栈和队列区别及应用场景

合集下载

数据结构-栈与队列

数据结构-栈与队列

栈 1.6栈的应用
运算符的优先级关系表在运算过程中非常重要,它是判定进栈、出栈的重要依据。
θ1
θ2
+
-
+
>
>
-
>
>
*
>
>
/
>
>
(
<
<
)
>
>
#
<
<
*
/
(
)
#
<
<
<
>
>
<
<
<
>
>
>
>
<
>
>
>
>
<
>
>
<
<
<
=
>
>
>
>
<
<
<
=

1.6栈的应用
下面以分析表达式 4+2*3-12/(7-5)为例来说明求解过程,从而总结出表达式求值的算 法。求解中设置两个栈:操作数栈和运算符栈。从左至右扫描表达式:# 4+2*3-12/(7-5) #, 最左边是开始符,最右边是结束符。表达式求值的过程如下表所示:
1.4栈的顺序存储结构
设计进栈算法——Push 函数。首先,判断栈是否已满,如果栈已满,就运用 realloc 函 数重新开辟更大的栈空间。如果 realloc 函数返回值为空,提示溢出,则更新栈的地址以及栈 的当前空间大小。最终,新元素入栈,栈顶标识 top 加 1。

数据结构--栈和队列基础知识

数据结构--栈和队列基础知识

数据结构--栈和队列基础知识⼀概述栈和队列,严格意义上来说,也属于线性表,因为它们也都⽤于存储逻辑关系为 "⼀对⼀" 的数据,但由于它们⽐较特殊,因此将其单独作为⼀篇⽂章,做重点讲解。

既然栈和队列都属于线性表,根据线性表分为顺序表和链表的特点,栈也可分为顺序栈和链表,队列也分为顺序队列和链队列,这些内容都会在本章做详细讲解。

使⽤栈结构存储数据,讲究“先进后出”,即最先进栈的数据,最后出栈;使⽤队列存储数据,讲究 "先进先出",即最先进队列的数据,也最先出队列。

⼆栈2.1 栈的基本概念同顺序表和链表⼀样,栈也是⽤来存储逻辑关系为 "⼀对⼀" 数据的线性存储结构,如下图所⽰。

从上图我们看到,栈存储结构与之前所了解的线性存储结构有所差异,这缘于栈对数据 "存" 和 "取" 的过程有特殊的要求:1. 栈只能从表的⼀端存取数据,另⼀端是封闭的;2. 在栈中,⽆论是存数据还是取数据,都必须遵循"先进后出"的原则,即最先进栈的元素最后出栈。

拿图 1 的栈来说,从图中数据的存储状态可判断出,元素 1 是最先进的栈。

因此,当需要从栈中取出元素 1 时,根据"先进后出"的原则,需提前将元素 3 和元素 2 从栈中取出,然后才能成功取出元素 1。

因此,我们可以给栈下⼀个定义,即栈是⼀种只能从表的⼀端存取数据且遵循 "先进后出" 原则的线性存储结构。

通常,栈的开⼝端被称为栈顶;相应地,封⼝端被称为栈底。

因此,栈顶元素指的就是距离栈顶最近的元素,拿下图中的栈顶元素为元素 4;同理,栈底元素指的是位于栈最底部的元素,下中的栈底元素为元素 1。

2.2 进栈和出栈基于栈结构的特点,在实际应⽤中,通常只会对栈执⾏以下两种操作:向栈中添加元素,此过程被称为"进栈"(⼊栈或压栈);从栈中提取出指定元素,此过程被称为"出栈"(或弹栈);2.3 栈的具体实现栈是⼀种 "特殊" 的线性存储结构,因此栈的具体实现有以下两种⽅式:1. 顺序栈:采⽤顺序存储结构可以模拟栈存储数据的特点,从⽽实现栈存储结构。

第三章 栈

第三章 栈

S
∧ base
进栈算法
int lpush(Lstack s, int e)
{
S
e P
p=(Lstack)malloc(sizeof(lnode));
p->data=e; p->next=s; s=p; return (1); }
S
∧ base
2.3.1.3 栈的应用
(1) 过程的嵌套
主 程 序 r 子 程 序 1 s r 子 程 序 2
S
∧ base
进栈算法
int lpush(Lstack s, int e)
{
P p=(Lstack)malloc(sizeof(lnode));
p->data=e; S
p->next=s;
s=p; return (1); }
∧ base
进栈算法
int lpush(Lstack s, int e)
4 3 2
栈s
top a4 a3 a2 a1
else { - -top;
*py=s[top]; /*返回出栈元素*/
1
0
*ptop=top;
return(1);}}
(2)链栈
用指针来实现的栈叫链栈。栈的容量事先不能 估计时采用这种存储结构。 链栈的类型说明如下:
Typedef struct lnode
(c) 7,5,9,3 (d) 9,5,7,3
A[T]是栈顶元素
P76#15 用一维数组设计栈,初态是栈空, top=0。现有输入序列是 a、b、c、d,经过 push 、push、pop、push、pop、push操作后,输出 序列是( b、c ),栈顶指针是( 2 )

《数据结构(C语言)》第3章 栈和队列

《数据结构(C语言)》第3章 栈和队列
Data structures

❖ 栈的顺序存储与操作 ❖ 1.顺序栈的定义
(1) 栈的静态分配顺序存储结构描述 ② top为整数且指向栈顶元素 当top为整数且指向栈顶元素时,栈空、入栈、栈满 及出栈的情况如图3.2所示。初始化条件为 S.top=-1。
(a) 栈空S.top==-1 (b) 元素入栈S.stack[++S.top]=e (c) 栈满S.top>=StackSize-1 (d) 元素出栈e=S.stack[S.top--]
/*栈顶指针,可以指向栈顶
元素的下一个位置或者指向栈顶元素*/
int StackSize; /*当前分配的栈可使用的以 元素为单位的最大存储容量*/
}SqStack;
/*顺序栈*/
Data structures

❖ 栈的顺序存储与操作 ❖ 1.顺序栈的定义
(2) 栈的动态分配顺序存储结构描述 ① top为指针且指向栈顶元素的下一个位置 当top为指针且指向栈顶元素的下一个位置时,栈空 、入栈、栈满及出栈的情况如图3.3所示。初始化条 件为S.top=S.base。
…,n-1,n≥0} 数据关系:R={< ai-1,ai>| ai-1,ai∈D,i=1,2
,…,n-1 } 约定an-1端为栈顶,a0端为栈底 基本操作:
(1) 初始化操作:InitStack(&S) 需要条件:栈S没有被创建过 操作结果:构建一个空的栈S (2) 销毁栈:DestroyStack(&S) 需要条件:栈S已经被创建 操作结果:清空栈S的所有值,释放栈S占用的内存空间
return 1;
}
Data structures

第三章栈和队列

第三章栈和队列
西南交通大学信息科学与技术学院软件工程系‐赵宏宇
续8
//循环队列实现方案二 在SqQueue结构体中增设计数变量c,记录队列中当前 元素个数 void clearQueue(SqQueue &q) { q.r=q.f=-1; q.c=0; //r=f=-1~n-1区间任意整数均可 } int empty(SqQueue &q) { return q.c==0; } int full(SqQueue &q) { return q.c==q.n; } //队空、队满时q.f==q.r均为真 //优点:队满时没有空闲元素位置(充分利用了空间)
西南交通大学信息科学与技术学院软件工程系‐赵宏宇 数据结构A 第3章‐19
西南交通大学信息科学与技术学院软件工程系‐赵宏宇
数据结构A 第3章‐20
3.3 栈的应用
续1
3.3 栈的应用
续2
2. 栈与递归 (1) 递归程序的存储空间消耗 由于函数调用的指令返回地址、形式参数以及断 点状态均用系统堆栈实现存储,因此递归调用的层次 数(深度)决定了系统堆栈必须保留的存储空间容量大小。 例1 以下函数用递归法实现n元一维数组元素逆序存储, 试分析所需栈的深度。 void reverse(ElemTp a[], int i, int j) //数组a下标范围i..j实现元素逆序存储 { if(i<j) { a[i]a[j]; reverse(a, i+1, j-1); } }
西南交通大学信息科学与技术学院软件工程系‐赵宏宇 数据结构A 第3章‐7
3. 堆栈习题举例 例1 若元素入栈次序为ABC,写出所有可能的元素出栈 次序。 答: 所有可能的元素出栈次序共5种,即 ABC 操作PXPXPX (P表示入栈,X表示退栈) ACB PXPPXX BAC PPXXPX BCA PPXPXX CBA PPPXXX

第3章 栈和队列

第3章 栈和队列

例五、 表达式求值 例五、
限于二元运算符的表达式定义:
操作数) 运算符 运算符) 操作数 操作数) 表达式 ::= (操作数 + (运算符 + (操作数 操作数 操作数 ::= 简单变量 | 表达式 简单变量 :: = 标识符 | 无符号整数
表达式的三种标识方法: 表达式的三种标识方法: 设 Exp = S1 + OP + S2 则称 OP + S1 + S2 S1 + OP + S2 S1 + S2 + OP 为前缀表示法 前缀表示法 为中缀表示法 中缀表示法 为后缀表示法 后缀表示法
例如:(1348)10 = (2504)8 ,其 例如: 运算过程如下:
计 算 顺 序
N N div 8 N mod 8 1348 168 4 168 21 0 21 2 5 2 0 2
输 出 顺 序
void conversion () { InitStack(S); scanf ("%d",&N); while (N) { Push(S, N % 8); N = N/8; } while (!StackEmpty(S)) { Pop(S,e); printf ( "%d", e ); } } // conversion
栈和队列是两种常用的数据类型
3.1 栈的类型定义 3.2 栈的应用举例 3.3 栈类型的实现 3.4 队列的类型定义 3.5 队列类型的实现
3.1 栈的类型定义
ADT Stack { 数据对象: 数据对象 D={ ai | ai ∈ElemSet, i=1,2,...,n, n≥0 } 数据关系: 数据关系 R1={ <ai-1, ai >| ai-1, ai∈D, i=2,...,n } 约定an 端为栈顶,a1 端为栈底。 基本操作: 基本操作: } ADT Stack

Stack栈类与、Queue队列与线性表的区别和联系

Stack栈类与、Queue队列与线性表的区别和联系

Stack栈类与、Queue队列与线性表的区别和联系栈和队列都属于特殊的线性表⼀、定义1、线性表(linear list):是数据结构的⼀种,⼀个线性表是n个具有相同特性的数据元素的有限序列。

数据元素是⼀个抽象的符号,其具体含义在不同的情况下⼀般不同。

2、栈(Stack):栈是限定仅能在表尾进⾏插⼊或删除操作的线性表。

对栈来说,表尾称为栈顶、表头称为栈底,不含元素的空表称为空栈。

由于栈的上述特性,最先⼊栈的元素最后才能被删除,最晚⼊栈的元素最先被删除,所以栈⼜称为后进先出的线性表。

应⽤例⼦:进制转换、括号匹配检验、⾏编辑程序、迷宫求解、表达式求值、递归实现3、队列(Queue):和栈相反,队列是⼀种先进先出的线性表,它只允许在表的⼀端进⾏插⼊,⽽在另⼀端删除元素,允许插⼊的⼀端叫队尾,允许删除的⼀端叫队头。

应⽤例⼦:操作系统中的作业排队。

双端队列,是限定插⼊和删除操作在表的两端进⾏的线性表,尽管双端队列看起来⽐栈和队列灵活,但实际上在应⽤程序中远不及栈和队列有⽤。

⼆、实现⽅式和顺序表⽰1、线性表:⽤⼀组地址连续的储存单元依次存储线性表的数据元素。

以元素在计算机内“物理位置相邻”来表⽰线性表中数据元素之间的逻辑关系。

只要确定了数据元素的起始位置,就可随机地访问数据元素。

但是这种表⽰⽅法不便于插⼊和删除元素,每插⼊或删除⼀个元素,都要移动插⼊或删除位置之后的数据元素在连续储存单元中的位置,⽽且除了重新分配内存,否则在程序运⾏过程中不能动态地增加储存单元的数量。

2、栈:和线性表相似,栈也有两种储存⽅式,顺序栈和链式栈。

顺序栈的实现在于使⽤了这个基本,数组中的在内存中的存储位置是连续的,且要求我们在编译期就要确定数组的⼤⼩,这样对内存的使⽤并不⾼,⼀来⽆法避免因数组空间⽤光⽽引起的溢出问题,⼆在系统将内存分配给数组后,则这些内存对于其他任务就不可⽤;⽽链栈使⽤了来实现栈,链表中的元素存储在不连续的地址,由于是申请内存,所以我们可以以⾮常⼩的内存空间开始,另外当某个项不使⽤时也可将内存返还给系统。

数据结构与算法:Python语言描述 栈和队列 ppt课件

数据结构与算法:Python语言描述 栈和队列  ppt课件

裘宗燕,2019/12/22-/10/
栈的应用
栈是算法和程序里最常用的辅助结构,基本用途基于两方面: 用栈可以很方便地保存和取用信息,因此常作为算法或程序里的辅 助存储结构,临时保存信息,供后面的操作使用 利用栈后进先出的特点,可以得到特定的存储和取用顺序 许多实际运用结合了这两方面的特性
配对的原则
遇到的闭括号应该匹配此前遇到的最近的尚未匹配的对应开括号
由于多种/多次/可能嵌套,为检查配对,遇到的开括号必须保存
由于括号可能嵌套,需要逐对匹配,闭括号应与前面最近的尚未有 匹配的开括号匹配,后面括号应与更前面次近的括号匹配
可以删除匹配的括号,为后面的匹配做好准备
后遇到并保存的开括号应该先删除,这就是后进先出,而且要按照出现 顺序,显然应该/可以用一个栈保存开括号
概述
栈和队列保证元素存取之间的时间关系,特点是:
栈是保证缓存元素后进先出(Last In First Out,LIFO)的结构
队列是保证缓存元素的先进先出(先存者先用,First In First Out, FIFO)关系的结构
对于栈和队列,任何时候,下次访问或删除的元素都默认地唯一确定。 只有新的存入或删除(弹出)操作可能改变下次的默认元素
self._elems = [] # 所有栈操作都映射到list操作
def is_empty(self):
return self._elems == []
def top(self):
if self._elems == []:
raise StackUnderflow("in SStack.top()")
return self._elems[-1]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

栈和队列区别及应用场景
栈(Stack)和队列(Queue)是两种常见的数据结构,它们在计
算机科学领域有广泛的应用。

本文将从定义、特点和基本操作等方面
详细介绍栈和队列的区别,并分析它们各自的应用场景。

一、栈的定义及特点:
栈是一种线性数据结构,其特点是“先进后出”(Last In First Out,LIFO)。

即在栈中最后一个进入的元素,也是第一个出栈的元素。

栈的基本操作包括入栈和出栈。

入栈(Push)是将一个元素追加
到栈的顶部,出栈(Pop)是将栈顶元素移除。

栈的应用场景:
1.函数调用:在函数调用时,每遇到一个新的函数调用就将当前
的上下文(包括局部变量和返回地址)压入栈中,当函数调用完毕后,再弹出栈顶元素,恢复上一个函数的上下文。

2.表达式求值:栈可以用于进行中缀表达式到后缀表达式的转换,并通过栈来计算后缀表达式的值。

3.递归:递归算法的实现中通常会使用栈来保存递归调用的上下文。

4.撤销操作:在很多应用程序中,比如文本编辑器和图像处理软件中,通过栈来存储用户操作,以便可以撤销之前的操作。

5.浏览器历史记录:浏览器通常使用栈来实现历史记录的功能,每当用户浏览一个新的页面时,就将该页面的URL入栈,当用户点击后退按钮时,再依次出栈。

6.二叉树的遍历:用栈可以实现二叉树的深度优先遍历,具体的实现是使用非递归的方式进行前序、中序、后序遍历。

二、队列的定义及特点:
队列也是一种线性数据结构,其特点是“先进先出”(First In First Out,FIFO)。

即在队列中最先进入的元素,也是第一个出队列的元素。

队列的基本操作包括入队和出队。

入队(Enqueue)是将元素放入队列的尾部,出队(Dequeue)是将队列的头部元素移除。

队列的应用场景:
1.广度优先搜索:在图论中,广度优先搜索(Breadth First Search,BFS)通常会使用队列来实现,按照层次的顺序进行搜索。

2.缓冲区:队列可以用作缓冲区,在生产者和消费者模型中,生
产者将数据放入队列的尾部,消费者从队列的头部取出数据进行处理。

3.打印队列:在多用户系统中,打印任务通常通过队列来管理,
打印任务按顺序加入队列,打印机从队列中依次取出任务进行打印。

4.消息队列:在分布式系统中,消息队列用于实现不同服务之间
的解耦,发送方将消息放入队列中,接收方从队列中获取消息进行处理。

5. CPU调度:操作系统中的进程调度算法通常使用队列来管理就
绪队列和阻塞队列,根据一定的策略从就绪队列中选择下一个要执行
的进程。

6.网络请求:当出现高并发的情况时,可以使用队列来对请求进
行排队处理,保证系统的稳定性和可靠性。

三、栈和队列的区别:
1.数据结构:栈是一种后进先出(LIFO)的数据结构,而队列是一种先进先出(FIFO)的数据结构。

2.元素操作:栈的基本操作是入栈(Push)和出栈(Pop),而队列的基本操作是入队(Enqueue)和出队(Dequeue)。

3.存储方式:栈可以使用数组或链表来实现,而队列也可以使用数组或链表来实现。

4.插入和删除:栈中只能在栈顶进行插入和删除操作,而队列中可以在头部和尾部进行插入和删除操作。

5.应用场景:栈常用于函数调用、表达式求值、递归等场景,而队列常用于广度优先搜索、缓冲区、打印队列等场景。

四、总结:
栈(Stack)和队列(Queue)是两种常见的数据结构,它们的区别主要在于操作顺序和特点。

栈按照后进先出的原则进行插入和删除操作,适用于需要记录调用过程、撤销操作等场景;而队列按照先进先出的原则进行插入和删除操作,适用于广度优先搜索、缓冲区等场景。

栈和队列作为基础数据结构,为我们解决各种实际问题提供了便利。

在实际应用中,我们需要根据具体场景选择合适的数据结构来实现相应的功能。

相关文档
最新文档