三角函数培优

合集下载

人教版九年级下册数学《锐角三角函数》培优说课教学复习课件

人教版九年级下册数学《锐角三角函数》培优说课教学复习课件

探究新知
【思考】一般地,当∠A 取其他一定度数的锐角时,它 的对边与斜边的比是否也是一个固定值?
探究新知
任意画 Rt△ABC 和 Rt△A'B'C',使得∠C=∠C'=90°,
∠A=∠A'=α,那么
BC AB
与 B' C'
A' B'
有什么关系?你能解释一
下吗?
B' B
A
C A'
C'
探究新知
因为∠C=∠C'=90°,∠A=∠A'=α, 所以Rt△ABC ∽Rt△A'B'C'. 因此
50m,那么需要准备多长的水管?
B' B
35m 50m
A
C C'
AB'=2B'C' =2×50=100(m).
在一个直角三角形中,如果一个锐角等于30°,那么不管
三角形的大小如何,这个角的对边与斜边的比值都等于
1 2
.
探究新知
如图,任意画一个Rt△ABC,使∠C=90°,A
∠A=45°,计算∠A的对边与斜边的比
AB BC A' B' B' C'
BC B' C' AB A'B'
在直角三角形中,当锐角 A 的度数一定时,不管三角 形的大小如何,∠A 的对边与斜边的比都是一个固定值.
探究新知
归纳: 如图,在 Rt△ABC 中,∠C=90°,我们把锐角 A 的
对边与斜边的比叫做∠A的正弦,记作 sin A 即
OP OA2 AP2 32 42 5.
因此 sin AP 4 .

2024年暑期高一培优课2三角函数图象与性质(教师)

2024年暑期高一培优课2三角函数图象与性质(教师)

三角函数图象与性质一、选择题与填空题1.(2020·全国(理))设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9 B . 7π6 C .4π3D .3π2解:由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 的最小正周期为224332T πππω=== 故选:C2. 设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=( ) A.255 B .55 C .-255D.-55解:选C 利用辅助角公式可得f(x)=sin x -2cos x =5sin(x -φ),其中cos φ=55,sin φ=255.当函数f(x)=sin x -2cos x 取得最大值时,θ-φ=2kπ+π2(k ∈Z),∴θ=2kπ+π2+φ(k ∈Z),则cos θ=cos ⎝⎛⎭⎫2kπ+π2+φ=-sin φ=-255(k ∈Z).故选C.3.(2018·全国(文))若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是 A .4πB .2π C .34π D .π解:因为π()cos sin )4=-=+f x x x x ,所以由π02ππ2π,(k Z)4+≤+≤+∈k x k 得π3π2π2π,(k Z)44-+≤≤+∈k x k 因此π3ππ3ππ[,][,],,044444-⊂-∴-<-≥-≤∴<≤a a a a a a a ,从而a 的最大值为π4,选A.4.(2017·全国(文))函数y =1+x +2sin xx的部分图象大致为( ) A . B . C .D .解:当x =1时,y =1+1+sin1=2+sin1>2,排除A 、C ; 当x →+∞时,y →+∞,排除B. 故选:D.5.(2015·湖南(理))将函数()sin 2f x x =的图像向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图像,若对满足12()()2f x g x -=的,,有,则ϕ=A .512πB .3πC .4πD .6π解:试题分析:向右平移个单位后,得到,又∵,∴不妨,,∴,又∵,∴,故选D.6.(2019·北京(文))如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β解:观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π-β, 面积S 的最大值为2222βππ⨯⨯+S △POB + S △POA =4β+1||sin()2OP OB πβ-‖1||sin()2OP OA πβ+-‖ 42sin 2sin 44sin βββββ=++=+⋅.故选B .7.(2017·天津(文))设函数()2sin()f x x ωϕ=+,x ∈R ,其中0>ω,||ϕπ<.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则A .23ω=,12πϕ=B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,724πϕ=解:由题意125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩,其中12,k k Z ∈,所以2142(2)33k k ω=--,又22T ππω=>,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕπ<得12πϕ=,故选A .8.(2021·全国(理))已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.解:由图可知313341234T πππ=-=,即2T ππω==,所以2ω=; 由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=-⎪⎝⎭. 因为7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,()2cos 032f 4π5π⎛⎫== ⎪⎝⎭;所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <; 因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以, 方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭, 解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2.故答案为:2.9.(2020·北京)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.解:因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=. 故答案为:2π(2,2k k Z ππ+∈均可).10.(2018·江苏)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________.解:由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππππ()326k k k Z ϕϕ+=+=-+∈,,因为ππ22ϕ-<<,所以π0,.6k ϕ==- (2)最小正周期2πT ω=;(3)由ππ()2x k k ωϕ+=+∈Z 求对称轴;(4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z 求减区间.11.(2021·浙江)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( ) A .0B .1C .2D .3法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<, 由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 424242αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.12.(11年安徽9)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ (C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ (D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦解:若()()6f x f π≤对x R ∈恒成立,则()s i n ()163f ππϕ=+=,所以,32k k Z ππϕπ+=+∈,,6k k Z πϕπ=+∈.由()()2f f ππ>,(k Z ∈),可知sin()sin(2)πϕπϕ+>+,即s i n 0ϕ<,所以(21),6k k Z πϕπ=++∈,代入()sin(2)f x x ϕ=+,得()sin(2)6f x x π=-+,由3222262k x k πππππ+++,得263k x k ππππ++,故选C. 13.(2018·北京(理))设函数()()cos 06f x x πωω⎛⎫=-> ⎪⎝⎭,若()4f x fπ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,则ω的最小值为__________. 解:因为()4f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,所以()f x 取最大值4f π⎛⎫⎪⎝⎭, 所以22π()8()463k k Z k k Z ωωππ-=∈∴=+∈,,因为0>ω,所以当0k =时,ω取最小值为23. 14.(2017·上海)设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于________ 解: 由三角函数的性质可知111[,1]2sin 3α∈+,211[,1]2sin(2)3α∈+,所以121112sin 2sin(2)αα==++,即12sin sin(2)1αα==-,所以122,,24k k k Z ππαπαπ=-+=-+∈,所以12min |10|4ππαα--=.15.(2020·海南)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +)B .πsin(2)3x - C .πcos(26x +)D .5πcos(2)6x - 解:由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z , 即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭ 故选:BC.15. 2020·天津)已知函数()sin 3f x x π⎛⎫=+⎪⎝⎭.给出下列结论: ①()f x 的最小正周期为2π;②2f π⎛⎫⎪⎝⎭是()f x 的最大值; ③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是( ) A .①B .①③C .②③D .①②③解:因为()sin()3f x x π=+,所以周期22T ππω==,故①正确;51()sin()sin 122362f ππππ=+==≠,故②不正确; 将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象, 故③正确. 故选:B.16. (2016年I 卷12题)已知函数ππ()sin()(0),24f x x+x ,ωϕωϕ=>≤=-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π()1836,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )517. (2019·全国(理))设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④B .②③C .①②③D .①③④解:当[0,2]x π时,,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦, ∵f (x )在[0,2]π有且仅有5个零点,∴5265πππωπ≤+<,∴1229510ω≤<,故④正确, 由5265πππωπ≤+<,知,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦时, 令59,,5222x ππππω+=时取得极大值,①正确;极小值点不确定,可能是2个也可能是3个,②不正确; 因此由选项可知只需判断③是否正确即可得到答案, 当0,10x π⎛⎫∈ ⎪⎝⎭时,(2),5510x ππωπω+⎡⎤+∈⎢⎥⎣⎦, 若f (x )在0,10π⎛⎫⎪⎝⎭单调递增,则(2)102ωππ+< ,即<3ϖ , ∵1229510ω≤<,故③正确. 故选D .二、解答题1.(2021·浙江)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=-⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.解:(1)由辅助角公式得()sin cos 4f x x x x π⎛⎫=+=+⎪⎝⎭,则2223332sin 1cos 21sin 22442y f x x x x x ππππ⎡⎤⎤⎛⎫⎛⎫⎛⎫=+=+=+=-+=- ⎪ ⎪⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫⎪⎭⎦⎝,所以该函数的最小正周期22T ππ==;(2)由题意,()2sin sin 444y f x f x x x x x πππ⎛⎫⎛⎫⎛⎫=-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22sin cos x x x x x x ⎫=⋅=⎪⎪⎝⎭1cos 2222sin 224x x x x x π-⎛⎫===-+⎪⎝⎭, 由0,2x π⎡⎤∈⎢⎥⎣⎦可得32,444x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当242x ππ-=即38x π=时,函数取最大值12+. 2.(2018·上海)设常数R a ∈,函数()2sin 22cos f x a x x =+.(1)若()f x 为偶函数,求a 的值;(2)若π14f ⎛⎫= ⎪⎝⎭,求方程()1f x =[]ππ-,上的解. 解:(1)∵()2sin22cos f x a x x =+,∴()2sin22cos f x a x x -=-+,∵()f x 为偶函数,∴()()f x f x -=, ∴22sin22cos sin22cos a x x a x x -+=+, ∴2sin20a x =,∴0a =;(2)∵π14f ⎛⎫=⎪⎝⎭,∴2ππsin2cos 1124a a ⎛⎫+=+= ⎪⎝⎭,∴a =∴()2π2cos cos212sin 216f x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,∵()1f x =∴π2sin 2116x ⎛⎫++= ⎪⎝⎭∴πsin 262x ⎛⎫+=- ⎪⎝⎭, ∴ππ22π64x k +=-+,或π52π2πZ 64x k k +=+∈,, ∴5ππ24x k =-+,或13ππZ 24x k k =+∈,, ∵[]ππx ∈-,, ∴5π24x =-或19π24x =或13π11π2424x x 或==-3.(2018·北京(文))已知函数()2sin cos f x x x x =.(Ⅰ)求()f x 的最小正周期; (Ⅱ)若()f x 在区间,3m π⎡⎤-⎢⎥⎣⎦上的最大值为32,求m 的最小值.解:(Ⅰ)()1cos211π1cos2sin 222262x f x x x x x -⎛⎫=+=-+=-+ ⎪⎝⎭, 所以()f x 的最小正周期为2ππ2T ==. (Ⅱ)由(Ⅰ)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭.因为π,3x m ⎡⎤∈-⎢⎥⎣⎦,所以π5ππ2,2666x m ⎡⎤-∈--⎢⎥⎣⎦.要使得()f x 在π,3m ⎡⎤-⎢⎥⎣⎦上的最大值为32,即πsin 26x ⎛⎫-⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的最大值为1. 所以ππ262m -≥,即π3m ≥. 所以m 的最小值为π3. 4.(2017·山东(理))设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值. 解:(Ⅰ)因为()sin()sin()62f x x x ππωω=-+-,所以1()cos cos 2f x x x x ωωω=--3cos 2x x ωω=-1sin )2x x ωω=)3x πω=-由题设知()06f π=,所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<, 所以2ω=.(Ⅱ)由(Ⅰ)得())3f x x π=-所以()))4312g x x x πππ=+-=-. 因为3[,]44x ππ∈-,所以2[,]1233x πππ-∈-,当123x ππ-=-,即4πx =-时,()g x 取得最小值32-.5.已知函数()()22f x sin x cos x x cos x x R =--∈ (I )求2f 3π⎛⎫⎪⎝⎭的值 (II )求()f x 的最小正周期及单调递增区间.解:(Ⅰ)f (x )=sin 2x ﹣cos 2x -sin x cos x ,=﹣cos2x x , =﹣226sin x π⎛⎫+⎪⎝⎭, 则f (23π)=﹣2sin (436ππ+)=2,(Ⅱ)因为()2sin(2)6f x x π=-+. 所以()f x 的最小正周期是π. 由正弦函数的性质得3222,262k x k k Z πππππ+≤+≤+∈, 解得2,63k x k k Z ππππ+≤≤+∈, 所以,()f x 的单调递增区间是2[,]63k k k ππ+π+π∈Z ,.6.(2017·北京(文))已知函数())2sin cos 3f x x -x x π=-.(I )求f (x )的最小正周期; (II )求证:当[,]44x ππ∈-时,()12f x ≥-.解:(Ⅰ)()31sin2sin2sin2sin 2223f x x x x x x x π⎛⎫=+-==+ ⎪⎝⎭. 所以()f x 的最小正周期22T ππ==. (Ⅱ)因为44x ππ-≤≤,所以52636x πππ-≤+≤. 所以1sin 2sin 362x ππ⎛⎫⎛⎫+≥-=- ⎪ ⎪⎝⎭⎝⎭. 所以当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()12f x ≥-.7.(2017·江苏)已知向量()([]30a cosx sinx b x π==∈r r,,,,. (1)若a b r P r,求x 的值;(2)记()f x a b =⋅rr ,求函数y =f (x )的最大值和最小值及对应的x 的值. 解:(1)∵向量()([]30a cosx sinx b x π==∈r r,,,,. 由a b r P r,可得:3sinx =,即3tanx =-, ∵x ∈[0,π] ∴56x π=. (2)由()233f x a b cosx x π⎛⎫=⋅==+⎪⎝⎭r r ∵x ∈[0,π], ∴225333x πππ⎡⎤+∈⎢⎥⎣⎦, ∴当2233x ππ+=时,即x =0时f (x )max =3; 当2332x ππ+=,即56x π=时()min f x =- 8.(11年广东16.)(本小题满分12分)1()2sin(),36f x x x R π=-∈已知函数5(1)()4f π求的值;106(2),0,,(3),(32),cos()22135f f ππαβαβπαβ⎡⎤∈+=+=+⎢⎥⎣⎦设求的值.9.(11年北京15)(本小题共13分) 已知函数。

三角函数培优竞赛.doc

三角函数培优竞赛.doc

锐角三角函数题型:锐角三角函数基本概念(1)例:已知α为锐角,下列结论:(1)sin α+cos α=1;(2)若α>45°,则sin α>cos α;(3)若cos α>21,则α<60°; (4)ααsin 1)1(sin 2-=-。

正确的有()A.(1)(2)(3)(4)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(3)变式:1、下列各式中,不正确的是()A.160cos 60sin 0202=+ B .130cos 30sin 00=+ C.0055cos 35sin = D.tan45°>sin45°2、已知∠A 满足等式A A cos sin 12=-,那么∠A 的取值范围是()A.0°<∠A ≤90°B.90°<∠A <180°C.0°≤∠A <90°D.0°≤∠A ≤90°题型:锐角三角函数基本概念(2)例:已知sin α·cos α=81,且45°<α<90°,则COS α-sin α的值为() A.23B.23-C.43D.23±变式:1、已知△ABC 中,∠C=90°,下列各式中正确的是() A.sinA+cosB=sinC B.sinA+sinB=sinC C.2cos 2sin CB A +=D.2tan 2tan C B A +=2、已知sin α+cos α=m,sin α×cos α=n ,则m,n 的关系式()A.m=nB.m=2n+1C.122+=n mD.n m 212-=题型:求三角函数值例:如图,菱形的边长为5,相交于点,=6,若,则下列式子正确的是()A.sin α=54B.cos α=53C.tan α=34D.cot α=34变式:1、设0°<α<45°,sin αcos α=1673,则sin α=2、已知sin α-cos α=51,0°<α<180°,则tan α的值是() A.43 B.43- C.34 D.34-例:计算:000020246tan 45tan 44tan 42sin 48sin ⋅⋅-+=变式:1、计算:2002020010)60cot 4()60tan 25.0(⋅=2、计算:0000002000027tan 63tan 60cot 360sin 60cot 45cos )45sin 30)(cos 45cos 60(sin -++-例:化简根式:251cos 2451cos 4002+-=变式:1、化简下式:αααααααsin )90sin()90cos(21tan tan 21sin cos 21002+----+--=2、已知tanA=3,且∠A 为锐角,则cotA-A 2sin =例:在Rt △ABC 中,∠C=90°,斜边=5,两直角边的长a,b 是关于x 的一元二次方程0222=-+-m mx x 的两个实数根,求Rt △ABC 中较小锐角的正弦值。

高一数学 培优教材三角函数

高一数学 培优教材三角函数

高一年段数学培优教材第四讲 三角函数一、基础知识:1. 函数sin ()y x x R =∈的对称轴方程为,2x k k Z ππ=+∈,对称中心坐标是(,0),k k Z π∈;cos ()y x x R =∈的对称轴方程为,x k k Z π=∈,对称中心坐标是(,0),2k k Z ππ+∈tan (,)2y x x k k Z ππ=≠+∈的对称中心坐标是(,0),k k Z π∈,它不是轴对称图形.2. 求三角函数最值的常用方法:① 通过适当的三角变换,把所求的三角式化为sin()y A x b ωϕ=++的形式,再利用正弦函数的有界性求其最值.② 把所求的问题转化为给定区间上的二次函数的最值问题. ③ 对于某些分式型的含三角函数的式子的最值问题(如sin cos a x by c x d+=+)可利用正弦函数的有界性来求.④ 利用函数的单调性求. 二、综合应用:1. 已知函数()y f x =是以5为最小正周期的奇函数,且(3)1f -=,则对锐角α,当1sin 3α=时,)f α=_________________2. 已知222,a b +=则sin cos a b θθ+的最大值是___________3. 函数22sin 2sin cos 3cos y x x x x =++取最小值的x 的集合为______________4. 函数5cos 23sin ,[,]63y x x x ππ=+∈--的最大值和最小值的和为______________. 5. 函数sin cos sin ,y x x x cosx x R =+-∈的最大值为_____________6. 函数sin (0)2cos xy x xπ=<<+的最大值是_________________7. 函数()(cos sin )cos f x a x b x x =+有最大值2,最小值1-,求sin()4y a bx π=+的最小正周期.8.已知函数2()2sin sin cos f x a x x x a b =-++的定义域是[0,]2π,值域是[5,1]-,求,a b 的值.9. 已知函数()sin 2cos2f x x a x =+的图象关于直线8x π=-对称,求a 的值.10.已知()sin cos (,,f x A x B x A B ωωω=+是常数,且0)ω>的最小正周期为2,并且当13x =时,()f x 取最大值为2. (1)求()f x 表达式; (2)在区间2123[,]44上是否存在()f x 的图象的对称轴?若存在,求出其方程;若不存在,说明理由.11.已知函数()sin()(0,0)f x x ωϕωϕπ=+>≤≤是R 上的偶函数,其图象关于点3(,0)4M π对称,且在区间[0,]2π上是单调函数,求,ϕω的值.12.已知定义在区间2[,]3ππ-上的函数)(x f y =的图象关于直线6π-=x 对称,当2[,]63x ππ∈-时,函数()s i n ()(0,0,)22f x A x A ππωϕωϕ=+>>-<<, 其图象如图所示.(1)求函数()y f x =在2[,]3ππ-的表达式;x(2)求方程()2f x =.三、强化训练:1.有四个函数2sin sin tancot sin 22x xy x y x y y x ===-=①②③④,其中周期为π,且在(0,)2π上是增函数的函数个数是( ) .1.2.3.4A B C D2.设函数2()2c o s 3s i n 2f x x x a =+(a 为实常数)在区间[0,]2π上的最小值是4-,则a 的值是( ).4.6.4.3A B C D ---3.sin(2)cos()cos(2)sin()3636y x x x x ππππ=+--+-的图像中一条对称轴方程是( )3....422A x B x C x D x ππππ====4.定义在R 上的偶函数f(x)满足f(x) = f (x +2),当x ∈[3,4]时,f(x) = x -2,则( )A .f (sin12) < f (cos12) B .f (sin3π) > f (cos3π) C .f (sin1) < f (cos1) D .f (sin32) > f (cos32)5.将函数y =f(x)sin x 的图象向右平移4π个单位后,再作关于x 轴对称的曲线,得到函数 y =1-2sin 2x , 则f (x )是 ( )A .cos xB .2cos xC .sin xD .2sin x 6.曲线2sin()cos()44y x x ππ=+-和直线12y =在y 轴右侧的交点按横坐标从小到大依 次记为P 1,P 2,P 3,…,则|P 2P 4|等于( ) A .π B .2π C .3π D .4π7.设()()2cos fx x m ωϕ=++,恒有())3f x f x π+=-(成立,且(1)6f π=-,则实数m 的值为A .1±B .3±C .-1或3D .-3或18.使函数()sin(2))f x x x θθ=+++是奇函数,且在[0,]4π上是减函数的θ的一个值是_____________9.已知函数21()cos sin cos (0,0)2f x a x x x a ωωωω=+⋅->>2,其最小正周期为π.(Ⅰ)求实数a 与ω的值.(Ⅱ)写出曲线()y f x =的对称轴方程及其对称中心的坐标.参考答案:例1:(8)(3)(3)1f f f ==--=- 例2: 2例3:3())2;|,48f x x x x k k Z πππ⎧⎫=++=-∈⎨⎬⎩⎭例4:2()12sin 3sin ,1,45f x x x M N M N =-+=-=-+=- 例5:1例6例7:1,a b ==± 例8:21()2sin(2)2,sin(2)1,5626a f x a x ab x b ππ=⎧=-+++-≤+≤⎨=-⎩或21a b =-⎧⎨=⎩例9:1a =-例10:(1)()2sin()6f x x ππ=+(2)()2sin()6f x x ππ=+的对称方程为1,623x k x k k Z ππππ+=+⇒=+∈,由211235965,54341212k k k Z k ≤+≤⇒≤≤∈∴= 故存在.例11:03高考天津卷2223πϕωω==,,= 例12:(1)当2[,]63x ππ∈-时,()sin()3f x x π=+,当x ∈2[,]3ππ-时()sin f x x =-强化练习:1 C2 C3 C4 C5 B 6. A 7. D 8. 23πθ=9. (1)2111cos sin cos (1cos 2)sin 22222a y a x x x x x ωωωωω=+⋅-=++-11(sin 2cos 2)22a x a x ωω-=++1)22a x ωϕ-=++.∵y 的最小正周期T=π. ∴ω=1.∴12man a y -==∴a=1.(2)由(Ⅰ)知a=1,ω=1,∴1()(sin 2cos 2))224f x x x x π=+=+.∴曲线y=f(x)的对称轴方程为()28k x k Z ππ=+∈.对称中心的坐标为(,0)()28k k z ππ-∈.。

锐角三角函数培优讲义33113

锐角三角函数培优讲义33113

讲义编号:组长签字:签字日期:(2)正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。

2、坡角与坡度坡面与水平面的夹角称为坡角,坡面的铅直高度与水平宽度的比为坡度(或坡比),即坡度等于坡角的正切。

3、锐角三角函数关系:(1)平方关系: sin 2A + cos 2A = 1; 4、互为余角的两个三角函数关系若∠A+∠B=∠90,则sinA=cosB,cosA=sinB. 5、特殊角的三角函数:00 300450 600sin α2122 23 cos α 1 23 22 21 tan α33 1 (1)锐角的正弦值随角度的增加(或减小)而增加(或减小); (2)锐角的余弦值随角度的增加(或减小)而减小(或增加); (3)锐角的正切值随角度的增加(或减小)而增加(或减小)。

三、典型例题考点一:锐角三角函数的定义 1、在Rt △ABC 中,∠C=90°,cosB=54,则AC :BC :AB=( )A 、3:4:5B 、5:3:4C 、4:3:5D 、3:5:42、已知锐角α,cos α=35,sin α=_______,tan α=_______。

3、在△ABC 中,∠C=90°,若4a=3c ,则cosB=______.tanA = ______。

4、在△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于_______。

5、在△ABC 中,∠C=90°,若把AB 、BC 都扩大n 倍,则cosB 的值为( )A 、ncosBB 、1ncosB C 、cos nBD 、不变考点二:求某个锐角的三角函数值——关键在构造以此锐角所在的直角三角形1、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。

(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。

三角函数的性质(培优)

三角函数的性质(培优)

三角函数的性质【典型例题】例1.求函数+的定义域。

=y 1tan --x x x sin 23log 123cos -+例2.设的图像经过点,,当0x 时,()c x b x a x f ++=cos sin ()5,0A ⎪⎭⎫ ⎝⎛5,2πB ≤≤2π,求c 的取值范围。

10)(≤x f 例3.已知,,且 求的值。

⎦⎤⎢⎣⎡-∈4,4,ππy x R a ∈⎪⎩⎪⎨⎧=++=-+02sin 21402sin 222a y y a x x )2cos(y x +例4.设函数的定义域为R ,对任意实数)(x f 有 ,βα,02(,21)3(),2()2(2)()(==-+=+ππβαβαβαf f f f f f 且(1)求证:)()()(x f x f x f --==-π(2) 若0x 时,,求证:上单调递减。

≤≤2π0)(>x f []π,0)(在x f (3)求的最小周期并加以证明。

)(x f 例5.已知a ,b ,A ,B 都是实数,若对于一切实数,x 都有,02sin 2cos sin cos 1)(≥----=x B x A x b x a x f 求证:。

1,22222≤+≤+B A b a 例6.关于x 的方程有解,求实数a 的取值范围。

01)23(2cos 3sin 222=---+a a x a x例7.若知,对任意c bx x x f R c b ++=∈2)(,,R∈βα,都有0)cos 2(,0)(sin ≤+≥βf a f (1)求f(1)的值。

(2)证明: (3)设的最大值为10 ,求f(x)。

3≥c )(sin a f 例8.给定数列,且,则的值是多少?{}n x ()()321321---+=+n n n x x x 4011001x x -【经典练习】1.求的值。

oo o o 80sin 40sin 50cos 10cos 22-+2.求的值。

oo o 70sin 50sin 10sin 3.设,则的大小关系是⎪⎭⎫ ⎝⎛-∈0,21x πππ)1cos(),sin(cos ),cos(sin 321+===x a x a x a ( )A . B. C . D . 123a a a <<231a a a <<213a a a <<132a a a <<4.已知,,则下列三数,,10<<b 40πα<<ααsin log )(sin b x =ααcos log )(cos b y = 的大小关系是( )ααcos log )(sin b z =A. B. C. D. y z x <<x z y <<y x z <<zy x <<5.是第三象限的角,且,则的α0cos 2cos sin sin622=-⋅+αααααα2cos 2sin +值是______。

第二节 三角函数及应用-学而思培优

第二节三角函数及应用-学而思培优
三角函数是数学中非常重要的一部分,其在数学以及其他科学
领域中有着广泛的应用。

在学而思培优的研究中,我们将研究三角
函数以及它的一些应用。

三角函数的定义
三角函数包括正弦函数、余弦函数和正切函数。

它们分别被定
义为:
- 正弦函数:sinθ = 对边/斜边
- 余弦函数:cosθ = 邻边/斜边
- 正切函数:tanθ = 对边/邻边
三角函数的图像特性
三角函数的图像特性对于我们研究函数的性质非常重要。

在学
而思培优中,我们将研究正弦函数和余弦函数的图像特性,如周期、最大值、最小值等。

三角函数的应用
三角函数在现实生活中有许多应用,以下是一些常见的应用场景:
- 三角函数在物理学中有广泛的应用,例如描述波动、振动等
现象。

- 三角函数在工程学中用于解决一些几何问题,例如计算角度、测量高度等。

- 三角函数在计算机图形学中被广泛使用,用于绘制各种图形、动画等。

总结
三角函数是数学中的重要概念,它的理解和应用对于我们在学
习和实际生活中都有很大的帮助。

通过学而思培优的学习,我们可
以掌握三角函数的基本概念、图像特性以及一些常见的应用场景。

三角函数培优001

三角函数恒等变换培优1.计算下列各式.(1)求27cos 45sin1827sin 45sin18sin cos ︒︒+︒︒-︒︒的值.(2)已知(),0,αβπ∈,且()11,27tan tan βαα-==-,求2βα-的值2.设函数2()cos 2cos 1f x x x x ωωω=-+的图象关于直线x π=对称,其中常数1,12ω⎛⎫∈ ⎪⎝⎭.(1)求函数()f x 的最小正周期; (2)求函数()f x 在区间30,5π⎡⎤⎢⎥⎣⎦上的取值范围.3.已知函数()4cos cos 23f x x x ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的单调递增区间; (2)求()f x 在区间,43ππ⎡⎤⎢⎥⎣⎦上的值域.4.已知函数 。

(1)求函数 的最小正周期与对称轴; (2)当时,求函数的最值及单增区间. 5.已知02x π-<<, 1sin cos 5x x +=. (1) 求sin cos x x -的值. (2)求2sin 2sin 1tan x xx+-的值6.已知0απ<<,cos α=(1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求sin 21cos 2αα+的值7.已知函数()2cos 2cos f x x x x =+.(1)求函数()f x 图象的相邻两条对称轴的距离;(2)求函数()f x 在区间63ππ⎡⎤-⎢⎥⎣⎦,上的最大值与最小值,以及此时x 的取值.8.已知33,,sin 22πππαπβαβ<<<<==.求(1)αβ-的值; (2)tan 2()αβ-的值9.已知1tan 42πα⎛⎫+=⎪⎝⎭.(Ⅰ)求tan α的值;(Ⅱ)求()()22sin 22sin 21cos 2sin παπαπαα⎛⎫+-- ⎪⎝⎭--+的值.10.已知函数()sin 2cos 263ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭f x x x(1)求()f x 在[0,]π上的零点; (2)求()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的取值范围。

九年级数学锐角三角函数的专项培优练习题含答案

九年级数学锐角三角函数的专项培优练习题含答案一、锐角三角函数1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.2.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.3.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.(1)求证:△MED∽△BCA;(2)求证:△AMD≌△CMD;(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=175S1时,求cos∠ABC的值.【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 .【解析】【分析】(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD;(3)易证MD=2AB ,由(1)可知:△MED ∽△BCA ,所以2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V ,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,由于1EBDS ME S EB =V ,从而可知52ME EB =,设ME=5x ,EB=2x ,从而可求出AB=14x ,BC=72,最后根据锐角三角函数的定义即可求出答案. 【详解】(1)∵MD ∥BC , ∴∠DME=∠CBA , ∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;(2)∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM , ∴∠MCB=∠MBC , ∵∠DMB=∠MBC ,∴∠MCB=∠DMB=∠MBC , ∵∠AMD=180°﹣∠DMB ,∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,MD MD AMD CMD AM CM =⎧⎪∠=∠⎨⎪=⎩, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,由(1)可知:△MED ∽△BCA , ∴2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V ,∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =12S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,∵1EBDS MES EB=V ,∴1125S MEEB S =,∴52ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x ,∵12MD ME AB BC ==, ∴BC=10x ,∴cos ∠ABC=105147BC x AB x ==. 【点睛】本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.4.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =,∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.5.如图以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点F.(1)求证:DF ⊥AC ;(2)若∠ABC=30°,求tan ∠BCO 的值. 【答案】(1)证明见解析; (2) tan ∠3 【解析】试题分析:(1)连接OD ,根据三角形的中位线定理可求出OD ∥AC ,根据切线的性质可证明DE ⊥OD ,进而得证.(2)过O 作OF ⊥BD ,根据等腰三角形的性质及三角函数的定义用OB 表示出OF 、CF 的长,根据三角函数的定义求解. 试题解析:证明:连接OD∵DE为⊙O的切线, ∴OD⊥DE ∵O为AB中点, D为BC的中点∴OD‖AC∴DE⊥AC(2)过O作OF⊥BD,则BF=FD在Rt△BFO中,∠ABC=30°∴OF=12OB, BF=3OB∵BD=DC, BF=FD,∴FC=3BF=33OB在Rt△OFC中,tan∠BCO=13233OBOFFCOB==.点睛:此题主要考查了三角形中位线定理及切线的性质与判定、三角函数的定义等知识点,有一定的综合性,根据已知得出OF=12OB,BF=3OB,FC=3BF=33OB是解题关键.6.如图,MN为一电视塔,AB是坡角为30°的小山坡(电视塔的底部N与山坡的坡脚A在同一水平线上,被一个人工湖隔开),某数学兴趣小组准备测量这座电视塔的高度.在坡脚A处测得塔顶M的仰角为45°;沿着山坡向上行走40m到达C处,此时测得塔顶M的仰角为30°,请求出电视塔MN的高度.(参考数据:2≈1.41,3≈1.73,结果保留整数)【答案】95m【解析】【分析】过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,求AE=3m,在RT△MFC中,设MN=x m,则AN=xm.FC3xm,可得x+33 ( x-20),解方程可得答案..【详解】解:过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,AC=40m,∠CAE=30°∴CE=FN=20m,AE=3设MN=x m,则AN=xm.FC=3xm,在RT△MFC中MF=MN-FN=MN-CE=x-20FC=NE=NA+AE=x+203∵∠MCF=30°∴FC=3MF,即x+203=3 ( x-20)解得:x=403 31=60+203≈95m答:电视塔MN的高度约为95m.【点睛】本题考核知识点:解直角三角形.解题关键点:熟记解直角三角形相关知识,包括含特殊角的直角三角形性质.7.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x 的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)452;(2)详见解析;(3)使得△AA′B′成为等腰三角形的x的值有:0秒、32 秒、95- . 【解析】 【分析】(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′='''''=A B CEA D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤115时和当115<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可. 【详解】解:(1)∵AB =6cm ,AD =8cm , ∴BD =10cm ,根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm , ∵tan ∠B ′D ′A ′='''''=A B CE A D CD ∴682=CE ∴CE =32cm ,∴S ABCE =S ABD ′﹣S CED ′=8634522222⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =32(x +1), ∴S △CD ′E =32x 2+3x +32, ∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当115≤x ≤4时,B ′C =8﹣2x ,CE =43(8﹣2x ) ∴()214y 8223x =⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒;②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AN 2+A ′N 2=36, ∴(6﹣245)2+(2x +185)2=36,解得:x=6695-,x=6695--(舍去);③如图2,当AB′=AA′时,A′N=BM=BB′+B′M=2x+185,A′M=NB=245,∵AB2+BB′2=AN2+A′N2∴36+4x2=(6﹣245)2+(2x+185)2解得:x=32.综上所述,使得△AA′B′成为等腰三角形的x的值有:0秒、32秒、6695-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.8.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF AE=,连接DE,DF,EF. FH平分EFB∠交BD于点H.(1)求证:DE DF⊥;(2)求证:DH DF=:(3)过点H作HM EF⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。

初中数学三角函数最值问题培优专题训练

初中数学三角函数最值问题培优专题训练
介绍
本文档旨在提供初中数学三角函数最值问题的培优专题训练,
帮助学生更好地理解和掌握该知识点。

问题1:求函数的最大值和最小值
给定函数$f(x) = \sin(x) + \cos(x)$,求函数的最大值和最小值。

解决思路:
1. 通过观察函数的周期性,可以发现函数的最大值和最小值都
出现在每个周期的两个关键点上。

2. 计算函数在一个周期内的最大值和最小值。

3. 结合函数的周期性,得出函数在整个定义域上的最大值和最
小值。

问题2:求函数的最大值和最小值
给定函数 $g(x) = \sin^2(x) + \cos^2(x)$,求函数的最大值和最
小值。

解决思路:
1. 利用三角函数的恒等式 $\sin^2(x) + \cos^2(x) = 1$,可以将函数 $g(x)$ 转化为一个常数函数。

2. 结合函数的定义域,得出函数的最大值和最小值。

问题3:求函数的最大值和最小值
给定函数 $h(x) = \sin(x) \cdot \cos(x)$,求函数的最大值和最小值。

解决思路:
1. 通过观察函数的周期性,可以发现函数的最大值和最小值都出现在每个周期的两个关键点上。

2. 计算函数在一个周期内的最大值和最小值。

3. 结合函数的周期性,得出函数在整个定义域上的最大值和最小值。

总结
通过本文档的培优专题训练,学生可以掌握初中数学三角函数最值问题的求解方法。

这些问题涉及了三角函数的周期性和恒等式
的应用,通过解题过程,学生可以提高数学思维能力和问题解决能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数夯实基础
1.已知函数()sin()(0),24fxx+x,为()fx的零点,4x为()yfx图像的对

称轴,且()fx在51836,单调,则的最大值为
(A)11 (B)9 (C)7 (D)5

2.
函数()fx=cos()x的部分图像如图所示,则()fx的单调递减区间为( )

(A)13(,),44kkkZ (B)13(2,2),44kkkZ
(C)13(,),44kkkZ (D)13(2,2),44kkkZ

3.
设函数cxbxxfsin|sin|)(,则()fx的最小正周期( )

A.与b有关,且与c有关 B.与b有关,但与c无关
C.与b无关,且与c无关 D.与b无关,但与c有关
4.
已知函数sinfxx(,,均为正的常数)的最小正周期为,当23x时,

函数fx取得最小值,则下列结论正确的是( )
(A)220fff (B)022fff
(C)202fff (D)202fff

5.
设函数()sin()fxAx(,,A是常数,0,0A).若()fx在区间[,]62上具有单调

性,且2()()()236fff,则()fx的最小正周期为 .

6.
xy2sin与|)1ln(|xy
图象的交点的个数 .

7.
xnxmxf2cos2sin)(
图象过点(,3)12和点2(,2)3.

(Ⅰ)求,mn的值;
(Ⅱ)将()yfx的图象向左平移(0)个单位后得到函数()ygx的图象.若()ygx的
图象上各最高点到点(0,3)的距离的最小值为1,求()ygx的单调增区间.
8.
某同学用“五点法”画函数π()sin()(0,||)2fxAx在某一个周期内的图象时,列表并填

入了部分数据,如下表:
x
0

π

2 π 3π2

x
π
3 5π6

sin()Ax
0 5 5 0

(Ⅰ)请将上表数据补充完整,并直接写出函数()fx的解析式;
(Ⅱ)将()yfx图象上所有点向左平行移动(0)个单位长度,得到()ygx的图象. 若()ygx图

象的一个对称中心为5π(,0)12,求的最小值.

9.
某实验室一天的温度(单位:C)随时间t(单位:h)的变化近似满足函数关系;

)24,0[,12sin12cos310)(ttttf

.

(1)求实验室这一天的最大温差;

(2)若要求实验室温度不高于11C,则在哪段时间实验室需要降温?
三角函数基础答案
1.由题意知:

则,其中
在单调,接下来用排除法
若,此时,在递增,在递减,不满足在
单调若,此时,满足在单调递减.
2.
【解析】由五点作图知,1+4253+42,解得=,=4,所以()cos()4fxx,令

22,4kxkkZ,解得124k<x<324k
,kZ,故单调减区间为(124k,

3
24k
),kZ,故选D.

3.
2

1cos2cos21()sinsinsinsin222xx

fxxbxcbxcbxc
,其中当
0b

时,cos21()22xfxc,此时周期是;当0b时,周期为2,而c不影响周期.故选B.
4
【解析】由题意,sin(0,0,0)fxxA,22||T,所以2,

则sin2fxx,而当23x时,2322,32kkZ,解得

2,6kkZ,所以sin2(0)6fxxA,则当2262xk
,即

,6xkkZ
时,()fx取得最大值.要比较2,2,0fff的大小,只需判断
2,2,0

与最近的最高点处对称轴的距离大小,距离越大,值越小,易知0,2与6比较近,2与56比
较近,所以,当0k时,6x,此时|0|0.526,|2|1.476,当1k时,56x,
此时5|2()|0.66,所以(2)(2)(0)fff,故选A.
5.
试题分析:由)(xf在区间]2,6[上具有单调性,且)6()2(ff知,函数)(xf的对称中心为

)0,3(

,由)32()2(ff知函数)(xf的对称轴为直线127)322(21x,设函数)(xf的最小

正周期为T,所以,6221T,即32T,所以43127T,解得T.
考点:函数)sin()(xAxf的对称性、周期性,容易题.
6.函数xy2sin与|)1ln(|xy图象如图,由图知,两函数图象有2个交点,

7.
试题解析:(1)由题意知:()sin2cos2fxabmxnx.
因为()yfx的图象过点(,3)12和2(,2)3,

所以3sincos66442sincos33mnmn,即1332231222mnmn,
解得3,1mn.
(2)由(1)知:()3sin2cos22sin(2)6fxxxx.
由题意知:()()2sin(22)6gxfxx,设()ygx的图象上符合题意的最高点为0(,2)x,
由题意知:2011x,所以00x,即到点0,3()的距离为1的最高点为0,2().
将其代入()ygx得sin(2)16,因为0,所以6,
因此()2sin(2)2cos22gxxx,由222,kxkkZ,得
,2kxkkZ,所以,函数()ygx的单调递增区间为[,],2kkkZ
.

8.【解析】(Ⅰ)根据表中已知数据,解得π5,2,6A. 数据补全如下表:
x
0

π

2 π 3π2

x
π12 π
3 7π12 5π6 13π12

sin()Ax
0 5 0 5 0

且函数表达式为π()5sin(2)6fxx.
(Ⅱ)由(Ⅰ)知 π()5sin(2)6fxx,得π()5sin(22)6gxx.
因为sinyx的对称中心为(π,0)k,kZ.
令π22π6xk,解得ππ212kx,kZ .
由于函数()ygx的图象关于点5π(,0)12成中心对称,令ππ5π21212k,
解得ππ23k,kZ. 由0可知,当1k时,取得最小值π6.
9.【解析】(1)因为)312sin(210)12sin2112cos23(210)(ttttf,
又240t,所以373123t,1)312sin(1t,
当2t时,1)312sin(t;当14t时,1)312sin(t;
于是)(tf在)24,0[上取得最大值12,取得最小值8.

故在10时至18时实验室需要降温.

相关文档
最新文档