数值计算方法习题答案(第二版)(绪论)

合集下载

数值计算课后习题答案(全)

数值计算课后习题答案(全)

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。

数值分析简明教程课后习题答案(第二版)

数值分析简明教程课后习题答案(第二版)

0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数值计算第一二章答案

数值计算第一二章答案

第一章数值计算中的误差习题一1.1 下列各近似数的绝对误差限是最末位的半个单位,试指出它们各有几位有效数字。

1x =-3。

105 , 2x =0.001, 3x =0。

100, 4x =253。

40, 5x =5000, 6x =5⨯310.答案:4,1,3,6,4,1。

1。

2 设100〉*x >10,x 是*x 的有五位有效数字的的近似数,求x 的绝对误差限。

答案:当10<x 〈100时,因为有5位有效数字,所以绝对误差限为0。

005。

1。

3 求下列各近似数的相对误差限和有效数字位数: 1) 123x x x ++,2) 124x x x 3) 24x x 答案:()10.0005e x ≤()20.0005e x ≤()30.0005e x ≤ ()40.005e x ≤ ()50.5e x ≤ ()60.5e x ≤1)()()()()123123e x x x e x e x e x ++=++≤()()()123e x e x e x ++3221.5100.15100.510---≤⨯=⨯≤⨯2123()0.1510x x x ε-++=⨯123123123()()0.0004993...0.0004994r x x x e x x x x x x ε++++==≤++123x x x ++=-3。

004 精确到小数点后两位,所以有三位有效数字。

2)()()()()()()12424112424114224()e x x x x x e x x e x x x x e x x x e x x e x =+=++ =()()()241142124)x x e x x x e x x x e x ++()()()241142124x x e x x x e x x x e x ≤++ =660.5100.31050.0005 3.1050.510--⨯+⨯+⨯⨯ 所以43124() 1.71275100.510x x x ε--=⨯≤⨯124x x x =43.105100.0003105--⨯=-41241244124() 1.7127510()0.5515...3.10510r x x x e x x x x x x ε--⨯===⨯3)()()2222424244444()()1x x e x x e x e e x e x x x x x x ⎛⎫≈-≤+⎪⎝⎭325105420.5100.5100.197316100.77868100.1997100.510253.40253.40------⨯⨯=+=⨯+⨯≈⨯<⨯ 又由24x x 50.3946310-≈⨯知有0位有效数字 ∴522440.1997100.5r x e x x x -⎛⎫⨯≤≈ ⎪⎝⎭1。

数值分析第二版(丁丽娟)答案

数值分析第二版(丁丽娟)答案

,求差商 (2)
例6 设

Hermite 插值多项式 其误差余项。
,满足
例7已知函数 的取值如下,
x
-1
y
-1
y’
4
,求函数
在区间
上的

。并写出
0
1
3
1
3
31
28
求其三次样条值函数
,并求出
在 -0.5 和2 的近似值。
练习六
38.000
19.5000
18.199999999999999 16.636363636363637
16.578947368421051 16.179487179487179
16.120879120879120 16.038251366120218
16.034920634920635 16.011093502377179
第八章答案
练习: 第一章
答案
练习二 练习三
练习四
1、 什么是幂法?它收敛到矩阵 A 的哪个特征向量? 若 A 的按模最大的特征值是单根,用幂法求此特征 值的收敛速度由什么量来决定?怎样改进幂法的收敛速度?
2、 反幂法收敛到矩阵的哪个特征向量? 在幂法或者反幂法中,为什么每步都要将迭代向量规范化?
第一章答案
第二章答案
第三章答案
0 0.5 0.5 1 1 2.5000
5.0000 5.5000
第四章答案
2 10.5000 19.0000 19.5000
3 42.5000 91.0000 91.5000
4 170.5000 315.0000 315.5000
5 682.5000 1467.0000 1467.5000

数值计算课后习题答案(全)

数值计算课后习题答案(全)

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。

数值分析简明教程第二版课后习题答案(供参考)

数值分析简明教程第二版课后习题答案(供参考)

数值分析简明教程第⼆版课后习题答案(供参考)0.1算法1、(p.11,题1)⽤⼆分法求⽅程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】由⼆分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取⾃然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即⾄少需2、(p.11,题2)证明⽅程210)(-+=x e x f x在区间[0,1]内有唯⼀个实根;使⽤⼆分法求这⼀实根,要求误差不超过21021-?。

【解】由于210)(-+=x e x f x,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-?+=e f ,082110)1(1>+=-?+=e e f ,即0)1()0(⼜010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯⼀实根.由⼆分法的误差估计式211*1021212||-++?=≤=-≤-εk k k a b x x ,得到1002≥k .两端取⾃然对数得6438.63219.322ln 10ln 2=?≈≥k ,因此取7=k ,即⾄少需⼆分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有⼏位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-?=<=-K x e ,所以7.21=x 有两位有效数字;因为12102105.000828.0||-?=<=-K x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-?=<=-K x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数值计算课后习题答案

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x-==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265...=0.314159265 (10)22 3.1428571430.3142857143107==⨯,m=1。

数值计算课后习题答案(全)

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。

现代数值计算方法—肖筱南

现代数值计算方法习题答案习 题 一1、解:根据绝对误差限不超过末位数的半个单位,相对误差限为绝对误差限除以有效数字本身,有效数字的位数根据有效数字的定义来求.因此49×10-2:E = 0.005; r E = 0.0102; 2位有效数字.0.0490 :E = 0.00005;r E = 0.00102; 3位有效数字. 490.00 :E = 0.005; r E = 0.0000102;5位有效数字. 2、解:722= 3.1428 …… , π = 3.1415 …… , 取它们的相同部分3.14,故有3位有效数字.E = 3.1428 - 3.1415 = 0.0013 ;r E =14.3E = 14.30013.0 = 0.00041. 3、解:101的近似值的首位非0数字1α = 1,因此有 |)(*x E r |)1(10121--⨯⨯=n < = 21× 10-4, 解之得n > = 5,所以 n = 5 . 4、证:)()(1)()(1)(*11**11**x x x nx E x n x E n n n-=≈--)(11)()(1)()(*****11****x E nx x x n x x x x nx x E x E r nnnn n r =-=-≈=- 5、解:(1)因为=20 4.4721…… ,又=)(*x E |*x x -| = |47.420-| = 0.0021 < 0.01, 所以 =*x 4.47.(2)20的近似值的首位非0数字1α = 4,因此有 |)(*x E r |)1(10421--⨯⨯=n < = 0.01 , 解之得n > = 3 .所以,=*x 4.47. 6、解:设正方形的边长为x ,则其面积为2x y =,由题设知x 的近似值为*x = 10cm .记*y 为y 的近似值,则)(20)(20)(2)(*****x E x x x x x y E =-=-= < = 0.1,所以)(*x E < = 0.005 cm . 7、解:因为)()(*1x x nx x E n n -≈-,所以n x nE x x x n xx E x E r nn nr 01.0)()()(*==-≈=. 8、解:9、证:)()()(**t gtE t t gt S S S E =-≈-=t t E gt t t gt S S S S E r )(22/)()(2**=-≈-= 由上述两式易知,结论. 10、解:代入求解,经过计算可知第(3)个计算结果最好.11、解:基本原则为:因式分解,分母分子有理化、三角函数恒等变形…… (1)通分;(2)分子有理化;(3)三角函数恒等变形.12、解: 因为20=x ,41.1*0=x ,所以|*00x x -| < = δ=⨯-21021于是有 |*11x x -| = |110110*00+--x x | = 10|*00x x -| < =δ10|*22x x -| = |110110*11+--x x | = 10|*11x x -| < =δ210类推有 |*1010x x -| < =810102110⨯=δ 即计算到10x ,其误差限为δ1010,亦即若在0x 处有误差限为δ,则10x 的误差将扩大1010倍,可见这个计算过程是不稳定的.习 题 二1、 解:只用一种方法.(1)方程组的增广矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----11114423243112 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1010411101110112 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---11041001110112 → 31=x , 12=x , 13=x . (2)方程组的增广矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------017232221413 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--247210250413 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--147200250413 → 21=x , 12=x , 2/13=x . (3)适用于计算机编程计算.2、 解:第一步:计算U 的第一行,L 的第一列,得611=u 212=u 113=u 114-=u3/1/112121==u a l 6/1/113131==u a l6/1/114141-==u a l第二步:计算U 的第二行,L 的第二列,得3/1012212222=-=u l a u 3/213212323=-=u l a u 3/114212424=-=u l a u 5/1/)(2212313232=-=u u l a l10/1/)(2212414242=-=u u l a l第三步:计算U 的第三行,L 的第三列,得10/37233213313333=--=u l u l a u 10/9243214313434-=--=u l u l a u 37/9/)(33234213414343-=--=u u l u l a l第四步:计算U 的第四行,得370/9553443244214414444-=---=u l u l u l a u从而, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----3101141101421126=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--137/910/16/1015/16/10013/10001⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---370/95500010/910/37003/13/23/1001126由b LY = , 解得Y =(6,-3,23/5,-955/370)T . 由Y UX = , 解得X =(1,-1,1,-1)T .3、(1)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断.11a = 3 > 0,2223= 2 > 0, 301022123 = 4 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行:第一步 分解:A = L L T. 由公式计算出矩阵的各元素:311=l 33221=l 3622=l 3331=l 3632-=l 233=l因此, L =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-23633036332003. 第二步 求解方程组LY = b . 解得Y = (335,36,2)T . 第三步 求解方程组L T X = Y . 解得X =(0,2,1)T .(2)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断.11a = 3 > 0,2223= 2 > 0, 1203022323 = 6 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行: 第一步 分解:A = L L T . 由公式计算出矩阵的各元素:311=l 33221=l 3622=l331=l 632-=l 333=l因此, L =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-363036332003 . 第二步 求解方程组LY = b . 解得Y = (335,66-,33)T. 第三步 求解方程组L T X = Y . 解得X = (1,21,31)T . 4、解: 对1=i , 2111==a d ;对2=i , 121-=t , 2121-=l , 252-=d ;对3=i , 131=t , 2732=t ,2131=l , 5732-=l ,5273=d .所以数组A 的形式为: ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=527572102521002A 求解方程组LY = b . 解得Y = (4,7,569)T . 求解方程组DL T X = Y . 解得X = (910,97,923)T .5、解:(1)设A = LU = ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1010000000000010010015432l l l l ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡5432106000000000600006006u u u u u 计算各元素得: 51=u , 512=l , 1952=u , 1953=l , 19653=u , 65194=l , 652114=u , 211655=l , 2116655=u . 求解方程组LY = d . 解得Y = (1,51-,191,651-,211212)T.求解方程组UX = Y . 解得X = (6651509,6651145,665703,665395-,665212)T.(2)设A = LU = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100100132l l ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32101001u u u 计算各元素得:51=u ,512=l ,5242=u ,2453=l ,241153=u . 求解方程组LY = d . 解得Y = (17,553,24115)T.求解方程组UX = Y . 解得X = (3,2,1)T . 6、证:(1)(2)相同.因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛. (1)雅可比迭代公式:7107271)(3)(2)1(1+--=+k k k x x x14141)(3)(1)1(2+--=+k k k x x x329292)(2)(1)1(3+--=+k k k x x x高斯-赛德尔迭代公式:7107271)(3)(2)1(1+--=+k k k x x x14141)(3)1(1)1(2+--=++k k k x x x329292)1(2)1(1)1(3+--=+++k k k x x x(2)雅可比迭代公式:545152)(3)(2)1(1+-=+k k k x x x 525351)(3)(1)1(2++-=+k k k x x x 5115152)(2)(1)1(3++=+k k k x x x 高斯-赛德尔迭代公式:545152)(3)(2)1(1+-=+k k k x x x 525351)(3)1(1)1(2++-=++k k k x x x5115152)1(2)1(1)1(3++=+++k k k x x x 7、(1)证:因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛。

数值分析简明教程(第二版)课后习题答案

0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档 AHA12GAGGAGAGGAFFFFAFAF 数值分析 (p11页) 4 试证:对任给初值x0, 求开方值(0)aa的牛顿迭代公式 112(),0,1,2,......kakkxxxk

恒成立下列关系式: 21

12(1)(),0,1,2,....(2),1,2,......kkkxkxaxakxak



证明: (1)2

2

112222kkkkkkkkxaaxaxaxaxaxxx







(2) 取初值00x,显然有0kx,对任意0k,

aaxaxxaxxkkkkk21212

1

6 证明: 若kx有n位有效数字,则nkx110218,

而kkkkkxxxxx288821821

nnkkxx2122110215.22104185.28



1kx必有2n位有效数字。 精品文档 AHA12GAGGAGAGGAFFFFAFAF 8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x的近似数*x可表示为mnaaax10......021*,如果*x具有l位有效数字,则其相对误差限为11**1021laxxx,其中1a为*x

中第一个非零数)精品文档

AHA12GAGGAGAGGAFFFFAFAF 则7.21x,有两位有效数字,相对误差限为 025.010221111xxe

71.22x,有两位有效数字,相对误差限为 025.010221122xxe

32.718x,有两位有效数字,其相对误差限为: 00025.010221333xex

②第二种方法直接根据相对误差限的定义式求解 对于7.21x,0183.01ex

其相对误差限为00678.07.20183.011

xex

同理对于71.22x,有 003063.071.20083.022xex

对于718.23x,有 00012.0718.20003.033xex

备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较精品文档 AHA12GAGGAGAGGAFFFFAFAF 好的误差限估计,但计算稍复杂。 (2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。

11. 解: ......142857.3722,.......1415929.3113255 21021722

,具有3位有效数字精品文档

AHA12GAGGAGAGGAFFFFAFAF 61021113255

,具有7位有效数字

9.解:有四舍五入法取准确值前几位得到的近似值,必有几位有效数字。 令1x,2x,3x所对应的真实值分别为*1x,*2x,*3x,则 ① ∣1x-*1x∣≤21l110=2

1

210

∣1x-*1x∣/∣1x∣<21210/2.72<0.00184 ② ∣2x-*2x∣≤21l110=2

1

510

∣2x-*2x∣/∣2x∣<21510/2.71828<0.00000184 ③ ∣3x-*3x∣<21l110=2

1

410

∣3x-*3x∣/∣3x∣<21410/0.0718<0.000697

12.解: ⑴ x211-xx11=)1)(21(22xxx

⑵ 1-cosx=xxcos1sin2=22sin2

x

⑶ 1xe≈1+x+!22x+…+!nxn-1=x+!22x+…+!n

xn

13.解:⑴ xx1-xx1=xxx1x1x/2 精品文档 AHA12GAGGAGAGGAFFFFAFAF ⑵ dttxx1211=)1arctan(x-xarctan

设)1arctan(x=a,xarctan=b,则 )tan(ba =babatantan1tantan=)1(11xx

)1arctan(x-xarctan=)1(11arctanxx精品文档

AHA12GAGGAGAGGAFFFFAFAF ⑶ )1ln(2xx=11ln2xx=)1ln(1ln2xx=-)1ln(2xx 习题一(54页) 5.证明: 利用余项表达式(11)(19页),当)(xf为次数≤n的多项式时,由于)(1xfn=0,于是有)(xRn=)(xf-)(xPn=0,即)(xPn=)(xf,表明其n次插值多项式)(xPn

就是它自身。

9.证明: 由第5题知,对于次数≤n的多项式,其n次插值多项式就是其自身。 于是对于)(xf=1,有)(2xP=)(xf

即,)(0xl)(0xf+)(1xl)(1xf+)(2xl)(2xf=)(xf

则,)(0xl+)(1xl+)(2xl=1 11.分析: 由于拉格朗日插值的误差估计式为)(xf-)(xPn

=

)!1)()1(nfn(

nkkxx0)( 精品文档 AHA12GAGGAGAGGAFFFFAFAF 误差主要来源于两部分)!1)()1(nfn(和nkkxx0)(。 对于同一函数讨论其误差,主要与nkkxx0)(有关。 在(1)中计算x=0.472的积分值,若用二次插值,需取三个节点,由于0.472在1,2两个节点之间,所以应选1,2为节点,在剩下的两个点中,0x与0.472更靠近,所以此题应选0x,1x,2x为节点来构造插值多项式。 1202201

01021012

102

2120

()()()()(1)()()()()()()()0.4955529()()xxxxxxxxpxyyxxxxxxxxxxxxyxxxx







15.证明: 由拉格朗日插值余项公式有 ︱)(xf-)(xp︱≤102)(!2)(kkxxf≤21︱))((10xxxx︱10max

xxx

︱)(2xf︱精品文档

AHA12GAGGAGAGGAFFFFAFAF 由于201)(xx=201)(xxxx=))((201xxxx+21)(xx+2

0)(xx

≥))((401xxxx

︱)(xf-)(xp︱≤8)(201xx10maxxxx︱)(2xf︱ 20.证明: 当n=1时,),(10xxF=0101)()(xxxFxF=C·0101)()(xxxfxf=C),(10xxf

假设当n=k时,结论成立,则有 ),...,(0kxxF= C),...,,(10kxxxf; ),...,(11kxxF= C),...,,(121kxxxf; 那么,当n=k+1时, ),...,,(110kxxxF=01011),...,(),...,(xxxxFxxFkkk

=C01011),...,(),...,(xxxxfxxfkkk= C),...,,(110kxxxf

证明完毕。(类似的方式可证明第一个结论)

21.解: 由定理4(26页)可知: ),...,,(10nxxxf=!)()(nfn,其中niixx0]max,[min

当n>k时,)()(xfn=)(nkx=0; 精品文档 AHA12GAGGAGAGGAFFFFAFAF 当n=k时,)()(xfn=)(kkx=!k; ),...,,(10nxxxf=

时当时当knkn,1,0

13.解: 由题意知,给定插值点为

0x=0.32,0y=0.314567;1x=0.34,1y=0.333487;2x=0.36,2y=0.352274 由线性插值公式知线性插值函数为 )(1xP=0101yxxxx+1010yxxxx=314567.002.034.0x+333487.002.032.0

x

相关文档
最新文档