2015年-高考试卷及答案-数学-文科-北京(精校版)解读

合集下载

2015年全国高考文科数学试题及其规范标准答案

2015年全国高考文科数学试题及其规范标准答案

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试(全国卷1)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3. 考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B 中元素的个数为(A )5(B )4(C )3(D )2(2)已知点A (0,1),B (3,2),向量AC u u u r =(-4,-3),则向量BC uuu r=(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) (3)已知复数z 满足(z-1)i=i+1,则z=(A )-2-I (B )-2+I (C )2-I (D )2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A )103 (B )15 (C )110 (D )120(5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y ²=8x 的焦点重合,A ,B 是C 的准线与E 的两个焦点,则|AB|= (A )3 (B )6 (C )9 (D )12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

2015年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (文科)解析版

2015年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (文科)解析版

2015年普通高等学校招生全国统一考试全国新课标 II 卷文 科 数 学一、选择题:本大题共12道小题,每小题5分,共60分.1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =U ( )A .()1,3-B .()1,0-C .()0,2D .()2,3【答案】A考点:集合运算.2. 若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4【答案】D【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D.考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D考点:柱形图4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( )A .1-B .0C .1D .2【答案】C 【解析】试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:向量数量积.5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6D.15【答案】D【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15 ,故选D.考点:三视图7. 已知三点(1,0),(0,3),(2,3)A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.3 B.213 25C.3 4D.3【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A.0B. 2C.4D.14【答案】B 【解析】试题分析:由题意输出的a 是18,14的最大公约数2,故选B. 考点:1. 更相减损术;2.程序框图.9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1C.12 1D.8【答案】C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q ==,选C.考点:等比数列.10. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π256【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数21()ln(1||)1f x x x =+-+,则使得()(21)f x f x >-成立的x 的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭UC .11,33⎛⎫- ⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U【答案】A 【解析】试题分析:由21()ln(1||)1f x x x=+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以 ()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<< .故选A.考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分13. 已知函数()32f x ax x =-的图像过点(-1,4),则a = .【答案】-2 【解析】试题分析:由()32f x ax x =-可得()1242f a a -=-+=⇒=- .考点:函数解析式14. 若x,y满足约束条件50210210x yx yx y+-≤⎧⎪--≥⎨⎪-+≤⎩,则z=2x+y的最大值为.【答案】8考点:线性规划15. 已知双曲线过点()4,3,且渐近线方程为12y x=±,则该双曲线的标准方程为.【答案】2214xy-=考点:双曲线几何性质16. 已知曲线lny x x=+在点()1,1处的切线与曲线()221y ax a x=+++相切,则a= .【答案】8【解析】试题分析:由11yx'=+可得曲线lny x x=+在点()1,1处的切线斜率为2,故切线方程为21y x=-,与()221y ax a x=+++联立得220ax ax++=,显然0a≠,所以由2808a a a∆=-=⇒=.考点:导数的几何意义.三、解答题17(本小题满分12分)△ABC中D是BC上的点,AD平分∠BAC,BD=2DC.(I)求sinsinBC∠∠;(II)若60BAC∠=o,求B∠.【答案】(I )12;30o .考点:解三角形试题解析:(I )由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠ 因为AD 平分∠BAC ,BD =2DC ,所以sin 1.sin 2B DC C BD ∠==∠.(II )因为()180,60,C BAC B BAC ∠=-∠+∠∠=o o所以()31sin sin cos sin .22C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠, 所以3tan ,30.3B B ∠=∠=o考点:解三角形18. (本小题满分12分)某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图(I )在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图(II)根据用户满意度评分,将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大,说明理由.【答案】(I)见试题解析(II)A地区的用户的满意度等级为不满意的概率大.考点:1.频率分布直方图;2.概率估计.19. (本小题满分12分)如图,长方体1111ABCD A B C D -中AB =16,BC =10,18AA =,点E ,F 分别在1111,A B D C 上,11 4.A E D F ==过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(I )在图中画出这个正方形(不必说明画法与理由); (II )求平面α把该长方体分成的两部分体积的比值. 【答案】(I )见试题解析(II )97 或79考点:1.几何体中的截面问题;2.几何体的体积20. (本小题满分12分)已知椭圆()2222:10x y C a b a b +=>> 2,点(2在C 上.(I )求C 的方程; (II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.【答案】(I )2222184x y +=(II )见试题解析考点:直线与椭圆21. (本小题满分12分)已知()()ln 1f x x a x =+-. (I )讨论()f x 的单调性;(II )当()f x 有最大值,且最大值大于22a -时,求a 的取值范围. 【答案】(I )0a ≤,()f x 在()0,+∞是单调递增;0a >,()f x 在10,a ⎛⎫⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减;(II )()0,1. 【解析】考点:导数的应用.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图O 是等腰三角形AB C 内一点,圆O 与△ABC 的底边BC 交于M ,N 两点,与底边上的高交于点G ,且与AB ,AC 分别相切于E ,F 两点.(I )证明EF BC P ; (II )若AG 等于圆O 半径,且23AE MN == ,求四边形EBCF 的面积.【答案】(I )见试题解析;(II 163考点:1.几何证明;2.四边形面积的计算.23. (本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23.C C ρθρθ== (I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.【答案】(I )()330,0,2⎫⎪⎪⎭;(II )4. 【解析】试题分析:(I )把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,22230x y +-=,联立解考点:参数方程、直角坐标及极坐标方程的互化.24. (本小题满分10分)选修4-5:不等式证明选讲 设,,,a b c d 均为正数,且a b c d +=+.证明: (I )若ab cd > ,a b c d +>; (II )a b c d >是a b c d -<-的充要条件. 【答案】【解析】试题分析:(I )由a b c d +=+及ab cd >,可证明22a b c d >,开方即得a b c d >(II )本小题可借助第一问的结论来证明,但要分必要性与充分性来证明. 试题解析: 解:(I )因为222,2,a b a b ab c d c d cd =++=++考点:不等式证明.。

2015年全国高考文科数学试题及答案

2015年全国高考文科数学试题及答案

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试(全国卷1)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3. 考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B 中元素的个数为 (A )5 (B )4 (C )3 (D )2(2)已知点A (0,1),B (3,2),向量AC u u u r =(-4,-3),则向量BC uuu r=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y2=8x 的焦点重合,A,B是C的准线与E的两个焦点,则|AB|=(A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,=(A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A)1(B) 2(C) 4(D) 8(12)设函数y=f(x)的图像关于直线y=-x对称,且f(-2)+f(-4)=1,则a=(A)-1 (B)1 (C)2 (D)4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。

2015年北京市高考数学试卷(文科)学生版

2015年北京市高考数学试卷(文科)学生版

2015 年北京市高考数学试卷(文科)一、选择题(每题 5 分 ,共 40 分)1.(5 分)(2015?北京)若会合 A={ x| ﹣5<x<2} ,B={ x| ﹣3<x<3} ,则 A∩B=()A.{ x| ﹣3<x<2} B.{ x| ﹣5<x<2}C.{ x| ﹣ 3<x<3} D.{ x| ﹣ 5<x<3} 2.(5 分)(2015?北京)圆心为( 1, 1)且过原点的圆的标准方程是()A.( x﹣ 1)2+(y﹣1)2=1B.(x+1)2+( y+1)2=1C.( x+1)2+(y+1)2=2D.(x﹣1)2+(y﹣1)2=23.(5 分)(2015?北京)以下函数中为偶函数的是()A.y=x2sinx B.y=x2cosx C.y=| lnx|﹣x D.y=24.(5 分)(2015?北京)某校老年、中年和青年教师的人数见如表,采纳分层插样的方法检查教师的身体状况,在抽取的样本中,青年教师有320 人,则该样本的老年教师人数为()类型人数老年教师900中年教师1800青年教师1600共计4300 A.90B.100C.180D.3005.(5 分)(2015?北京)履行以下图的程序框图,输出的k 值为()A.3B.4C.5D.6.(分)(北京)设,是非零向量,“=||| | ”是“”的()6 52015?A.充足而不用要条件B.必需而不充足条件C.充足必需条件D.既不充足也不用要条件7.(5 分)(2015?北京)某四棱锥的三视图以下图,该四棱锥最长棱的棱长为()A.1B.C.D.28.(5 分)(2015?北京)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的状况加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年 5月 15日4835600注:“累计里程”指汽车从出厂开始累计行驶的行程,在这段时间内,该车每100千米均匀耗油量为()A.6 升B.8 升C.10 升D.12 升二、填空题9.(5 分)(2015?北京)复数i(1+i)的实部为.10.( 5 分)(2015?北京) 2﹣3,,log25 三个数中最大数的是.11.( 5 分)(2015?北京)在△ABC中, a=3,,∠ A=,则∠ B=.b=12.(5 分)( 2015?北京)已知( 2,0)是双曲线 x2﹣=1(b>0)的一个焦点,则 b=.13.( 5 分)(2015?北京)如图,△ ABC及其内部的点构成的会合记为D,P(x,y)为 D 中随意一点,则z=2x+3y 的最大值为.14.( 5 分)( 2015?北京)高三年级 267 位学生参加期末考试,某班37 位学生的语文成绩,数学成绩与总成绩在整年级的排名状况以下图,甲、乙、丙为该班三位学生.从此次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.三、解答题(共80 分)215.( 13 分)( 2015?北京)已知函数 f (x)=sinx﹣2 sin.( 2)求 f (x)在区间 [ 0,] 上的最小值.16.( 13 分)( 2015?北京)已知等差数列 { a n} 知足 a1+a2=10,a4﹣a3=2(1)求 { a n } 的通项公式;(2)设等比数列 { b n } 知足 b2 =a3, b3=a7,问: b6与数列 { a n} 的第几项相等?17.( 13 分)( 2015?北京)某商场随机选用1000 位顾客,记录了他们购置甲、乙、丙、丁四种商品的状况,整理成以下统计表,此中“√”表示购置,“×”表示未购置.甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)预计顾客同时购置乙和丙的概率;(2)预计顾客在甲、乙、丙、丁中同时购置 3 种商品的概率;(3)假如顾客购置了甲,则该顾客同时购置乙、丙、丁中哪一种商品的可能性最大?18.( 14 分)( 2015?北京)如图,在三棱锥 V﹣ABC中,平面 VAB⊥平面 ABC,△VAB 为等边三角形, AC⊥BC且 AC=BC= ,O, M 分别为 AB,VA 的中点.(1)求证: VB∥平面 MOC;(2)求证:平面 MOC⊥平面 VAB(3)求三棱锥 V﹣ ABC的体积.19.( 13 分)( 2015?北京)设函数 f( x) =﹣klnx,k>0.(1)求 f (x)的单一区间和极值;(2)证明:若 f (x)存在零点,则 f( x)在区间( 1, ] 上仅有一个零点.2220.(14 分)(2015?北京)已知椭圆 C:x +3y =3,过点 D(1,0)且可是点 E( 2,(1)求椭圆 C 的离心率;(2)若 AB 垂直于 x 轴,求直线 BM 的斜率;(3)试判断直线 BM 与直线 DE 的地点关系,并说明原因.。

2015年高考文科数学试题与答案(全国卷Ⅰ)

2015年高考文科数学试题与答案(全国卷Ⅰ)

2015年高考文科数学试题与答案(全国卷Ⅰ)2015年高考文科数学试题与答案(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。

考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答。

若在试卷上作答,答题无效。

3.考试结束后,监考员将试题卷、答题卡一并收回。

一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x=3n-2,n∈N},集合B={6,8,10,12,14},则集合A∩B中元素的个数为A) 5.(B)。

4.(C)。

3.(D) 22.已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=A) (-7,-4)。

(B) (7,4)。

(C) (-1,4)。

(D) (1,4)3.已知复数z满足(z-1)i=1+i,则z=A) -2-i (B) -2+i (C) 2-i (D) 2+i4.如果三个正整数可作为一个直角三角形三条边的边长,则称这三个数为一组勾股数。

从1,2,3,4,5中任取3个不同的数,则这三个数构成勾股数的概率为A) 3/11 (B) 1/5 (C) 1/2 (D) 2/55.已知椭圆E的中心在坐标原点,离心率为1/2,E的右焦点与抛物线C:y=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=A) 3.(B) 6.(C) 9.(D) 126.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有______。

2015年全国高考文科数学试题和答案word精校版(新课标1卷)

2015年全国高考文科数学试题和答案word精校版(新课标1卷)

2015年全国高考文科数学试题和答案word精校版(新课标1卷)2015年普通高等学校招生全国统一考试(新课标1卷)文科一、选择题:每小题5分,共60分1.已知集合 $A=\{x|x=3n+2,n\in N\}$,$B=\{6,8,10,12,14\}$,则集合 $A$ 中的元素个数为()A)5 (B)4 (C)3 (D)22.已知点 $A(0,1)$,$B(3,2)$,向量$\overrightarrow{AC}=(-4,-3)$,则向量$\overrightarrow{BC}$ 为()A)$(-7,-4)$ (B)$(7,4)$ (C)$(-1,4)$ (D)$(1,4)$3.已知复数 $z$ 满足 $(z-1)i=1+i$,则 $z$ 等于()A)$-2-i$ (B)$-2+i$ (C)$2-i$ (D)$2+i$5.已知椭圆 $E$ 的中心为坐标原点,离心率为$\frac{1}{2}$,$E$ 的右焦点与抛物线$C:y=8x$ 的焦点重合,$A,B$ 是 $C$ 的准线与 $E$ 的两个交点,则 $AB$ 的长度为()A)3 (B)6 (C)9 (D)126.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A)14斛(B)22斛(C)36斛(D)66斛7.已知 $\{a_n\}$ 是公差为1的等差数列,$S_n$ 为$\{a_n\}$ 的前 $n$ 项和,若 $S_8=4S_4$,则 $a_{10}$ 等于()A)17 (B)22 (C)10 (D)128.函数 $f(x)=\cos(\omega x+\varphi)$ 的部分图像如图所示,则 $f(x)$ 的单调递减区间为()A)$(k\pi-\frac{13}{4},k\pi+\frac{4}{4}),k\in Z$B)$(2k\pi-\frac{1}{4},2k\pi+\frac{3}{4}),k\in Z$C)$(k-\frac{1}{4},k+\frac{3}{4}),k\in Z$D)$(2k-\frac{1}{4},2k+\frac{3}{4}),k\in Z$9.执行右面的程序框图,如果输入的 $t=0.01$,则输出的$n$ 等于()A)5 (B)6 (C)7 (D)810.已知函数 $f(x)=\begin{cases} 2x-1-2,&x\le 1\\ -\log_2(x+1),&x>1 \end{cases}$,且 $f(a)=-3$,则 $f(6-a)$ 等于()A)$-\frac{7}{4}$ (B)$-\frac{5}{4}$11、圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=()C)412、设函数y=f(x)的图像与y=2x+a的图像关于直线y=-x对称,且f(-2)+f(-4)=1,则a=()A)-113、数列{an}中a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n=6.14.已知函数f(x)=ax+x+1的图像在点(1,f(1))的处的切线过点(2,7),则a=3.15.若x,y满足约束条件{x+y-2≤0.x-2y+1≤0.2x-y+2≥0},则z=3x+y的最大值为5.16.已知F是双曲线C:x-8^2-y^2=1的右焦点,P是C左支上一点,A(0,6),当△APF周长最小时,该三角形的面积为24.17.(本小题满分12分)已知a,b,c分别是△ABC内角A,B,C的对边,sinB=2sinAsinC.I)若a=b,求cosB;II)若B=90,且a=2,求△ABC的面积.18.(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,BE⊥平面ABCD。

2015年北京市高考试题集锦文科数学.

绝密★启用前2015年普通高等学校招生全国考试【北京市试题卷】文科数学本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本市卷和答题卡一并交回。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)若集合A={x|□5<x<2},B={x|□3<x<3},则A□B=A.{x|3<x<2}B.{x|5<x<2}C.{x| 3<x<3}D.{x|5<x<3}(2)圆心为(1,1)且过原点的圆的方程是(A)(x-1)2+(y-1)2=1 (B)(x+1)2+(y+1)2=1(C)(x+1)2+(y+1)2=2 (D)(x-1)2+(y-1)2=2(3)下列函数中为偶函数的是()(A)y=x²sinx (B)y=x²cosx (C)Y=|ln x| (D)y=2x(4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年人数为()(A)90 (B)100 (C)180 (D)300(A)3 (B)4 (C)5 (D)6(6)设a,b是非零向量,“a·b=|a||b|”是“a//b”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为(A)1 (B) (B) (D)2(8)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。

注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为(A)6升(B)8升(C)10升(D)12升第二部分(非选择题共110分)二、填空题(共6小题,每小题5分,共30分)(9)复数i(1+i)的实数为(10)2-3,123,log25三个数中最大数的是(11)在△ABC中,a=3,b=,∠A=,∠B=(12)已知(2,0)是双曲线=1(b>0)的一个焦点,则b=.(13)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x +3y的最大值为(14)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下,甲、乙、丙为该班三位学生。

2015年全国统一高考数学试卷(完整版+答案解析)(新课标ⅱ)

2015年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.(5分)(2015•新课标Ⅱ)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)2.(5分)(2015•新课标Ⅱ)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.43.(5分)(2015•新课标Ⅱ)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)(2015•新课标Ⅱ)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.25.(5分)(2015•新课标Ⅱ)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.(5分)(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)(2015•新课标Ⅱ)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.8.(5分)(2015•新课标Ⅱ)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)(2015•新课标Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.10.(5分)(2015•新课标Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.(5分)(2015•新课标Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.12.(5分)(2015•新课标Ⅱ)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x ﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)二、填空题13.(3分)(2015•新课标Ⅱ)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=.14.(3分)(2015•新课标Ⅱ)若x,y满足约束条件,则z=2x+y的最大值为.15.(3分)(2015•新课标Ⅱ)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.16.(3分)(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.三.解答题17.(2015•新课标Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC (Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.18.(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(12分)(2015•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.(2015•新课标Ⅱ)椭圆C:=1,(a>b>0)的离心率,点(2,)在C 上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.21.(2015•新课标Ⅱ)设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.四、选修4-1:几何证明选讲22.(10分)(2015•新课标Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.五、选修4-4:坐标系与参数方程23.(10分)(2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.六、选修4-5不等式选讲24.(10分)(2015•新课标Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)(2015•新课标Ⅱ)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)(2015•新课标Ⅱ)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.4【分析】根据复数相等的条件进行求解即可.【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.【点评】本题主要考查复数相等的应用,比较基础.3.(5分)(2015•新课标Ⅱ)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)(2015•新课标Ⅱ)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.2【分析】利用向量的加法和数量积的坐标运算解答本题.【解答】解:因为=(1,﹣1),=(﹣1,2)则(2+)=(1,0)•(1,﹣1)=1;故选:C.【点评】本题考查了向量的加法和数量积的坐标运算;属于基础题目.5.(5分)(2015•新课标Ⅱ)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.6.(5分)(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)(2015•新课标Ⅱ)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.【点评】本题主要考查圆性质及△ABC外接圆的性质,了解性质并灵运用是解决本题的关键.8.(5分)(2015•新课标Ⅱ)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点评】本题主要考查了循环结构程序框图,属于基础题.9.(5分)(2015•新课标Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.10.(5分)(2015•新课标Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体=V C﹣AOB===36,故积最大,设球O的半径为R,此时V O﹣ABCR=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.(5分)(2015•新课标Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tan x,AP==,此时f(x)=+tan x,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tan x=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tan x,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.12.(5分)(2015•新课标Ⅱ)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x ﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键.二、填空题13.(3分)(2015•新课标Ⅱ)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=﹣2.【分析】f(x)是图象过点(﹣1,4),从而该点坐标满足函数f(x)解析式,从而将点(﹣1,4)带入函数f(x)解析式即可求出a.【解答】解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.【点评】考查函数图象上的点的坐标和函数解析式的关系,考查学生的计算能力,比较基础.14.(3分)(2015•新课标Ⅱ)若x,y满足约束条件,则z=2x+y的最大值为8.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,2)将A(3,2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.15.(3分)(2015•新课标Ⅱ)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是x2﹣y2=1.【分析】设双曲线方程为y2﹣x2=λ,代入点,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为y2﹣x2=λ,代入点,可得3﹣=λ,∴λ=﹣1,∴双曲线的标准方程是x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.16.(3分)(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y =ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故答案为:8.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,设出切线方程运用两线相切的性质是解题的关键.三.解答题17.(2015•新课标Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC (Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【分析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180°﹣(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.【点评】本题考查了内角平分线的性质,考查了正弦定理的应用,是中档题.18.(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【分析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出∁A表示事件:“A地区用户的满意度等级为不满意”,∁B表示事件:“B地区用户的满意度等级为不满意”,P(∁A),P(∁B),即可判断不满意的情况.【解答】解:(Ⅰ)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记∁A表示事件:“A地区用户的满意度等级为不满意”,∁B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(∁A)=(0.01+0.02+0.03)×10=0.6得P(∁B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【点评】本题考查了频率直方图,频率表达运用,考查了阅读能力,属于中档题.19.(12分)(2015•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.【分析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.【点评】本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.20.(2015•新课标Ⅱ)椭圆C:=1,(a>b>0)的离心率,点(2,)在C 上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.21.(2015•新课标Ⅱ)设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a 的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.四、选修4-1:几何证明选讲22.(10分)(2015•新课标Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;﹣S (2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC计算即可.△AEF【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.五、选修4-4:坐标系与参数方程23.(10分)(2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=x tanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=x tanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.六、选修4-5不等式选讲24.(10分)(2015•新课标Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。

2015北京高考数学文科word版

普通高等学校招生全国考试 数学(文)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本市卷和答题卡一并交回.一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)若集合{}52A x x =-<<,{}33B x x =-<<,则AB =( ).A. {}32x x -<<B. {}52x x -<<C. {}33x x -<<D. {}53x x -<< (2)圆心为()1,1且过原点的圆的方程是( ). (A )()()22111x y -+-= (B )()()22111x y +++=(C )()()22112x y +++= (D )()()22112x y -+-=(3)下列函数中为偶函数的是( ).(A )2sin y x x = (B )2cos y x x = (C )ln y x = (D )2xy -=(4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年人数为( ).(A )90 (B )100 (C )180 (D )300(5)执行如果所示的程序框图,输出的k 值为( ).(A )3 (B )4 (C)5 (D)6(6)设a ,b 是非零向量,“a b =a b ”是“//a b ”的( ). (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( ).(A) 1 (B(C(D) 2(8)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.俯视图侧(左)视图正(主)视图注:“累计里程”指汽车从出厂开始累计行驶的路程 在这段时间内,该车每100千米平均耗油量为( ). A 6升 B.8升 C.10升 D.12升第二部分(非选择题共110分)二、填空题(共6小题,每小题5分,共30分) (9)复数()i 1i +的实部为 .(10)32-, 123,2log 5三个数中最大数的是 . (11)在ABC △中,3a =,b =2π3A ∠=,B ∠= . (12)已知()2,0是双曲线()22210y x b b-=>的一个焦点,则b = .(13)如图,ABC △及其内部的点组成的集合记为D ,(),P x y 为D 中任意一点,则23z x y =+的最大值为 .(14)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 .三、解答题(共6题,共80分,解答应写出文字说明,演算步骤或证明过程) (15)(本小题13分) 已知函数()2sin 2x f x x =- (1)求()f x 的最小正周期; (2)求()f x 在区间2π0,3⎡⎤⎢⎥⎣⎦上的最小值. (16)(本小题13分)已知等差数列{}n a 满足1210a a +=,432a a -=. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足23b a =,37b a =;问:6b 与数列{}n a 的第几项相等?(17)(本小题13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成下(1)估计顾客同时购买乙和丙的概率(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? (18)(本小题14分)如图,在三棱锥E ABC -中,平面EAB ⊥平面ABC ,三角形EAB 为等边三角形,AC BC ⊥,且AC BC ==O ,M 分别为AB ,VA 的中点.(1) 求证:://VB 平面MOC .(2) 求证:平面MOC ⊥平面 VAB 求三棱锥V ABC -的体积.(19)(本小题13分)设函数()2ln,02x f x k k =->. (1)求()f x 的单调区间和极值;(2)证明:若()f x 存在零点,则()f x在区间(上仅有一个零点.(20)(本小题14分)已知椭圆22:33C x y +=,过点()1,0D 且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于两点M . (1)求椭圆C 的离心率;(2)若AB 垂直于x 轴,求直线BM 的斜率;(3)试判断直线BM 与直线DE 的位置关系,并说明理由.本文由洞穿高考数学辅导丛书研发部提供OMCBAV。

2015年全国高考文科数学试题及答案

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试(全国卷1)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2。

第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答。

若在试题卷上作答,答案无效。

3。

考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(—7,—4) (B)(7,4)(C)(-1,4) (D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)—2—I (B)—2+I (C)2—I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?"其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.【答案】-1
【解析】复数 ,其实部为-1.
10.【答案】log25
【解析】 , , ,所以 最大.
11.【答案】
【解析】由正弦定理,得 ,即 ,所以 ,所以 .
12.【答案】
【解析】由题意知 , ,所以 .
13.【答案】7
【解析】由题图可知,目标函数b= ,
因此当x=2,y=1,即在点A出时z取得最大值为7.
A. B. C. D.
4.某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有 人,则该样本的老年人数为().
A. B. C. D.
类别
人数
老年教师
中年教师
青年教师
合计
5.执行如果所示的程序框图,输出的 值为().
A.3 B. 4 C. 5 D. 6
三、解答题
15.【解析】
(1)
故周期为2π
(2)因为 ,所以
所以f(x)的最小值为
16.【解析】
根据 得到 且
于是 所以
(2)
从而
令 得到
17.【解析】
(1)从表格可以得到同时购买乙和丙的人数为200人,由于总人数为1000人,
所以概率为
(2)顾客可能同时购买甲、乙、丙或者同时购买甲、乙、丁或者甲、丙、丁或者乙、丙、丁,从而概率
2015年5月1日
12
35000
2015年5月15日
48
35600
注:“累计里程”指汽车从出厂开始累计行驶的路程
在这段时间内,该车每 千米平均耗油量为( ).
A. 升B. 升C. 升D. 升
二、填空题(共6小题,每小题5分,共30分)
9.复数 的实部为.
10. , , 三个数中最大数的是.
11.在 中, , , , .
4.【答案】C
【解析】:由题意,总体中青年教师与老年教师比例为 ;设样本中老年教师的人数为x,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即 ,解得 .
5.【答案】B
【解析】
初值为a=3,k=0,进入循环体后,
此时,a< ,退出循环,故k=4
6.【答案】A
【解析】 ,由已知得 ,即 , .而当 时, 还可能是 ,此时 ,故“ ”是“ ”的充分而不必要条件.
14.【答案】①乙②按照全年级排名答案为语文靠前,按照班级排名答案为数学靠前
【解析】
①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.
②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学.
6.设 , 是非零向量,“ ”是“ ”的().
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为().
A. B. C. D.
8.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.
加油时间
加油量(升)
加油时的累计里程(千米)
一、选择题
1.【答案】A
【解析】在数轴上将集合A、B表示出来,如图所示,
由交集的定义可得, 为图中阴影部分,即
2.【答案】D
【解析】由题意可得圆的半径为 ,则圆的标准方程为
3.【答案】B
【解析】根据偶函数的定义 ,A选项为奇函数,B选项为偶函数,C选项定义域为 不具有奇偶性,D选项既不是奇函数,也不是偶函数,故选B.
17.(本小题13分)
某超市随机选取 位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成下统计表,其中“√”表示购买,“×”表示未购买.
商品
顾客人数




100

×


217
×

×

200



×
300

×

×
85

×
×
×
98
×Байду номын сангаас

×
×
(1)估计顾客同时购买乙和丙的概率
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率
7.【答案】C
【解析】四棱锥的直观图如图所示:
由三视图可知, 平面ABCD,SA是四棱锥最长的棱, .
8.【答案】B
【解析】因为第一次邮箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量 升.而这段时间内行驶的里程数 千米.所以这段时间内,该车每100千米平均耗油量为 升,故选B.
二、填空题
(2)证明:若 存在零点,则 在区间 上仅有一个零点.
20.(本小题14分)
已知椭圆 ,过点 且不过点 的直线与椭圆 交于 , 两点,直线 与直线 交于两点 .
(1)求椭圆 的离心率;
(2)若 垂直于 轴,求直线 的斜率;
(3)试判断直线 与直线 的位置关系,并说明理由.
2015年普通高等学校招生全国统一考试答案(北京文)
12.已知 是双曲线 的一个焦点,则 .
13.如图, 及其内部的点组成的集合记为 , 为 中任意一点,则 的最大值为.
14.高三年级 位学生参加期末考试,某班 位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.
从这次考试成绩看,
①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;
2015年普通高等学校招生全国统一考试(北京文)
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1.若集合 , ,则 ().
A. B. C. D.
2.圆心为 且过原点的圆的方程是().
A. B.
C. D.
3.下列函数中为偶函数的是().
(3)同时购买乙的人数为200人,同时购买丙的人数为600人,同时购买丁的人数为100人,从而丙的可能性更大。
18.【解析】
(1)因为M,O分别为线段AV和AB的中点,所以MO为△ABV的中位线,从而有MO∥BV
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?
18.(本小题14分)
如图所示,在三棱锥 中,平面 平面 ,三角形 为等边三角形, ,且 , , 分别为 , 的中点.
(1)求证: 平面 .
(2)求证:平面 平面 .
(3)求三棱锥 的体积.
19.(本小题13分)
设函数 .
(1)求 的单调区间和极值;
②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.
三、解答题(共6题,共80分,解答应写出文字说明,演算步骤或证明过程)
15.(本小题13分)
已知函数
(1)求 的最小正周期;
(2)求 在区间 上的最小值.
16.(本小题13分)
已知等差数列 满足 , .
(1)求 的通项公式;
(2)设等比数列 满足 , ;问: 与数列 的第几项相等?
相关文档
最新文档