第一章 气体基础知识
煤气安全基础知识

煤气安全基础知识2012年7月第一章煤气种类及特性第一节煤气的种类工业上所讲的煤气,是指含有H2、CH4和CO等多种可燃气体成份的混合气体。
我国煤气种类是按其形成原因进行分类的,包括天然气、人工煤气、液化石油气三种。
天然气的主要成份是甲烷(CH4),按其含量的不同,天然气又分为气油气(纯天然气)、油田伴生气和煤矿矿井气三种。
人工煤气主要成份是一氧化碳(CO),按照制气原料和方法的不同,又分为三种:1、固体燃料干馏煤气,如焦炉煤气;2、固体燃料气化煤气,如水煤气;3、油制气。
液化石油气是开采和特制石油过程中的副产品,主要组成成份有丙烷、丙烯、正异丁烷、正异丁烯。
工业煤气主要指的是人工煤气,如高炉煤气、焦炉煤气、转炉煤气,发生炉煤气、铁合金炉煤气。
第二节煤气的性质一、煤气成份二、煤气的理化性质高炉煤气特点表现在以下三方面:1、含有CO等可燃物质,有剧毒却无色无味,比重接近空气比重;2、热值较低、燃烧温度也低,爆炸下限较高;3、煤气中含有大量水份(一般为50 - 80g/m3),水份能降低煤气热值,在流速较快的情况下进入燃烧室还可引发爆炸事故。
焦炉煤气特点表现在以下三方面:1、含CO有毒,还含有氨和苯等有毒气体,但有焦油味,比重较轻;2、易燃易爆,爆炸下限极低,一旦泄漏与空气中的O2混合极易形成爆炸性混合气体;3、热值高,由于煤气中H2、CH4和CmHn的含量之和高达80.2% - 88.6%,因此有很高的热值。
转炉煤气特点表现在以下三方面:1、CO含量较高,剧毒;2、无色无味;3、比重略重于空气比重,泄漏后不易上升扩散而附着在地表。
第三节煤气的危害一、中毒煤气中的CO成份,是造成人身煤气中毒的根本性成份。
基本概念是:煤气中毒=一氧化碳中毒CO气体对人体的危害属于血液窒息性气体,少量的CO气体存在被人体吸入,便可对人体各组织器官造成损害,而煤气中的CO含量都比较高,大大超出了人体的所能承受的极限。
二、着火和爆炸煤气是由一些单一气体混合而成,分为可燃气体、不可燃气体和助燃气体三部分。
半导体厂GAS系统基础知识解读

GAS系统基础知识概述HOOK-UP专业认知一、厂务系统HOOK UP定义HOOK UP 乃是藉由连接以传输UTILITIES使机台达到预期的功能。
HOOK UP是将厂务提供的UTILITIES ( 如水,电,气,化学品等),经由预留之UTILITIES连接点( PORT OR STICK),藉由管路及电缆线连接至机台及其附属设备( SUBUNITS)。
机台使用这些UTILITIES,达成其所被付予的制程需求并将机台使用后,所产生之可回收水或废弃物( 如废水,废气等),经由管路连接至系统预留接点,再传送到厂务回收系统或废水废气处理系统。
HOOK UP 项目主要包括∶CAD,MOVE IN ,CORE DRILL,SEISMIC ,VACUU,GAS,CHEMICAL,D.I ,PCW,CW,EXHAUST,ELECTRIC, DRAIN.二、GAS HOOK-UP专业知识的基本认识在半导体厂,所谓气体管路的Hook-up(配管衔接)以Buck Gas (一般性气体如CDA、GN2、PN2、PO2、PHE、PAR、H2等)而言,自供气源之气体存贮槽出口点经主管线(Main Piping)至次主管线(Sub-Main Piping)之Take Off点称为一次配(SP1Hook-up),自Take Off出口点至机台(Tool)或设备(Equipment)的入口点,谓之二次配(SP2 Hook-up)。
以Specialty Gas(特殊性气体如:腐蚀性、毒性、易燃性、加热气体等之气体)而言其供气源为气柜(Gas Cabinet)。
自G/C出口点至VMB(Valve Mainfold Box.多功能阀箱)或VMP(Valve Mainfold Panel多功能阀盘)之一次测(Primary)入口点,称为一次配(SP1 Hook-up),由VMB或VMP Stick之二次侧(Secondary)出口点至机台入口点谓之二次配(SP2 Hook-up)。
制冷基本知识1

第一章制冷与空调作业安全技术第一节基础知识一、基本概念1.物态(物质状态)与物态变化具有一定质量及占有空间的任何物体称为物质。
自然界一切物质都是由分子组成的,分子间存在着相互作用力,同时分子又处在永不停息的无规则运动中,这种运动称之为热运动。
由于分子间的作用力及其热运动等原因,使物质在常态(物态)下呈现固态、液态和气(汽)态,称物质“三态”。
固态时,分子间的相互引力最大,固体中的分子紧密地排列在一起,热运动仅在平衡位置的附近作微小的振动,不能作相对移动。
因此固态时的物质有一定的体积和形状,并具有一定的机械强度。
液态时,分子间的引力仍较大,使分子之间仍能保持一定的距离。
因此液态物质有固定体积,并有自由液面。
此外,液态物质的分子不仅在平衡位置附近振动,还可以相对移动,所以它具有流动性而无固定的形状。
气态时,分子间距大,引力很小,分子间不能相互约束。
因此,它没有一定的形状和一定的体积,可以充满任何的空间。
在热运动中可相互碰撞发生旋转运动。
同种物质在不同条件下,由于分子间作用力和分子热运动的结果也会以不同的状态存在。
当物质在吸热或放热时,除了温度变化以外,还有状态的变化(称相变),即固态、液态、气态之间的相互转化,气体变成液体的过程称为液化(或冷凝);液体变成固体的过程称为凝固;固体变成液体的过程称为融化(熔化);液体变成气体的过程称为气化;固体直接变化成气体的过程称为升华;反之称为固化(或凝华)。
人们利用物质相变过程向周围介质吸热,转移潜热,使周围介质降温进行制冷,如从液体变成气(汽)体、固体变成液体、固体直接变成气(汽)体所转移的相变潜热获取低温。
相变转移的热量是潜热,非相变转移的热量是显热(如水在1大气压下,从±o℃加热到100℃,它也是吸热过程,但没有相变,水还是水,这种吸收周围介质的热量叫显热,计算出的显热量是很少的)。
潜热转移量(如蒸发量)才有制冷量,显热转移量几乎没有制冷量,即人们是采用相变制冷。
第一章燃烧基础知识

第一篇消防基础知识——第一章燃烧基础知识第一篇消防基础知识——引言本篇消防基础知识部分全篇共分为四章十五节。
其中,燃烧基础知识一章主要包括燃烧条件,燃烧类型及其特点,燃烧产物等内容;火灾基础知识一章主要涉及火灾的定义、分类与危害,火灾发生的常见原因,建筑火灾蔓延的机理与途径,灭火的基本原理与方法等内容;爆炸基础知识一章中主要介绍了爆炸的概念及分类,爆炸极限,爆炸危险源等内容;易燃易爆危险品消防安全知识一章主要介绍了爆炸品,易燃气体,易燃液体,易燃固体、易于自燃的物质、遇水放出易燃气体的物质,氧化性物质和有机过氧化物等内容。
第一章燃烧基础知识学习要求了解燃烧的概念及燃烧的必要条件和充分条件。
熟悉气体、液体、固体燃烧的特点。
掌握燃烧产物的概念和典型物质的燃烧产物。
燃烧基础知识主要包括燃烧条件、燃烧类型及其特点,以及燃烧产物等相关内容,是关于火灾机理与燃烧过程等最基础、最本质的知识。
第一节燃烧条件知识点:燃烧条件燃烧是指可燃物与氧化剂(加火源条件就产生了)作用发生的放热反应,通常伴有火焰、发光和(或)发烟现象。
燃烧过程中,燃烧区的温度较高,使其中白炽的固体粒子和某些不稳定(或受激发)的中间物质分子内电子发生能级跃迁,从而发出各种波长的光。
发光的气相燃烧区就是火焰,它是燃烧过程中最明显的标志。
由于燃烧不完全等原因,会使产物中产生一些小颗粒,这样就形成了烟。
燃烧的发生和发展,必须具备三个必要条件:可燃物助燃物(氧化剂)引火源(温度)燃烧发生时三个条件必须同时具备,如果有一个条件不具备,那么燃烧就不会发生。
一、可燃物可燃物——与空气中的氧或其他氧化剂起化学反应的物质,如木材、氢气、汽油、煤炭、纸张、硫等。
按其所处的状态——可燃固体&可燃液体&可燃气体。
二、助燃物(氧化剂)助燃物——与可燃物结合能导致和支持燃烧的物质,如广泛存在于空气中的氧气。
普通意义上,可燃物的燃烧均指在空气中进行的燃烧。
在一定条件下,各种不同的可燃物发生燃烧,均有本身固定的最低氧含量要求,氧含量过低,即使其他必要条件已经具备,燃烧仍不会发生。
高中化学必修一第一章笔记

高中化学必修一第一章笔记一、引言高中化学必修一第一章主要介绍了化学的基本概念、物质分类、化学反应和化学量等基础知识。
本章内容是高中化学学习的入门和基础,为后续课程的学习奠定了重要基础。
二、知识点总结1. 化学基本概念化学基本概念包括物质的组成、分类、化学反应的基本形式、化学方程式的书写等。
本章介绍了这些概念的基本含义和相互关系,为后续化学学习提供了基础。
2. 物质分类物质分类是化学学习中必不可少的一部分,本章介绍了常见的物质分类方法,如无机物、有机物、酸、碱、盐等。
同时,也介绍了物质的性质和用途,为后续学习提供了基础。
3. 化学反应化学反应是化学学习的核心,本章介绍了化学反应的基本类型、氧化还原反应、酸碱中和反应等。
同时,也强调了化学反应的条件和影响因素,为后续学习提供了基础。
4. 化学量化学量是化学学习中必不可少的一部分,包括物质的量、质量、气体摩尔体积、物质的量浓度等。
本章介绍了这些基本概念和单位,为后续学习和应用提供了基础。
三、重点难点分析1. 难点解析氧化还原反应是高中化学学习的难点之一,本章介绍了氧化还原反应的基本概念和规律,并分析了氧化还原反应对化学反应的影响。
需要学生理解和掌握氧化还原反应的本质,才能更好地应用在后续学习中。
2. 重点注意事项物质的量是高中化学学习的重点之一,本章介绍了物质的量的基本概念和单位,并强调了物质的量在化学计算中的应用。
需要注意物质的量的单位与其他物理量的单位之间的换算关系,以及如何利用物质的量进行化学计算。
四、例题及解题方法1. 基础概念题请写出下列物质的化学式:(1)氧气________; (2)二氧化碳________; (3)氯化钠________。
解答:氧气为O2;二氧化碳为CO2;氯化钠为NaCl。
这些基本概念的考查有助于学生巩固和理解化学基本概念。
2. 氧化还原反应题(1)解释下列化学方程式中“+”号前后的物质分别代表什么:CuO+H2Cu+H2O;该反应属于________反应类型。
八年级化学第一章知识点

八年级化学第一章知识点八年级化学第一章知识点
一、物质的认识
1.物质的种类和状态
2.物质的性质
3.物质的组成
二、物质的分离和纯化
1.物质的分离
2.纯净物质的制备
三、化学式和化合价
1.化学式的含义
2.离子式和分子式
3.化合价的概念
四、原子结构和元素周期律
1.原子结构
2.元素周期表
五、化学反应与化学方程式
1.化学反应和化学方程式
2.化学方程式的计算方法
六、溶解
1.溶解的概念
2.浓度的概念
七、气体
1.气体的性质
2.气体的组成
3.气体的压力
以上便是八年级化学第一章知识点的全部内容。
在化学学习的过程中,这些知识点是我们必须掌握的基础知识。
只有对这些内容有清晰的认识,才能更深入地了解化学学科的其他内容。
硫化氢的基础知识

第一章硫化氢特性及中毒机理硫化氢属有毒有害物质,一旦发生含硫天然气泄漏,由于采取措施不当,将会发生不可预料的群死群伤、中毒、职业病等事故。
为了使操作员工对硫化氢有清楚的认识,现将硫化氢的特性及中毒机理概述如下:1、硫化氢(H2S)⑴、H2S物理性质H2S为无色、有强烈臭鸡蛋味的可燃有毒气体,可溶于水、乙醇、汽油、煤油、原油,比空气略重,自燃点246℃,爆炸极限:4.3%—46%。
在0℃常压情况下每立方米重 1.521公斤,在常温、常压下为气态,在18℃、1.68Mpa的压力情况下为液态,经过燃烧生成SO2有毒气体,危害人体、腐蚀金属,在输气的过程中与管壁接触生成FeS,H2S极易溶于水,在常压和20℃情况下,每立方米水中可溶解 2.582m3的H2S气体。
H2S 沸点为-61.8℃,硫化氢燃烧时呈蓝色火焰并产生二氧化硫,硫化氢与空气混合达爆炸范围可引起强烈爆炸。
⑵、H2S侵入人体的途径H2S主要是从人的呼吸道进入人体,人们在含有H2S气体的工作场所工作时,在呼吸过程中,一部分随着呼出的气体呼出体外,有一小部分存在体内氧化生成硫酸盐,随着小便排出,体内无蓄积作用。
空气中最大允许浓度为10mg/m3。
⑶、硫化氢中毒机理H2S是一种强烈的神经毒物,对粘膜有一定的刺激作用,易引起角膜炎,与人体细胞色素氧化酶中的铁作用,引起组织缺氧而造成呼吸困难,大量吸入会引起肺水肿,H2S中毒的表现随着接触的浓度、时间不同而分为:①轻度中毒:眼红和结膜肿胀、畏光流泪、胸部紧迫、咳嗽等。
空气中H2S浓度达到20mg/ m3时就可引起轻度中毒,恢复较快,无后遗症。
②中度中毒:结膜刺激、流泪、恶心、呕吐、腰痛、呼吸困难、头痛、轻度肺炎或肺水肿,支气管炎、乏力、失调。
空气中H2S浓度达到700mg/ m3时即可引起中度中毒。
③重度中毒:先是头痛、心悸、呼吸困难、行动迟缓、意识模糊,抽筋、昏迷、因心脏瘫痪或呼吸停止而死亡。
空气中H2S浓度达到1000mg/ m3时即可立即引起重度中毒,就向电击一样死亡。
航空活塞动力装置

航空活塞动力装置(考试知识点)绪论发动机是一种将某种能量转换成机械功的动力装置。
热力发动机是将燃料的热能转换成机械功的动力装置。
航空发动机分为两大类型:航空活塞发动机和航空喷气发动机。
航空活塞发动机具有低速经济性好,工作稳定性好的优点;但也存在着重量功率比大,高空性能速度性能差的缺点。
喷气发动机具有重量轻,推力大,高空性能、速度性能好的优点;但也存在着经济性较差的缺点。
航空活塞发动机应满足下列基本性能要求:1. 发动机重量功率比小2. 发动机燃油消耗率低3. 发动机尺寸要小4. 发动机可靠性要好5. 发动机的使用寿命要长6. 发动机要便于维护第一章 航空动力装置的基础知识第一节 气体、气流的基础知识分子本身只有质量而不占有体积,分子间不存在吸引的气体叫理想气体。
气体的比容的定义是:单位质量的气体所占有的容积,以符号ν表示。
m V =ν 华氏温度与摄氏温度的换算关系为)32(95,3259F -=+=F t t热力学温度与摄氏温度的换算关系为:T=t+273按一定的过程将气流阻滞到速度为零时的气流的参数叫做滞止参数。
对于亚音速气流(M<1),当流过收敛型管道时,随着截面积A 的减小,流速C 升高,同时伴随压力、温度降低;当流过扩散型管道时,截面积A 增大,流速C 减小,同时伴随压力、温度升高。
对于亚音速气流(M>1),当流过收敛型管道时,随着截面积A 的减小,流速C 也减小,同时伴随压力、温度升高;当流过扩散型管道时,截面积A 增大,流速C 升高,同时伴随压力、温度降低。
第二节 燃烧的基础知识航空发动机目前都采用航空汽油和航空煤油作为燃料,用空气作为氧化剂。
余气系数就是混合气中实际空气量与理论空气量的比值,用α表示,即理实L L =α 油气比是混合气中燃料的质量与空气质量的比值,用C 表示,即:空气燃油m m =C1kg燃料完全燃烧后,将燃烧产物冷却到起始温度,所放出的热量,叫做燃料的热值,单位为千焦耳/千克燃料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章气体基础知识第一节基本概念
一、分子原子与元素
1、分子:是物质保持其化学性质的最小微粒。
2、原子:是组成分子的更小微粒,它不保持原物质的性质。
3、元素:性质相同的一类原子称元素。
二、压强
(一)气体压强
1、气体的压强:大量气体分子作用在器壁单位面积上的平均作用力。
2、气体的压强跟温度有关,温度升高压强增大
3、气体的压强跟压缩程度有关,一定量的气体,体积减少,压强增大。
(二)压力的法定计量单位
1、兆帕(MPa); 千帕(kPa); 帕(Pa)
2、千克力/厘米2(kgf/cm2)
3、巴和毫巴符号为 bar 和 mbar
(三)常见压力单位换算
1兆帕(MPa)=10千克力/厘米2(kgf/cm2)= 10bar
三、温度
1、温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。
2、目前国际上用得较多的温标有华氏温标(°F)、摄氏温标(°C)、热力学温标(K)
3、我国使用摄氏度,其结冰点是0°C,沸点为100°C。
玻璃外壳
毛细管
玻璃泡
刻度
温度计
观察实验室温度计,回答下列问题:1、构造:2、原理:根据液体的热胀冷缩的性质3、温度计的字母C 或℃表示的意思是:
它表示的是摄氏温度
0℃
把冰水混合物的温度规定为0℃
冰水混合物
摄氏温度摄氏温度是温度单位的一种
规定方法在摄氏温度中
0℃
100℃
把一标准大气压下,沸水的温度规定为100℃
沸腾的水
摄氏温度
在摄氏温度中
10
20
40
30
50
60
70
80
9050
100
等分100份1份为1摄氏度
记作1℃
100
-1 ℃
101 ℃
摄氏度即为在摄温度中温度的单位,符号:℃
摄氏度
实验室用温度计
家庭用寒暑表
医用体温计
几种常见的温度计
4、华氏度结冰点是32°F,沸点为212°F 。
5、绝对零度:当达到这一温度时所有的原子和分子热运动都将停止。
是温度的最低极
限,相当于-273.15℃,
四、质量与体积
1、质量(m):物体含有物质的多少叫质量。
质量不随物体形状、状态、空间位置和温度的改变而改变,质量的单位是吨、千克 kg
2、体积(V):是指物质或物体所占空间的大小;占据一特定容积的物质的量,体积的单位是m3, dm3(立方米,升)
3、密度:单位体积的质量叫做这种物质的密度,单位是ρ
ρ= m/ V
第二节物质的状态
一、物质状态的变化状态:
1、物质状态气态、液态和固态;
2、物质从一种状态变为另一种状态,叫做物态变化
3、熔化、凝固、气化、液化、升华、凝华。
(1)气化:将液态物质转化为有气体物质生成的过程
(2)液化:物质由气态转变为液态的过程或物质由固态转变为液态的过程
(3)凝固:物质由液态转变为固体的过程
(4)升华:固态物质不经过液态阶段直接变为气体
(5)熔化:是物质从固态变成液态的过程。
(6)凝华:物质从气态不经过液态而直接变成固态的现象
二、相平衡:当一个多相系统中各相的性质和数量均不随时间变化时,称此系统处于相平衡。
1、从宏观上看,没有物质由一相向另一相的净迁移,
2、从微观上看,不同相间分子转移并未停止,只是两个方向的迁移速率相同而已。
三、临界状态
1、物质的气态和液态平衡共存时的一个边缘状态。
2、在此状态时,气液之间的分界面消失,处于临界状态的温度、压力和密度,分别称为
临界温度、临界压力和临界密度。
可用临界点表示。
3、临界温度:物质处于临界状态时的温度,物质以液态形式出现的最高温度。
温度不超过某一数值,对气体进行加压,可以使气体液化,而在该温度以上,无论加多大压力都不能使气体液化,这个温度叫该气体的临界温度。
4、临界压力:在临界温度下,使气体液化所必须的最小压力叫临界压力。
5、通常把在临界温度以上的气态物质叫做气体,把在临界温度以下的气态物质叫做汽。
四、气体的基本定律
1、玻—马定律:一定质量的某种气体,在温度不变的情况下,压强P与体积V成反比.
玻意耳定律的公式 PV=常量或者P1V1=P2V2
2、查理定律:一定质量的气体在体积不变的情况下,其压强与热力学温度成正比。
3、吕萨克定律:压强不变时,一定质量气体的体积跟热力学温度成正比
4.理想气体 :
(1)严格遵玻—马定律、查理定律和盖,吕萨克定律的气体,称为理想气体。
(2),分子本身的体积和分子间的作用力都可以忽略不计的气体,称为是理想气体,一般气体均可视为理想气体。
5、等温变化:一定量的气体,在温度不变时其压强随体积的变化叫做等温变化.。