BC交CD于点N,当点B',D′均落在MN上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直接写出此时点H,G之间的距离.16、【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠ABC=90°,由折叠可知:BE=BE′,∠CB′E=∠ABC=90°,在Rt△BCE和Rt△ECB′中,∵EG=GC,∴BG=EC,GB′=EC,∴BG=GB′,在Rt△BCE中,∵∠BCE=30°,∴BE=CE,∴BE=EB′=B′G=BG,∴四边形BEB′G是菱形.(2)选A或B.故答案为A或B.A题:①结论:B′G=D′H,B′G∥D′H.理由:如图2中,由(1)得到:B′G=CE,∵点G是CE的中点,∴CG=CE,∴B′G=CG,∴∠1=∠2,∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=BC,∵BE=DF,∴△BCE≌△ADF(SAS),∴CE=CF,∠3=∠4,由折叠可知:∠D=∠AD′F=90°,∠2=∠3,∠4=∠5,∴∠2=∠5=∠1,在Rt△AD′F中,∵H是AF的中点,∴D′H=AH=AF,∴B′G=D′H,∠5=∠6,∴∠1=∠6,∴B′G∥D′H.②连接GH,则四边形AEGH是平行四边形,∴AE=GH,设BE=EB′=m,则AE=m,∴m+m=4,∴m=4﹣4,∴GH=AE=8﹣4B题:①结论:B′G=D′H,B′G∥D′H.理由:由(1)得到:B′G=CE,∵点G是CE的中点,∴CG=CE,∴B′G=CG,∴∠1=∠2,∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=BC,AD∥BC,∵BE=DF,∴△BCE≌△ADF(SAS),∴CE=CF,∠3=∠4,由折叠可知:∠D=∠AD′F=90°,∠2=∠3,∠4=∠5,∴∠2=∠5=∠1,在Rt△AD′F中,∵H是AF的中点,∴D′H=AH=AF,∴B′G=D′H,∠5=∠6,∴∠1=∠6,∵MN∥BC,∴MN∥BC∥AD,∴∠AD′M=∠DAD′=2∠4,∠CB′N=∠BCB′=2∠3,∴∠AD′M=∠CB′N,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
九年级上学期期末复习试卷
数学
班级 姓名 考号 得分 一、填空题: 1.方程4x2-45=31x的二次项系数为: ,一次项系数为: ,常数项为: _。 2.已知方程022kxx的一个根是1,则另一个根是 ,k的值是 。 3.一个三角形三边长分别为6cm、8cm、10cm,则这个三角形的面积是 。 4.为美化环境,某社区第一年植树100亩,从第一年到第三年共植树364亩,设连续 两年植树面积的平均年增长率为x,则依题意列方程是 ; 5.如图1,P是反比例函数的图象上一点,过P点向x轴作垂线,垂足 为A,所得的三角形PAO的面积为3,这个反比例函数的解析式 为 . 6.菱形的两条对角线长为6cm和8cm,则菱形的周长是 , 面积是 . 7.已知函数xy2,当x<0时,其图象在第 象限,y随x的增大而 . 8.等腰三角形一腰上的高与另一腰的夹角为30°,则其顶角的度数为 度. 9.在联欢晚会上,有A、B、C三名同学站在一个三角形的三个顶点位置上,他们在玩 一个游戏,要求在他们中间放一个木凳, 使他们抢坐到凳子的机会相等,试想想凳子 应放在△ABC的 的位 置最适当. 10.如图2,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD 对折,点C落在C/的位置,如果BC=2, 则BC′= . 11.已知函数322nnxny(n是常数)当n= 时, 此函数是反比例函数。 12.已知y与x2成正比例,且当x=2时,y=16,那么y与x之间的函数关系式是 。 13.如果一次函数y=kx+b和反比例函数xky的图象都经过(-2,1)点,则b的值是 。 14.等腰三角形周长为10 ,腰为x ,底为y时,函数关系式y = , 自变量x的取值范围是 。 15.要使方程(m-2)x2 +x-7=0是一元二次方程,必须 二.选择题 16.已知2x2+x-2的值为3,则4x2+2x+1的值为 ( ) (A)10 (B)11 (C)10或11 (D)3或11 17.一次函数y = - 2x - 3的图象不经过( )
A、第一象限 B、 第二象限 C、第三象限 D、第四象限
18.已知:如图,AB=AC,∠A=36°,AB的垂直平分线交
AC于D,则下列结论:①∠C=72°;②BD是∠ABC的平分线;
③△ABD是等腰三角形;④△BCD是等腰三角形,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
19.一个正方形和一个等腰三角形有相等的周长,已知等腰三角形有两边长分别为5.6
cm和13.2cm,则这个正方形的面积为( )
A.64cm2 B.48cm2 C.36cm2 D.24cm2
20.如图,两个同心圆中,大圆的半径是小圆半径的2倍,把一粒大米抛到圆形区域中,
则大米落在小圆内的概率为( )

A. 21 B.31 C. 41 D.无法确定

21.如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系
用图象表示大致是( )

A B C D
22.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放
回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标
志。从而估计该地区有黄羊( )
A.200只 B. 400只 C. 800只 D. 1000只
23.用配方法解下列方程时,配方有错误的是 ( )
A、x2-2x-99=0化为(x-1)2=100 B、x2+8x+9=0化为(x+4)2=25

C、2t2-7t-4=0化为1681)47(2t D、3y2-4y-2=0化为910)32(2y
24..如图中,直线的解析式是( )

A、y = 3x +3 B、y =3x -3
C、y=-3x +3 D、y = -3x -3

25.函数y=kx和kyx(k≠0)在同一坐标系中的图象是( )

图1
A
O

P

Y
x

o y x y x o y x o y x o

x
y
o
3

-1
2

(A) (B) (C) (D) 26.如图,正比例函数y=kx(k>0)与反比例函数xy1的 ( ) 图象相交于A、C两点,过A作x轴的垂线交x轴于B, 连接BC,若△ABC的面积为s,则 A、s = 1 B、s = 2 C、s = 3 D、s的值不能确定 27.手机的电话号码是由11位数字组成的,一个人的手机号码位于中间的数字为5的机会为( ) A、110 B、15 C、111 D、12 28.掷两颗骰子,设出现点数之和为12,11,10的机会依次为1p,2p,3p,成立的是( ) A.1p=2p<3p B.1p<2p=3p C.1p<2p<3p D. 1p>2p>3p 29.掷两颗骰子, “点数和为7”的机会为( ) A.365 B. 61 C.91 D. 101 30.在所有的两位数中,任取一个数,该数能被2或3整除的机会是__ A. 32 B. 54 C. 21 D. 65 31.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形, 四边形ABCD应具备的条件是( ) A、一组对边平行而另一组对边不平行 B、对角线相等 C、对角线互相垂直 D、对角线互相平分 32.如图所示,在房子的屋檐E处安有一台监视器,房子前有一面落地的广告牌(BD),那么监视器的盲区在( ) A、△ACE B、△BFD C、四边形BCED D、△ABD 三、解答题 33.解下列方程:(每小题3分,共6分) ① (2x-1)(x+3)=4 ② x(3x-2)=12x-8
③ ( √2-1)x2 =(√2-1)x ④ 09)3(22x

34.一个口袋中有8个黑球和若干个白球,(不许将球倒出来数)从口袋中随机摸出一球,
记下其颜色,再把它放回口袋中,不断重复上述过程,如果共摸了200次,其中有60次摸
到黑球,那么请你估计口袋中大约有多少个白球?

35.如图:P是反比例函数xky图象上的一点,由P分别向x轴和y轴引垂线,阴影部
分面积为3,求函数的表达式。

36.利用树状图求:把一 枚均匀的硬币连续抛掷三次,“至少有一个硬币是正面朝上”

C
A
B
O
x

y

G F E D C H B A
A B C D E F
3

的概率。 37.作出如下图正三棱柱的三种视图 38.已知:如图,四边形ABCD是平行四边形,P、Q是直线AC上的点,且AP=CQ。 求证:四边形PBQD是平行四边形。 39.小明和他的同学小颖在阳光下行走,小明身高1.80m,他的影长2.0m,小颖比小明矮0.1m,此刻她的影长是多少? 40.小明和小亮用如图所示的两个转盘做游戏,转动两个转盘各一次.若两次数字之和为奇数,则小明胜;若和为偶数,则小亮胜.这个游戏对双方公平吗?说说你的理由.
41.近视眼镜的度数与镜片焦距成反比.小明到眼镜店调查了一些数据如下表:
眼镜度数y(度) 400 625 800
镜片焦距x(cm) 25 16 12.5

(1) 求眼镜度数y(度)与镜片焦距x(cm)之间的函数关系式;
(2) 若小明所戴眼镜度数为500度,求该镜片的焦距.

42.按要求填图
下面图中,表达了四边形、平行四边形、矩形、菱形、正方形之间的关系。

请你依照“四边形平行四边形”的填法,在每个括号内填上一个条件(只填一个即可),
使得前一种四边形满足这一条件后,成为后一种四边形。

主 视 左视 俯

1
23456543
2
A
C
D

B
Q

P
4

43.某商店进了一批服装,进货单价为50元,如果按每件60元出售,可销售800件,
如果每件提价1元出售,其销售量就减少20件。现在要获利12000元,且销售成本
不超过24000元,问这种服装销售单价确定多少为宜?这时应进多少服装?

44.已知:如图ABC中,AD是BAC的角平分线,DE∥AC,DF∥AB。 求证:四边形AEDF是菱形。 对于这道,小明是这样证明的。 证明:∵AD平分BAC (已知) ∴∠1=∠2 (角平分线的定义) ∵DE∥AC (已知) ∴∠2=∠3 (两直线平行内错角相等) ∴∠1=∠3 (等量代换) ∴AE=DE (等角对等边) 同理可证:AF=DF ∴四边形AEDF是菱形(菱形定义) 老师说小明的证明过程有错误,你能看出来吗? ⑴请你帮小明指出他的错误是什么? ⑵请你帮小明做出正确的解答。 45.已知y=y1+y2 ,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19,求y与x之间的函数关系式。 46.如图,已知一次函数的图象与反比例函数xy8的图象交于A,B两点,且A点的横坐标与B点的纵坐标都是2; (1) 一次函数的解析式 (2) △AOB的面积。
1
2

3
F
E

D

A

B
C

相关文档
最新文档