全称量词和存在量词举例
全称量词与存在量词

3.判断下列命题的真假: (1)∀x∈R,sin x+cos x≤ 2. (2)∀x∈{3,5,7},3x+1 是 偶数;
2 (3)∃x0∈Q,x2 = 3 ; (4) ∃ x ∈ R , x 0 0 0-x0+1=0.
解析:
(1)∵sin x+cos x=
x 2sinx+4≤
2恒成立,
2.(1)用“量词”表述下列命题,并判断真假: ①存在实数对(x,y),使2x+3y+2<0成立;② 有些三角形不是等腰三角形;③至少有一个实 数使不等式x2-3x+6<0成立; (2)用文字语言表述下列命题:
①∀x∈R,x2≥0;②∃α∈R,sin α=cos α.
解析: (1)①∃x∈R,y∈R,2x+3y+2<0.真命 题;② ∃ x∈{ 三角形 } , x 不是等腰三角形,真 命题;③∃x∈R,x2-3x+6<0.假命题. (2)①a.对任意实数x,都有x2≥0; b.对所有实数x,都有x2≥0; c.对每一个实数x,都有x2≥0. ②a.存在角α∈R,使sin α=cos α成立; b.至少有一个角α,使sin α=cos α成立; c.对于有些角α,满足sin α=cos α.
(1)、(3)是全称命题,(2)、(4)是特称命题,对
(1)当 a>1 时,y=ax 与 y=logax 都是增函数且两函数是互为 反函数;图象关于直线 y=x 对称故没有交点. 所以(1)是假命题. 对于(2),∵x
2
1 2 3 3 -x+1=x-2 + ≥ 恒成立 4 4
所有的 全称量词 符号 全称命题 形式 、 任意一个 、 一切 、 任给 .
∀
含有 全称量词 的命题 “对M中任意一个x,有p(x)成立”,可简 “∀x∈M,p(x)” 记为 .
全称量词与存在量词(讲义)解析版--2023年初升高暑假衔接之高一数学

1.5全称量词与存在量词1.全称量词与全称量词命题(1)全称量词短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示(2)全称量词命题含有全称量词的命题,叫做全称量词命题(3)全称量词命题的符号及记法记作:M x ∈∀,()x p 读作:对任意x 属于M ,有()x p 成立考点1.判断全称量词命题的真假例1判断下列全称量词命题的真假:(1)每个四边形的内角和都是360°;(2)任何实数都有算术平方根;(3){|x y y ∀∈是无理数},3x 是无理数.【答案】(1)真命题;(2)假命题;(3)假命题【分析】对每个全称量词命题进行判断,从而得到答案.【详解】(1)真命题.连接一条对角线,将一个四边形分成两个三角形,而一个三角形的内角和180°,所以四边形的内角和都是360°是真命题;(2)假命题.因为负数没有算术平方根,所以任何实数都有算术平方根是假命题;(3)假命题,因为x =是无理数,3x 2=是有理数,所以{|x y y ∀∈是无理数},3x 是无理数是假命题.【点睛】本题考查判断全称量词命题的真假,属于简单题.例2将下列命题用量词等符号表示,并判断命题的真假:(1)所有实数的平方都是正数;(2)任何一个实数除以1,仍等于这个实数.【答案】(1)2,0x R x ∀∈>,假命题;(2),1x x R x ∀∈=,真命题【分析】(1)易得该命题为全称命题,再举出反例判定即可.(2)易得该命题为全称命题,再直接判定即可.【详解】(1)命题为:2,0x R x ∀∈>.易得当0x =时20x =,故原命题为假命题.(2)命题为:,1x x R x ∀∈=,易得为真命题.【点睛】本题主要考查了全称命题的定义与真假的判定.属于基础题.变式2-1判断下列全称量词命题的真假:(1)所有的素数都是奇数;(2)x R ∀∈,11≥+x ;(3)对任意一个无理数x ,2x 也是无理数.【答案】(1)假命题;(2)真命题;(3)假命题【分析】对每个全称量词命题进行判断,从而得到答案.【详解】(1)2是素数,但2不是奇数.所以全称量词命题“所有的素数是奇数”是假命题.(2)x R ∀∈,总有||0x ,因而||11x +.所以全称量词命题“x R ∀∈,||11x +”是真命题.(3是无理数,但22=是有理数.所以,全称量词命题“对每一个无理数x ,2x 也是无理数”是假命题.【点睛】本题考查判断全称量词命题的真假,属于简单题.变式2-2判断下列全称量词命题的真假:(1)每一个末位是0的整数都是5的倍数;(2)线段垂直平分线上的点到这条线段两个端点的距离相等;(3)对任意负数2,x x 的平方是正数;(4)梯形的对角线相等【答案】(1)真命题;(2)真命题;(3)真命题;(4)假命题.【分析】(1)根据整数的知识判断即可.(2)根据平面几何的知识判断即可.(3)根据平方的性质判断即可.(4)举出反例判断即可.【详解】(1)根据整数的性质,末位是0的整数都是5的倍数成立.故为真命题.(2)根据垂直平分线的性质可得线段垂直平分线上的点到这条线段两个端点的距离相等.故为真命题.(3)对任意负数0x <,不等式两边同时乘以负数x 有20x >.故为真命题(4)举反例如直角梯形对角线显然不相等.故为假命题.【点睛】本题主要考查了命题真假的判定,属于基础题型.2.存在量词与存在量词命题(1)存在量词短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示(2)存在量词命题含有存在量词的命题,叫做存在量词命题(3)存在量词命题的符号及记法记法:M x ∈∃,()x p 读法:存在M 中的元素x ,使得()x p 成立考点2.判断存在量词命题的真假例3判断下列存在量词命题的真假:(1)有些实数是无限不循环小数;(2)存在一个三角形不是等腰三角形;(3)有些菱形是正方形;(4)至少有一个整数2,1n n +是4的倍数.【答案】(1)真命题;(2)真命题;(3)真命题;(4)假命题.【分析】(1)根据实数的定义分析即可.(2)根据等腰三角形的定义分析即可.(3)根据菱形与正方形的关系分析即可.(4)利用反证法证明是假命题即可.【详解】(1)实数包括有理数与无理数,其中无理数包括无限不循环小数如,e π等.故为真命题.(2)等腰三角形有两条长度相等的边,但并不是每个三角形都有两条长度相等的边,故为真命题.(3)四边长度相等的四边形为菱形,此时若相邻边互相垂直则为正方形,故为真命题.(4)假设有一个整数2,1n n +是4的倍数,则因为21n +能被4整除,故21n +为偶数,故2n 为奇数,故n 为奇数.设21,n k k N =+∈,则221442n k k +=++,故21n +除以4的余数为2与题设矛盾.故不存在整数,n 使得21n +是4的倍数.故为假命题.【点睛】本题主要考查了命题真假的判定,属于基础题型.变式3-1判断下列存在量词命题的真假,并说明理由.(1)存在一个质数是偶数;(2)有一个实数x ,使2230x x ++=.【答案】(1)真命题,详见解析(2)假命题,详见解析【分析】(1)由2既是质数,也是偶数,可判断命题;(2)根据()2223122x x x ++=++≥,可判断命题.【详解】(1)因为2既是质数,也是偶数,所以原命题为真命题.(2)由于()22231220x x x ++=++≥>,所以原命题是假命题.【点睛】本题考查特称命题的判断,属于基础题.例4试判断以下命题的真假:(1)2,20x x ∈+>R ;(2)N x ∈∀,14≥x (3)3,1x x ∃∈<Z ;(4)2,3x x ∃∈=Q .【答案】(1)真命题;(2)假命题;(3)真命题;(4)假命题【分析】(1)根据不等式的性质判断即可;(2)全称命题判断为假,只需举一个反例即可;(3)特称命题判断为真,只需举一个正例即可;(4)解方程即可判断;【详解】解:(1)由于x ∀∈R ,都有20x ,因而有2220x +≥>,即220x +>.因此命题“2,20x x ∀∈+>R ”是真命题.(2)由于0∈N ,当0x =时,41x 不成立.因此命题“4,1x x ∀∈N ”是假命题.(3)由于1-∈Z ,当1x =-时,能使31x <成立.因此命题“3,1x x ∃∈<Z ”是真命题.(4)由于使23x =成立的数只有,而它们都不是有理数,因而没有任何一个有理数的平方能等于3.因此命题“2,3x x ∃∈=Q ”是假命题.【点睛】本题考查含有一个量词的命题的真假性判断,属于基础题.变式4-1判断下列命题的真假:(1)2,x x x ∃∈>R ;(2)2,x x x ∀∈>R ;(3)2,80x x ∃∈-=Q ;(4)2,20x x ∀∈+>R .【答案】(1)真命题;(2)假命题;(3)假命题;(4)真命题【分析】(1)特称命题判断为真,只需举一个正例即可;(2)全称命题判断为假,只需举一个反例即可;(3)通过解方程可判断;(4)根据不等式的性质可证明;【详解】解:(1)因为2x =时,2x x >成立,所以“2,x x x ∃∈>R ”是真命题.(2)因为0x =时,2x x >不成立,所以“2,x x x ∀∈>R ”是假命题.(3)因为使280x -=成立的数只有x =与x =-,但它们都不是有理数,所以“2,80x x ∃∈-=Q ”是假命题.(4)因为对任意实数x ,有20x ≥,则220x +>,即对任意实数,都有220x +>成立,所以“2,20x x ∀∈+>R ”是真命题.【点睛】本题考查命题真假判断,属于基础题.3.全称量词命题和存在量词命题的否定(1)全称量词命题的否定全称量词命题:M x ∈∀,()x p 否定为:M x ∈∃,()x p ⌝(2)存在量词命题的否定存在量词命题:M x ∈∃,()x p 否定为:M x ∈∀,()x p ⌝考点3.全称量词命题和存在量词命题的否定例5命题“1x ∀>>”的否定是()A .01x ∃>≤B .01x ∀>≤C .01x ∃≤≤D .01x ∀≤≤【答案】A【分析】根据全称命题的否定为特称命题即可判断;【详解】解:命题1x ∀>>,为全称命题,全称命题的否定为特称命题,故其否定为01x ∃>≤故选:A【点睛】本题考查全称命题的否定,属于基础题.变式5-1命题“(0,1),x ∀∈20x x -<”的否定是()A .0(0,1),x ∃∉2000x x -≥B .0(0,1),x ∃∈2000x x -≥C .0(0,1),x ∀∉2000x x -<D .0(0,1),x ∀∈2000x x -≥【答案】B【分析】根据“全称命题”的否定一定是“特称命题”判断.【详解】“全称命题”的否定一定是“特称命题”,∴命题“(0,1),x ∀∈20x x -<”的否定是0(0,1),x ∃∈2000x x -≥,故选:B .【点睛】本题主要考查命题的否定,还考查理解辨析的能力,属于基础题.变式5-2命题“所有能被2整除的数都是偶数”的否定是A .所有不能被2整除的数都是偶数B .所有能被2整除的数都不是偶数C .存在一个不能被2整除的数是偶数D .存在一个能被2整除的数不是偶数【答案】D试题分析:命题“所有能被2整除的整数都是偶数”的否定是“存在一个能被2整除的数不是偶数”.故选D .考点:命题的否定.例6命题“0R x ∃∈,20010x x -+<”的否定是()A .R x ∃∈,210x x -+>B .R x ∃∈,210x x -+≥C .R x ∀∈,210x x -+>D .R x ∀∈,210x x -+≥【答案】D【分析】特称命题的否定是全称命题【详解】因为特称命题的否定是全称命题所以命题“0R x ∃∈,20010x x -+<”的否定是“R x ∀∈,210x x -+≥”故选:D【点睛】本题考查的是特称命题的否定,较简单.变式6-1已知命题:N,21000n P n ∃∈>,则P ⌝为()A .N,2100n n ∀∈B .N,21000n n ∀∈>C .N,21000n n ∃∈D .N,21000n n ∃∈<【答案】A【分析】【详解】写特称命题的否命题,将存在量词改为全称量词,再否定结果所以命题:N,21000n P n ∃∈>的否定P ⌝为N,2100n n ∀∈故选:A点评:掌握命题的改写方法变式6-2若命题[]2000:3,3,210p x x x ∃∈-++≤,则命题p 的否定为()A .[]23,3,210x x x ∀∈-++>B .()()2,33,,210x x x ∀∈-∞-⋃+∞++>C .()()2,33,,210x x x ∀∈-∞-⋃+∞++≤D .[]20003,3,210x x x ∀∈-++<【答案】A【分析】利用存在性命题否定的结构形式写出其否定即可.【详解】命题p []23,3,210x x x ∀∈-++>.故选:A.【点睛】全称命题的一般形式是:x M ∀∈,()p x ,其否定为(),x M p x ∃∈⌝.存在性命题的一般形式是x M ∃∈,()p x ,其否定为(),x M p x ∀∈⌝.变式6-3写出下列各题中的p ⌝:(1):,10p x Z x ∃∈->;(2):,20p x Q x ∀∈-≥;(3)2:,10p x R x ∀∈+>;(4)2:,10p x R x ∃∈-<.【答案】(1):,10p x Z x ⌝∀∈-≤;(2):,20p x Q x ⌝∃∈-<;(3)2:,10p x R x ⌝∃∈+≤;(4)2:,10p x R x ⌝∀∈-≥.【分析】(1)特称量词变为全称量词,大于变小于等于得到命题的否定。
1.5全称量词与存在量词

全称量词与存在量词【要点梳理】要点一、全称量词与全称命题 全称量词全称量词:在指定范围内,表示整体或者全部的含义的量词称为全称量词.常见全称量词:“所有的”、“任意一个”、“每一个”、“一切”、“任给”等.通常用符号“∀”表示,读作“对任意”. 全称命题全称命题:含有全称量词的命题,叫做全称命题. 一般形式:“对M 中任意一个x ,有()p x 成立”,记作:x M ∀∈,()p x (其中M 为给定的集合,()p x 是关于x 的语句). 要点诠释:有些全称命题在文字叙述上可能会省略了全称量词, 例如:(1)“末位是0的整数,可以被5整除”;(2)“线段的垂直平分线上的点到这条线段两个端点的距离相等”; (3)“负数的平方是正数”;都是全称命题.要点二、存在量词与特称命题 存在量词定义:表示个别或一部分的含义的量词称为存在量词.常见存在量词:“有一个”,“存在一个”,“至少有一个”,“有的”,“有些”等.通常用符号“∃”表示,读作“存在”. 特称命题特称命题:含有存在量词的命题,叫做特称命题. 一般形式:“存在M 中一个元素0x ,有0()p x 成立”,记作:0x M ∃∈,0()p x (其中M 为给定的集合,()p x 是关于x 的语句). 要点诠释:(1)一个特称命题中也可以包含多个变量,例如:存在,R R αβ∈∈使sin()sin sin αβαβ+=+. (2)有些特称命题也可能省略了存在量词.(3)同一个全称命题或特称命题,可以有不同的表述要点三、 含有量词的命题的否定 对含有一个量词的全称命题的否定 全称命题p :x M ∀∈,()p xp 的否定p ⌝:0x M ∃∈,0()p x ⌝;从一般形式来看,全称命题“对M 中任意一个x ,有p (x )成立”,它的否定并不是简单地对结论部分p(x)进行否定,还需对全称量词进行否定,使之成为存在量词,也即“任意,()x M p x ∈”的否定为“0x M ∃∈,0()p x ⌝”.对含有一个量词的特称命题的否定 特称命题p :0x M ∃∈,0()p xp 的否定p ⌝:x M ∀∈,()p x ⌝;从一般形式来看,特称命题“0x M ∃∈,0()p x ”,它的否定并不是简单地对结论部分0()p x 进行否定,还需对存在量词进行否定,使之成为全称量词,也即“0x M ∃∈,0()p x ”的否定为“x M ∀∈,()p x ⌝”. 要点诠释:(1) 全称命题的否定是特称命题,特称命题的否定是全称命题; (2) 命题的否定与命题的否命题是不同的.(3) 正面词:等于 、 大于 、小于、 是、 都是、 至少一个 、至多一个 否定词:不等于、不大于、不小于、不是、不都是、 一个也没有、 至少两个要点四、全称命题和特称命题的真假判断①要判定全称命题“x M ∀∈,()p x ”是真命题,必须对集合M 中的每一个元素x ,证明()p x 成立;要判定全称命题“x M ∀∈,()p x ”是假命题,只需在集合M 中找到一个元素x 0,使得0()p x 不成立,即举一反例即可.②要判定特称命题“0x M ∃∈,0()p x ”是真命题,只需在集合M 中找到一个元素x 0,使得0()p x 成立即可;要判定特称命题“0x M ∃∈,0()p x ”是假命题,必须证明在集合M 中,使 ()p x 成立得元素不存在.【典型例题】类型一:量词与全称命题、特称命题 例1.判断下列命题是全称命题还是特称命题: (1)任何一个实数除以1仍等于这个数; (2)等边三角形的三边相等; (3)存在实数0x ,使2030x ->。
第六讲 全称量词命题与存在量词命题-(解析版)

第六讲 全称量词命题与存在量词命题【学习目标】1. 通过已知的数学实例,理解全称量词与存在量词的意义.2. 能正确使用存在量词对全称量词命题进行否定.3.能正确使用全称量词对存在量词命题进行否定.【基础知识】1.全称量词和全称量词命题(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示. (2)常见的全称量词还有“一切”“每一个”“任给”等.(3)全称量词命题:含有全称量词的命题叫做全称量词命题.全称量词命题“对M 中任意一个x ,有p (x )成立”可用符号简记为∀x ∈M ,p (x ). 2.存在量词与存在量词命题(1)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)常见的存在量词还有“有些”“有一个”“对某些”“有的”等.(3)存在量词命题:含有存在量词的命题叫做存在量词命题.存在量词命题“存在M 中的元素x ,使p (x )成立”可用符号简记为∃x ∈M ,p (x ). 3.命题与命题的否定的真假判断一个命题和它的否定不能同时为真命题,也不能同时为假命题,只能一真一假. 4.全称量词命题的否定 命题的否定:改变量词,否定结论 全称量词命题p :∀x ∈M ,p (x ), 它的否定p ⌝:∃x ∈M ,p ⌝ (x ). 全称量词命题的否定是存在量词命题. 5.存在量词命题的否定存在量词命题p :∃x ∈M ,p (x ), 它的否定p ⌝:∀x ∈M ,p ⌝ (x ). 存在量词命题的否定是全称量词命题.4.常见正面词语的否定举例如下:正面词语等于大于(>)小于(<)是都是否定不等于不大于(≤)不小于(≥)不是不都是正面词语至少有一个至多有一个任意的所有的至多有n个否定一个也没有至少有两个某个某些至少有n+1个【考点剖析】考点一:全称量词命题与存在量词命题的识别例1.下列命题中(1)有些自然数是偶数;(2)正方形是菱形;(3)能被6整除的数也能被3整除;(4)对于任意x R∈,总有211 1x+.存在量词命题的个数是()A.0 B.1 C.2 D.3【答案】B【解析】对于(1),有些自然数是偶数,含有存在量词“有些”,是存在量词命题;对于(2),正方形是菱形,可以写成“所有的正方形都是菱形”,它是全称量词命题;对于(3),能被6整除的数也能被3整除,可以写成“所有能被6整除的数也能被3整除”,是全称量词命题;对于(4),对于任意x R∈,总有211 1x+,含有全称量词“任意的”,是全称量词命题.所以存在量词命题的序号是(1),有1个.故选B.考点二:全称量词命题与存在量词命题的真假的判断例2.下列命题为真命题的是()A .0x R ∃∈,使200x <B .x R ∀∈,有20xC .x R ∀∈,有20x >D .x R ∀∈,有20x <【答案】B【解析】因为x R ∈,所以20x ,所以x R ∀∈,有20x , 故选B .考点三:依据含量词命题的真假求参数取值范围例3.已知命题“x R ∀∈,使214(2)04x a x +-+>”是真命题,则实数a 的取值范围是( ) A .(,0)-∞ B .[0,4] C .[4,)+∞ D .(0,4)【答案】D【解析】命题“x R ∀∈,使214(2)04x a x +-+>”是真命题, 即判别式△21(2)4404a =--⨯⨯<, 即△2(2)4a =-<,则222a -<-<,即04a <<, 故选D .考点四:全称量词命题的否定例4.全称命题:x R ∀∈,254x x +=的否定是( ) A .x R ∃∈,254x x += B .x R ∀∈,254x x +≠ C .x R ∃∈,254x x +≠ D .以上都不正确 【答案】C【解析】全称命题的否定是特称命题,x R ∴∀∈,254x x +=的否定是:x R ∃∈,254x x +≠.故选C .考点五:存在量词命题的否定例5.设命题0:(0,)p x ∃∈+∞,0303x x <,则命题p 的否定为( )A .(0,)x ∀∈+∞,33x x <B .(0,)x ∀∈+∞,33x x >C .(0,)x ∀∈+∞,33x xD .(0,)x ∃∈+∞,33x x【答案】C【解析】命题0:(0,)p x ∃∈+∞,0303x x <,则命题p 的否定为:(0,)x ∀∈+∞,33x x . 故选C .考点六:根据全称量词命题、存在量词命题的否定求参数例6.已知命题:p x R ∃∈,使220ax x a ++,当a A ∈时,p 为假命题,求集合. 【解析】当a A ∈时,p 为假命题, 则当a A ∈时,x R ∀∈,使220ax x a ++<, 若0a =,不等式等价为0x <,不满足条件. 若0a ≠,要使不等式恒成立,则20440a a <⎧⎨=-<⎩,即011a a a <⎧⎨><-⎩或,则1a <-, 即(,1)A =-∞-.【真题演练】1.下列命题是全称量词命题的是( ) A .有一个偶数是素数B .至少存在一个奇数能被15整除C .有些三角形是直角三角形D .每个四边形的内角和都是360︒ 【答案】D【解析】A ,有一个,存在性量词,特称命题, B ,至少存在一个,存在性量词,特称命题, C ,有些,存在性量词,特称命题,D ,每个,全称量词,全称命题, 故选D .2.下列命题中是全称量词命题并且是真命题的是( ) A .x R ∀∈,2210x x ++> B .所有菱形的4条边都相等 C .若2x 为偶数,则x N ∈ D .π是无理数【答案】B【解析】对于:A x R ∀∈,2221(1)0x x x ++=+,故A 错误; 对于B :所有菱形的4条边都相等,满足两个条件,故B 正确; 对于C :若2x 为偶数,则x N ∈或N -,故C 错误; 对于:D π是无理数不是全称命题,故D 错误. 故选B .3.已知对{|13}x x x ∀∈<,都有m x >,则m 的取值范围为( ) A .3m B .3m > C .1m > D .1m【答案】A【解析】对{|13}x x x ∀∈<,都有m x >, 3m ∴,故选A .4.下列命题含有全称量词的是( ) A .某些函数图象不过原点 B .实数的平方为正数C .方程2250x x ++=有实数解D .素数中只有一个偶数【答案】B【解析】A :某些函数图象不过原点,不是全部的意思,不是全称量词命题;B :实数的平方为正数即是所有实数的平方根都为正数,是全称量词命题;C :方程2250x x ++=有实数解,不是全称量词命题;D :素数中只有一个偶数,不是全称量词命题;故选B .5.有下列四个命题:①x R ∀∈10>;②x N ∀∈,20x >;③x N ∃∈,[3x ∈-,1)-;④x Q ∃∈,22x =.其中真命题的个数为( ) A .1B .2C .3D .4【答案】A【解析】对于①,x R ∀∈10>,是真命题,2010>; 对于②,x N ∀∈,20x >,是假命题, 因为0x =时,x N ∈,20x =;对于③,x N ∃∈,[3x ∈-,1)-,是假命题, 由x N ∈知0x ,所以[3x ∉-,1)-; 对于④,x Q ∃∈,22x =,是假命题, 因为x Q ∀∈,22x ≠.所以真命题的序号是①,共1个. 故选A .6.全称命题:x R ∀∈,254x x +=的否定是( ) A .x R ∃∈,254x x += B .x R ∀∈,254x x +≠ C .x R ∃∈,254x x +≠ D .以上都不正确 【答案】C【解析】全称命题的否定是特称命题,x R ∴∀∈,254x x +=的否定是:x R ∃∈,254x x +≠.故选C .7.若命题“x R ∃∈,使得23210x ax ++<”是假命题,则实数a 的取值范围是( )A .a <B .3a -,或3aC .33aD .a <a >【答案】C【解析】命题“x R ∃∈,使得23210x ax ++<”是假命题,即“x R ∀∈,23210x ax ++成立”是真命题, 故△24120a =-,解得33a .故选C .8.命题:x R ∃∈,210x x -+=的否定是 .【答案】x R ∀∈,210x x -+≠【解析】因为特称命题的否定是全称命题,所以x R ∃∈,210x x -+=的否定是:x R ∀∈,210x x -+≠. 故答案为:x R ∀∈,210x x -+≠.9.设命题:p x R ∃∈,2230x x m -+-=,命题:q x R ∀∈,222(5)190x m x m --++≠.若p ,q 都为真命题,求实数m 的取值范围.【解析】若命题:p x R ∃∈,2230x x m -+-=为真命题, 则△44(3)0m =--,解得4m ;若命题:q x R ∀∈,222(5)190x m x m --++≠为真命题, 则△224(5)4(19)0m m =--+<,解得3(5m ∈,)+∞,又p ,q 都为真命题,∴实数m 的取值范围是33{|4}{|}(55m m m m >=,4].【过关检测】1.命题“x N +∃∈使230x x m -+”的否定是( ) A .x N +∃∈使230x x m -+< B .不x N +∃∈使230x x m -+<C .对x N +∀∈都有230x x m -+D .对x N +∀∈都有230x x m -+<【答案】D【解析】命题“存在x N +∈,使230x x m ++”为特称命题, ∴命题的否定为:对任意x N +∈,使230x x m ++<,故选D .2.下列语句是特称命题的是( ) A .整数n 是2和7的倍数 B .存在整数n ,使n 能被11整除 C .若430x -=,则34x = D .x M ∀∈,()p x 成立【答案】B【解析】命题:存在整数n ,使n 能被11整除,含有特称量词存在, 故B 是特此命题, 故选B .3.设a 为常数,对任意x R ∈,210ax ax ++>,则a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,)+∞ D .(,4)-∞【答案】B【解析】①当0a =时,10>恒成立,即0a =时满足题意, ②当0a ≠时,由对任意x R ∈,210ax ax ++>,则有: 240a a a >⎧⎨-<⎩,解得:04a <<, 综合①②得:a 的取值范围是[0,4),故选B .4.命题p :任意的x R ∈,使770x x +>,则p ⌝是( )A .0x R ∃∈,使70070x x +B .0x R ∃∈,使70070x x +C .x R ∀∈,使770x x +D .x R ∀∈,使770x x +【答案】B【解析】根据题意,命题p :任意的x R ∈,使770x x +>, 这是全称命题,其否定为特称命题, 即0x R ∃∈,使70070x x +, 故选B .5.若存在x 使2()1x a ->成立.则a 的取值范围是( ) A .(-∞.)+∞ B .(2,)-+∞ C .(0.)+∞ D .(1,)-+∞【答案】A【解析】由2()1x a ->得12x a >+, 若存在x 使2()1x a ->成立, 则(a ∈-∞.)+∞,故选A .6.若命题“[1x ∀∈,2],22430x ax a -+”是真命题,则实数a 的取值范围是( ) A .2(,1]3B .2[,1)3C .2[,1]3D .2(,1)3【答案】C【解析】设22()43f x x ax a =-+,对[1x ∀∈,2],22()430f x x ax a =-+是真命题, ∴22(1)1430(2)4830f a a f a a ⎧=-+⎨=-+⎩,∴113223a a ⎧⎪⎪⎨⎪⎪⎩,∴213a . 故选C .7.已知命题:“[1x ∃∈,2],使220x x a ++”为真命题,则实数a 的取值范围是( ) A .[3-,)+∞ B .(3,)-+∞ C .[8-,)+∞ D .(8,)-+∞【答案】C【解析】设2()2f x x x a =++, 要使[1x ∃∈,2],使220x x a ++, 据二次函数的图象与性质得: 只要:f (2)0即可, 22220a ∴+⨯+,8a ∴-.故选C .8.若“存在[1x ∈,2],使0x a -”是假命题,则实数a 的取值范围是 . 【答案】(,1)-∞【解析】由题转化为命题“[1x ∀∈,2],0x a ->”为真命题,即a x <恒成立, 又y x =在[1,2]上单调递增,所以1min y =,故1a <. 故答案为:(,1)-∞.9.若“0(0,)x ∃∈+∞,21x x λ>+”是假命题,则实数λ的取值范围是 . 【答案】2λ【解析】若“0(0,)x ∃∈+∞,21x x λ>+”是假命题, 则“(0,)x ∀∈+∞,21x x λ+”是真命题; 所以,(0,)x ∈+∞时,1x xλ+恒成立, 又1122x x x x+=,当且仅当1x =时取“=”; 所以实数λ的取值范围是2λ. 故答案为:2λ.10.已知命题p :“x R ∀∈,220x x a +->”,命题q :“x R ∃∈,使得2(1)10x a x +-+<”.试问p 是q 什么条件?【解析】因为命题p :“x R ∀∈,220x x a +->”所以△0<,440a +<,解得:(,1)a ∈-∞-因为命题:q x R ∃∈,使得2(1)10x a x +-+<,所以△0>,即2(1)40a -->,解得(a ∈-∞,1)(3-⋃,)+∞ 所以,p 是q 充分不必要条件.。
1.4 全称量词与存在量词

说出下列命题的否定: (1)有的命题是不能判定真假的; (2)所有的人都喝水; (3)存在有理数x,使x2-2=0; 解:(1)原命题的否定是: (4)对所有实数a,都有|a|≥0. 所有的命题都是能判定真假的. 解:(3)这个命题的否定是:不存在有理 (2)原命题的否定是: 数x,使x2-2=0; 有的人不喝水. 也就是:对所有有理数x, x2-2≠0. (即: x∈Q, x2-2≠0.) (4)这个命题的否定是: a∈Q,|a|<0.
例1
判断下列全称命题的真假:
(1)所有的素Βιβλιοθήκη 都是奇数; (2) (3)对每一个无理数x,x2也是无理数。
解:(1)假命题; (2)真命题; (3)假命题。
小 结:
判断全称命题"x M,p(x)"是真命题的方法:
——需要对集合M中每个元素x,证明p(x)成立
判断全称命题"x M,p(x)"是假命题的方法:
——需要证明集合M中,使p(x)成立的元素x不存在。
练 习:
2 判断下列特称命题的真假: (1) x0 R, x0 0;
(2)至少有一个整数,它既不是合数,也不是素数;
(3)
解:(1)真命题; (2)真命题; (3)真命题。
练习
3、用符号“ ”与“ ”表达下列命题:
(1)存在这样的实数它的平方等于 它本身。 (2)任一个实数乘以-1都等于它的 相反数; (3)存在实数x,使得x3>x2;
1.4 全称量词与存在量词
思考: 下列语句是命题吗?(1)与(3),(2)与(4)之间有什么关系 (1)x>3; (2)2x+1是整数; (3)对所有的x∈R,x>3; (4)对任意一个x∈Z,2x+1是整数。 常见的全称量词还有 语句(1)(2)不能判断真假,不是命题; “一切” “每一个” 语句(3)(4)可以判断真假,是命题。 “任给” “所有的”等 。 全称量词、全称命题定义: 短语“所有的”“任意一个”在逻辑中通常叫做全称 量词,并用符号“ ”表示。 含有全称量词的命题,叫做全称命题。
1.5 全称量词与存在量-教师版

1.全称量词与全称命题(1)短语“对所有的”、“对任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示,含有全称量词的命题,叫做全称命题.(2)全称命题的表述形式:对M中任意一个x,有p(x)成立,可简记为:∀x∈M,p(x).(3)常用的全称量词还有“所有”、“每一个”、“任何”、“任意”、“一切”、“任给”、“全部”,表示整体或全部的含义.3.存在量词与特称命题(1)短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示,含有存在量词的命题,叫做特称命题.(2)特称命题的表述形式:存在M中的一个x0,使p(x0)成立,可简记为,∃x0∈M,p(x0).(3)存在量词:“有些”、“有一个”、“存在”、“某个”、“有的”,表示个别或一部分的含义.4.命题的否定(1)全称命题p:∀x∈M,p(x),它的否定¬p:∃x0∈M,¬p(x0),全称命题的否定是特称命题.(2)特称命题p:∃x0∈M,p(x0),它的否定¬p:∀x∈M,¬p(x),特称命题的否定是全称命题.5.常见的命题的否定形式有:原语句是都是>至少有一个至多有一个对任意x∈A使p(x)真否定形式不是不都是≤一个也没有至少有两个存在x∈A使p(x)假知识梳理【提醒】因为命题p与⌝p的真假性相反,所以不管是全称命题还是特称命题,当其真假不容易正面判断时,可先判断其否定的真假。
考点一:全称命题与特称命题的判定例1判断下列命题是全称命题还是特称命题,并判断真假.(1)对所有的实数a,b,关于x的方程ax+b=0恰有唯一解.(2)存在实数x,使得213 234x x =-+.【答案】(1)假命题;(2)假命题.【解析】(1)该命题是全称命题.当a=0,b≠0时方程无解,故该命题为假命题.(2)该命题是特称命题.∵x2-2x+3=(x-1)2+2≥2,∴2113 2324x x ≤<-+.故该命题是假命题.练习1把下列定理表示的命题写成含有量词的命题: (1)勾股定理;例题解析(2)三角形内角和定理.【答案】(1)任意一个直角三角形,它的斜边的平方都等于两直角边的平方和;(2)所有三角形的内角和都是180°.【解析】(1)任意一个直角三角形,它的斜边的平方都等于两直角边的平方和;(2)所有三角形的内角和都是180°.练习2用符号“∀”与“∃”表示下列含有量词的命题,并判断真假:(1)任意实数的平方大于或等于0;(2)对任意实数a ,二次函数2y x a =+的图象关于y 轴对称;(3)存在整数x ,y ,使得243x y +=;(4)存在一个无理数,它的立方是有理数.【答案】(1)2,0x R x ∀∈.真命题;(2)a ∀∈R ,二次函数2y x a =+的图象关于y 轴对称,真命题;(3),,243x Z y Z x y ∃∈∈+=假命题;(4)3,R x Q x Q ∃∈∈,真命题.【解析】(1)2,0x R x ∀∈≥,是真命题;(2)a ∀∈R ,二次函数2y x a =+的图象关于y 轴对称,真命题,;(3),,243x Z y Z x y ∃∈∈+=假命题,因为242(2)x y x y +=+必为偶数;(4)3,R x Q x Q ∃∈∈.真命题,例如32x x Q ==∈.【名师点睛】1.判断一个语句是全称命题还是特称命题的步骤:(1)首先判定语句是否为命题,若不是命题,就当然不是全称命题或特称命题.(2)若是命题,再分析命题中所含的量词,含有全称量词的命题是全称命题,含有存在量词的命题是特称命题.2.当命题中不含量词时,要注意理解命题含义的实质.3.一个全称(或特称)命题往往有多种不同的表述方法,有时可能会省略全称(存在)量词,应结合具体问题多加体会.考点二:全称命题与特称命题的真假判断例2写出下列命题的否定,并判断所得命题的真假:(1)任意实数都存在倒数;(2)存在一个平行四边形,它的对角线不相等;(3){|x x x ∀∈是三角形},x 的内角和是180︒.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)存在一个实数不存在倒数,例如:实数0,故此命题为真命题;(2)所有平行四边形的对角线相等,例如:边长为1,一个内角为60的菱形,其对角线分别为故此命题为假命题;(3){|x x x ∃∈是三角形},x 的内角和不是180︒,由三角形的内角和定理知,任意三角形内角和均为180︒,故此命题为假命题.练习1判断下列存在量词命题的真假:(1)存在一个四边形,它的两条对角线互相垂直; (2)至少有一个整数n ,使得2n n +为奇数;(3){|x y y ∃∈是无理数},2x 是无理数.【答案】(1)真命题;(2)假命题;(3)真命题【解析】(1)真命题,因为正方形的两条对角线互相垂直;(2)假命题,因为若n 为整数,则(1)n n +必为偶数;(3)真命题,因为π是无理数,2π是无理数.练习2判断下列全称量词命题的真假:(1)每个四边形的内角和都是360°;(2)任何实数都有算术平方根;(3){|x y y ∀∈是无理数},3x 是无理数.【答案】(1)真命题;(2)假命题;(3)假命题【解析】(1)真命题.连接一条对角线,将一个四边形分成两个三角形,而一个三角形的内角和180°,所以四边形的内角和都是360°是真命题;(2)假命题.因为负数没有算术平方根,所以任何实数都有算术平方根是假命题;(3)假命题,因为x =3x 2=是有理数,所以{|x y y ∀∈是无理数},3x 是无理数是假命题.【名师点睛】1.全称命题的真假判断要判定一个全称命题是真命题,必须对限定集合M 中的每个元素x 验证p (x )成立;但要判定全称命题是假命题,只要能举出集合M 中的一个x =x 0,使得p (x 0)不成立即可. 2.特称命题的真假判断要判定一个特称命题是真命题,只要在限定集合M 中,找到一个x =x 0,使p (x 0)成立即可;否则,这一特称命题就是假命题.考点三:利用全称命题和特称命题的真假求参数范围例3若命题“2,10x R x ax ∃∈-+≤”是真命题,则实数a 的取值范围是( ).A .2{|}2a a -≤≤B .2{2}|a a a ≤-≥或C .2{|2}a a -<<D .2{}2|a a a <->或【答案】B【解析】命题“2,10x R x ax ∃∈-+≤”是真命题,则需满足240a ∆=-≥,解得2a ≥或2a ≤-.故选:B .练习1若“x ∃∈R ,220x x a +-<”是真命题,则实数a 的取值范围是____.【答案】{|1}a a【解析】若“∃x ∈R ,x 2+2x ﹣a <0”是真命题,则△>0,即4+4a >0,解得a >﹣1. 故答案为{}1a a -练习2已知命题:p x R ∀∈,2210ax x ++≠,:q x R ∃∈,210ax ax ++.若p 与q 均为假命题,求实数a 的取值范围.【答案】[0,1]【解析】 :p x R ∀∈,2210ax x ++≠,:q x R ∃∈,210ax ax ++,:p x R ∴⌝∃∈,2210ax x ++=,:q x R ⌝∀∈,210ax ax ++>.因为p 与q 均为假命题,所以p ⌝与q ⌝都是真命题.由p ⌝为真命题得0a =或0,440,a a ≠⎧⎨-≥⎩,故1a ≤. 由q ⌝为真命题得0a =或20,40,a a a >⎧⎨-<⎩,故04a ≤< .1,04,a a ⎧∴⎨<⎩解得01a ≤≤. 故实数a 的取值范围是[0,1].考点四:全称命题、特称命题的否定例4命题“0x ∀>,20x >”的否定是( )A .20,0x x ∀>≤B .20,0x x ∃>≤C .20,0x x ∀≤≤D .20,0x x ∃≤≤【答案】B【解析】 命题“0x ∀>,20x >”的否定是: 20,0x x ∃>≤,故选B练习1命题:x R ∃∈,210x x -+=的否定是______.【答案】2,10x R x x ∀∈-+≠【解析】根据特称命题的否定为全称命题,可知命题“x R ∃∈,210x x -+=”的否定是“”.练习2写出下列命题的否定:(1)分数是有理数;(2)三角形的内角和是180°.【答案】(1)存在一个分数不是有理数;(2)有些三角形的内角和不是180°.【解析】(1)原命题省略了全称量词“所有",所以该命题的否定:存在一个分数不是有理数.(2)原命题省略了全称量词“任何一个”,所以该命题的否定:有些三角形的内角和不是180°.【名师点睛】1.一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.2.对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.考点五:利用全称命题与特称命题求参数的取值范围例5已知命题p :“至少存在一个实数[1,2]x ∈,使不等式2220x ax a ++->成立”的否定为假命题,试求实数a 的取值范围.【答案】(3,)-+∞【解析】由题意知,命题p 为真命题,即2220x ax a ++->在[1,2]上有解,令222y x a a x ++=-,所以max 0y >,又因为最大值在1x =或2x =时取到, ∴只需1x =或2x =时,0y >即可,∴1220a a ++->或4420a a ++->,解得3a >-或2a >-,即3a >-.故实数a 的取值范围为(3,)-+∞.练习1若命题“12x ∀≤≤,一次函数y x m =+的图象在x 轴上方”为真命题,求实数m 的取值范围. 【答案】{}1m m >-【解析】当12x ≤≤时,12m x m m +≤+≤+.因为一次函数y x m =+的图象在x 轴上方,所以10m +>,即1m >-,所以实数m 的取值范围是{}1m m >-.故得解.练习2已知命题:p 存在实数x ∈R ,使210x ax -+≤成立.(1)若命题P 为真命题,求实数a 的取值范围;(2)命题:q 任意实数[]1,2x ∈,使2210x ax -+≤恒成立.如果p ,q 都是假命题,求实数a 的取值范围.【答案】(1)(][),22,-∞-+∞;(2)52,4⎛⎫- ⎪⎝⎭. 【解析】解:(1):p 存在实数x ∈R ,使210x ax -+≤成立2402a a ≥⇔=-⇔≤∆-或2a ≥, ∴实数a 的取值范围为(][),22,-∞-+∞;(2):q 任意实数[]1,2x ∈,使12a x x ≥+恒成立,[]1,2x ∈,1522x x ∴≤+≤,55224a a ≥∴⇒≥, 由题p ,q 都是假命题,那它们的补集取交集()552,2,2,44⎛⎫⎛⎫--∞=- ⎪ ⎪⎝⎭⎝⎭,∴实数a 的取值范围52,4⎛⎫- ⎪⎝⎭.【名师点睛】(1)利用全称命题、特称命题求参数的取值范围或值是一类综合性较强、难度较大的问题.主要考查两种命题的定义及其否定.(2)全称命题为真,意味着对限定集合中的每一个元素都具有某种性质,使所给语句为真.因此,当给出限定集合中的任一个特殊的元素时,自然应导出“这个特殊元素具有这个性质”(这类似于“代入”思想).反思总结1.判断一个语句是全称量词命题还是存在量词命题的思路[提醒] 全称量词命题可能省略全称量词,存在量词命题的存在量词一般不能省略.2.全称量词命题与存在量词命题的真假判断的技巧(1)要判定一个全称量词命题是真命题,必须对限定集合M 中的每个元素x 验证p (x )成立;但要判定全称量词命题是假命题,只要能举出集合M 中的一个x ,使得p (x )不成立即可.(2)要判定一个存在量词命题是真命题,只要在限定集合M 中,能找到一个x 使p (x )成立即可;否则,这个存在量词命题就是假命题.3.全称量词命题与存在量词命题的否定的思路(1)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称量词命题还是存在量词命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词, 同时否定结论.(2)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.1.命题“1x ∀>,20x x ->”的否定是( )A .01x ∃≤,2000x x -≤B .1x ∀>,20x x -≤随堂检测C .01x ∃>,2000x x -≤D .1x ∀≤,20x x ->【答案】C【解析】因为全称命题的否定是特称命题,所以命题“1x ∀>,20x x ->”的否定是:“01x ∃>,2000x x -≤”,故选C.2.设命题2:,21p n n n ∃∈>-N ,则命题p 的否定为( )A .2,21n n n ∀∈>-NB .2,21n n n ∀∈≤-NC .2,21n n n ∃∈≤-ND .2,21n n n ∃∈=-N【答案】B【解析】 解:∵命题2:,21p n n n ∃∈>-N 是一个特称命题,它的否定是一个全称命题,∴命题p 的否定为2,21n n n ∀∈≤-N ,故选:B .3.命题“0x ∀>,20x >”的否定是( )A .20,0x x ∀>≤B .20,0x x ∃>≤C .20,0x x ∀≤≤D .20,0x x ∃≤≤【答案】B【解析】 命题“0x ∀>,20x >”的否定是: 20,0x x ∃>≤,故选B4.已知命题:,25x P x R ∀∈>,则p ⌝为( )A .,25x x R ∀∉>B .,25x x R ∀∈≤C .00,25x x R ∃∈≤ D .00,25x x R ∃∈>【答案】C【解析】 00,25x x R ∃∈≤,故选C5.已知命题p 为x R ∀∈,25220x x -+≥,则命题p 的否定为( )A .x R ∀∈,25220x x -+<B .x R ∀∈,25220x x -+≤C .x R ∃∈,25220x x -+<D .x R ∃∈,25220x x -+≤【答案】C【解析】由含全称量词的否定的定义可得命题p 的否定为:x R ∃∈,25220x x -+<.故选:C .6.已知命题p :某班所有的男生都爱踢足球,则命题p ⌝为( )A .某班至多有一个男生爱踢足球B .某班至少有一个男生不爱踢足球C .某班所有的男生都不爱踢足球D .某班所有的女生都不爱踢足球 【答案】B【解析】解:命题“某班所有男生都爱踢足球”是一个全称命题,它的否定是一个特称命题,故其否定为“某班至少有一个男生不爱踢足球”.故选:B .7.已知命题:p x ∃∈R ,2210ax x ++=,若命题p 是假命题,则实数a 的取值范围是( ) A .{|1}a a B .{|1}a a < C .{|1}a a D .{|1}a a ≤【答案】C【解析】∵:p x ∃∈R ,2210ax x ++=,∴:p x ⌝∀∈R ,2210ax x ++≠.∵命题p 为假命题,∴命题p ⌝为真命题,∴当x ∈R 时,方程210ax ax ++=没有实数根,∴440a ∆=-<,即1a >.∴实数a 的取值范围是{|1}a a .故选:C.8.已知命题“21,4(2)04x R x a x ∃∈+-+”是假命题,则实数a 的取值范围为() A .(),0-∞ B .[]0,4 C .[)4,+∞ D .()0,4【答案】D【解析】因为命题“21,4(2)04x R x a x ∃∈+-+”是假命题,所以否定形式为“21,4(2)04x R x a x ∀∈+-+>”是真命题, 则221(2)44404a a a ∆=--⨯⨯=-<,解得04a <<,故选D. 9.已知命题p :“[1,2]x ∀∈,20x a -≥”,命题q :“x ∃∈R ,2240x ax ++=”.若命题p ⌝和命题q 都是真命题,则实数a 的取值范围是( )A .2a ≤-或1a =B .2a ≤-或12a ≤≤C .1a ≥D .2a ≥【答案】D【解析】若[1,2]x ∀∈,20x a -≥,则2a x ≤,∴1a ≤.若x ∃∈R ,2240x ax ++=,则2(2)160a ∆=-≥, 解得2a ≤-或2a ≥.∵命题p ⌝和命题q 都是真命题,∴12a a >⎧⎨≤-⎩或12a a >⎧⎨≥⎩, ∴2a ≥.故选:D .10.已知命题:3p x ∀>,x m >为真命题,则实数m 的取值范围是( )A .3m ≤B .3m ≥C .3m <D .3m >【答案】A【解析】由:3p x ∀>,x m >为真命题,故m 的取值不超过3,即3m ≤.故选:A.11.下列命题中是全称量词命题并且是真命题的是( )A .2,210x R x x ∀∈++>B .所有菱形的4条边都相等C .若2x 为偶数,则x ∈ND .π是无理数【答案】B【解析】四个选项中AB 是全称量词命题对于A :2,210x R x x ∀∈++>当1x =-时,不成立,为假命题. 对于B :根据菱形定义知:所有菱形的4条边都相等,为真命题.故选:B12.下列四个命题,其中真命题是( )A .n ∀∈R ,2n nB .x R ∃∈,210x +<C .x R ∀∈,224213x x x >-+D .,x y Z ∃∈,3210x y -= 【答案】D【解析】对于A ,当12n =时,2n n 显然不成立,假命题;对于B ,x R ∃∈,210x +>,假命题;对于C ,当1x =时,两边显然相等,假命题;对于D ,当4,1x y ==时,3210x y -=显然成立,真命题;故选:D13.命题“x R ∀∈,21x x +>”的否定为______.【答案】x R ∃∈,21x x +≤【解析】已知命题为全称命题,则命题的否定为:x R ∃∈,21x x +≤,故答案为:x R ∃∈,21x x +≤.14.命题“20210x x x ∃<-->,”的否定是______.【答案】0x ∀<,2210x x --≤【解析】解:因为特称命题的否定是全称命题,所以,命题20210x x x ∃<-->,,则该命题的否定是:0x ∀<,2210x x --≤故答案为:0x ∀<,2210x x --≤.15.若命题“x R ∃∈,210x ax -+<”是真命题,则实数a 的取值范围是________.【答案】(,2)(2,)-∞-+∞【解析】由题意240a ∆=->,解得2a <-或2a >.故答案为:(,2)(2,)-∞-+∞.16.已知命题p :存在x ∈R ,使得x 2+2ax +a≤0. 若命题p 是假命题,则实数a 的取值范围为________.【答案】(0,1)【解析】命题p :∃x ∈R ,x 2+2ax+a≤0的否定为命题p :∀x ∈R ,x 2+2ax+a >0∵命题p 为假命题∴命题¬p 为真命题即x 2+2ax+a >0恒成立∴△=4a 2﹣4a <0解得0<a <1故答案为(0,1)17.判断下列存在量词命题的真假:(1)有些实数是无限不循环小数;(2)存在一个三角形不是等腰三角形;(3)有些菱形是正方形;(4)至少有一个整数2,1n n +是4的倍数.【答案】(1)真命题;(2)真命题;(3)真命题;(4)假命题.【解析】(1)实数包括有理数与无理数,其中无理数包括无限不循环小数如,e π等.故为真命题.(2)等腰三角形有两条长度相等的边,但并不是每个三角形都有两条长度相等的边,故为真命题.(3)四边长度相等的四边形为菱形,此时若相邻边互相垂直则为正方形,故为真命题.(4)假设有一个整数2,1n n +是4的倍数,则因为21n +能被4整除,故21n +为偶数,故2n 为奇数,故n 为奇数.设21,n k k N =+∈,则221442n k k +=++,故21n +除以4的余数为2与题设矛盾.故不存在整数,n 使得21n +是4的倍数.故为假命题.18.写出下列命题的否定:(1)平面内不相交的两条直线是平行直线;(2)素数是奇数.【答案】(1)平面内存在不相交的两条直线不是平行直线.(2)存在一个素数不是奇数.【解析】由题得(1)平面内存在不相交的两条直线不是平行直线;(2)存在一个素数不是奇数. 19.设集合{2,3,5,7,11,13}M =,写出下列命题的否定,并判断所得命题的真假:(1),1x M x ∀∈>;(2),x M x ∃∈不是素数.【答案】(1)否定:,1x M x ∃∈.假命题;(2)否定:,x M x ∀∈是素数.真命题.【解析】(1)否定:,1x M x ∃∈≤,假命题;((2)否定:,x M x ∀∈是素数,真命题.20.判断下列命题的真假:(1)21,11x x ∀∈<+R ;(2)1,1x x x∃∈<+R . 【答案】(1)假命题;(2)真命题.【解析】(1)21,11x x ∀∈<+R ; 当0x =时,2111x =+,故21,11x x ∀∈<+R 是假命题. (2)1,1x x x∃∈<+R . 取1x =,计算得到:1112x x =<+=,故1,1x x x ∃∈<+R 是真命题. 21.判断下列命题的真假:(1)222,,()x y x y x y ∃∈+=+R ;(2)222,,()2x y x y x xy y ∀∈-=-+Z .【答案】(1)真命题;(2)真命题.【解析】(1)222,,()x y x y x y ∃∈+=+R ;()2222x y x xy y +=++,当0xy =,即0x =或0y =时222()x y x y +=+,真命题;(2)222,,()2x y x y x xy y ∀∈-=-+Z .根据完全平方公式得到222()2x y x xy y -=-+,故222,,()2x y x y x xy y ∀∈-=-+Z真命题.22.已知命题2:,40p x mx x m ∃∈++>R ,若p 为假命题,求实数m 的取值范围. 【答案】1,4⎛⎤-∞- ⎥⎝⎦【解析】由题意得2:,40p x mx x m ⌝∀∈++R ,∵p 为假命题,∴p ⌝为真命题.当0m =时,对,0x x ∀∈R 不恒成立,不符合题意;当0m ≠时,得20,1160,m m <⎧⎨∆=-⎩∴0,11,44m m m <⎧⎪⎨-⎪⎩或 ∴14m -, ∴实数m 的取值范围为1,4⎛⎤-∞- ⎥⎝⎦.1.下列命题中是全称量词命题并且是真命题的是( )A .∃x >1,x 2-2x -3=0 课后练习B.若2x为偶数,则x∈NC.所有菱形的四条边都相等D.π是无理数【答案】C【解析】对于A,是存在量词命题,故A不正确;对于B,是真命题,但不是全称量词命题,故B不正确;对于C,是全称量词命题,也是真命题,故C正确;对于D,是真命题,但不是全称量词命题,故D不正确,故选C.2.命题“每一个四边形的四个顶点共圆”的否定是()A.存在一个四边形,它的四个顶点不共圆B.存在一个四边形,它的四个顶点共圆C.所有四边形的四个顶点共圆D.所有四边形的四个顶点都不共圆【答案】A【解析】根据全称量词命题的否定是存在量词命题,得命题“每一个四边形的四个顶点共圆”的否定是“存在一个四边形的四个顶点不共圆”,故选A.3.下列命题为真命题的是()A.存在x∈Q,使方程2x-2=0有解B.存在一个实数x,使x2+2x+4=0C.有些整数只有两个正因数D.所有的质数都是奇数【答案】C【解析】A.2x-2=0⇔x=2∉Q,故A错误;B .∵x 2+2x +4=(x +1)2+3≥3,∴存在一个实数x ,使x 2+2x +4=0错误.C .∵2=1×2,∴有些整数只有两个正因数正确,D .2是质数,但2不是奇数,故D 错误,故选C.4.设非空集合P ,Q 满足P ∩Q =P ,则( )A .∀x ∈Q ,有x ∈PB .∀x ∉Q ,有x ∉PC .∃x ∉Q ,使得x ∈PD .∃x ∈P ,使得x ∉Q【答案】B【解析】∵P ∩Q =P ,∴P ⊆Q ,如图,∴A 错误;B 正确;C 错误;D 错误.故选B.5.已知命题p :∃x >0,x +a -1=0,若p 为假命题,则a 的取值范围是( )A .{a |a <-1}B .{a |a ≥1}C .{a |a >1}D .{a |a ≤-1}【答案】B【解析】∵p 为假命题,∴綈p 为真命题,即:∀x >0,x +a -1≠0,即x ≠1-a ,∴1-a ≤0,则a ≥1.∴a 的取值范围是a ≥1,故选B.6.已知命题“x R ∃∈,使212(1)02x a x +-+≤”是假命题,则实数a 的取值范围是( )A .(,1)-∞-B .(1,3)-C .(3,)-+∞D .(3,1)-【答案】B【解析】因为命题“x R ∃∈,使212(1)02x a x +-+≤”是假命题,所以212(1)02x a x +-+>恒成立,所以2()114202a ∆=--⨯⨯<,解得13a -<<,故实数a 的取值范围是(1,3)-, 故选B,7.(多选)下列命题的否定中,是全称量词命题且为真命题的有( ) A .∃x ∈R ,x 2-x +41<0 B .所有的正方形都是矩形C .∃x ∈R ,x 2+2x +2≤0D .至少有一个实数x ,使x 3+1=0【答案】AC【解析】命题的否定是全称量词命题,即原命题为存在量词命题,故排除B.再根据命题的否定为真命题,即原命题为假命题.又D 为真命题,故选A 、C.8.(多选)下列命题错误的是( )A .∀x ∈{-1,1},2x +1>0B .∃x ∈Q ,x 2=3C .∀x ∈R ,x 2-1>0D .∃x ∈N ,|x |≤0【答案】ABC【解析】对于A ,x =-1时,不合题意,A 错误;对于B ,x =±3,B 错误;对于C ,比如x =0时,-1<0,C 错误;D 选项正确.9.下列存在量词命题是真命题的序号是________.①有些不相似的三角形面积相等;②存在实数x ,使x 2+2<0;③存在实数a ,使函数y =ax +b 的值随x 的增大而增大;④有一个实数的倒数是它本身.【答案】①③④【解析】①为真命题,只要找出等底等高的两个三角形,面积就相等,但不一定相似;②中对任意x ∈R ,x 2+2>0,所以不存在实数x ,使x 2+2<0,为假命题;③中当实数a 大于0时,结论成立,为真命题;④中如1的倒数是它本身,为真命题.故真命题的序号是①③④.10.若命题p :∀x ∈R ,21-x <0,则¬p :________________. 【答案】∃x ∈R ,21-x >0或x -2=0 11.若命题p :∀a ,b ∈R ,方程ax 2+b =0恰有一解,则¬p :________________.【答案】∃a ,b ∈R ,方程ax 2+b =0无解或至少有两解12.某中学开展小组合作学习模式,某班某组小王同学给组内小李同学出题如下:若命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求m 范围.小李略加思索,反手给了小王一道题:若命题“∀x ∈R ,x 2+2x +m >0”是真命题,求m 范围.你认为,两位同学题中m 范围是否一致?________(填“是”“否”中的一种)【答案】是【解析】∵命题“∃x ∈R ,x 2+2x +m ≤0”的否定是“∀x ∈R ,x 2+2x +m >0”.而命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,则其否定“∀x ∈R ,x 2+2x +m >0”为真命题. ∴两位同学题中m 范围是一致的.13.判断下列命题的真假,并写出这些命题的否定:(1)三角形的内角和为180°;(2)每个二次函数的图象都开口向下;(3)存在一个四边形不是平行四边形.【解析】(1)是全称量词命题且为真命题.命题的否定:三角形的内角和不全为180°,即存在一个三角形其内角和不等于180°.(2)是全称量词命题且为假命题.命题的否定:存在一个二次函数的图象开口不向下.(3)是存在量词命题且为真命题.命题的否定:所有的四边形都是平行四边形.14.写出下列命题的否定,并判断真假:(1)正方形都是菱形;(2)∃x∈R,使4x-3>x;(3)∀x∈R,有x+1=2x;(4)集合A是集合A∩B或集合A∪B的子集.【解析】(1)命题的否定:正方形不都是菱形,是假命题.(2)命题的否定:∀x∈R.有4x-3≤x.因为当x=2时,4×2-3=5>2,所以“∀x∈R,有4x -3≤x”是假命题.(3)命题的否定:∃x∈R.使x+1≠2x.因为当x=2时,x+1=2+1=3≠2×2,所以“∃x∈R,使x+1≠2x”是真命题.(4)命题的否定:集合A既不是集合A∩B的子集也不是集合A∪B的子集,是假命题.15.写出下列命题的否定并判断真假:(1)所有自然数的平方都是正数;(2)任何实数x都是方程5x-12=0的根;(3)∀x∈R,x2+3<0;(4)有些质数不是奇数.【解析】(1)命题的否定:至少存在一个自然数的平方不是正数.真命题.(2)命题的否定:∃x∈R,5x-12≠0.真命题.(3)命题的否定:∃x∈R,x2+3≥0.真命题.(4)命题的否定:所有的质数都是奇数.假命题.16.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ≠∅.(1)若命题p :“∀x ∈B ,x ∈A ”是真命题,求m 的取值范围;(2)命题q :“∃x ∈A ,x ∈B ”是真命题,求m 的取值范围.【解析】(1)由于命题p :“∀x ∈B ,x ∈A ”是真命题,所以B ⊆A ,B ≠∅,所以⎪⎩⎪⎨⎧≤--≥+-≤+51221121m m m m ,解得2≤m ≤3.(2)q 为真,则A ∩B ≠∅,因为B ≠∅,所以m ≥2.所以⎪⎩⎪⎨⎧≥-≥-≤+221251m m m ,解得2≤m ≤4.。
全称量词与存在量词

x M,p(x) x M,p(x)
结论
从形式看,全称命题的否定是特称命题。
含有一个量词的全称命题的否定, 有下面的结论
全称命题 p :
它的否定p :
x M,p(x)
全称命题பைடு நூலகம்否 定是特称命题
x0
M,p(x
)
0
探究2
写出下列命题的否定
1)有些实数的绝对值是正数;x M,p(x)
(x)
x2
bx
x
b 2
2
b2 4
,
最小值为
b2 4
,
令t
x2
bx, 则f
(f
(x))
f
(t) t 2
bt
t
b 2
2
b2 4
,t
b2 4
,当
b 0时, f ( f (x))的最小值为 b2 ,所以"b 0"能推出" f ( f (x))的最 4
2 特称命题p: x∈M,p(x) 它的否定 p : x∈M, p(x)
全称命题的否定是特称命题, 特称命题的否定是全称命题.
例1写出下列全称命题的否定: 1)p:所有能被3整除的整数都是奇数;
2)p:每一个四边形的四个顶点共圆 3)p:对任意x Z,x2的个位数字不等于3。 解:1)p : 存在一个能被3整除的整数不是奇数.
它的否定 p : x0 M,p(x0 )
一般地,对于含有一个量词的特称命题的否定,有下
面的结论:
特称命题 p : x0 M,p(x0)
典型例题:全称量词与存在量词

全称量词与存在量词
例1判定下列命题的真假:
1∃∈Q,使2=2;
2∃∈R,使2<1;
3∀∈N,有3>2;
4∀∈R,有21>0
分析:要判定一个特称命题真,只要在限定集合中至少找到一个=0值,使中的每一个验证中一个=0,使p0为假.
解:1∵使2=2成立的实数只有2
±∉Q,∴没有一
±,而2
个有理数,使2=2可见命题“∃∈Q,使2=2”是假命题.
2由于∈R,取=-1,满足3<1因此命题“∃∈R,使2<1”
是真命题.
3∵=1时,3>2不成立.∴命题“∀∈N,有3>2”是假命题.
4由于对∀∈R,都有2≥0⇒21≥1>0.因此命题“∀∈R,有21>0”是真命题.
例2.试写出下列命题的否定,并判断其真假:
1命题P:所有的菱形都是正方形.
2命题q:对任何实数,总有2一21≥0成立.
3命题r:至少有一个实数,使2-2=0成立.
4命题s:∃∈R,使2+2+2≤0成立.
分析:1、2是全称命题,其否定应为特称命题.3、4是特称命题,其否定应为全称命题.
解:l¬P:∃一个菱形,它不是正方形.
∵由两个全等的等边三角形拼成的菱形就不是正方形,
∴¬p是真命题.
2q:∃∈R.、2-21<0.
∵2-21=-12≥0对∀∈R都成立.∴¬q是假命题.
3¬r:∀∈R,2-2≠0.
∵存在=2
±,使2-2=0,∴¬r是假命题.
4¬S:∀∈R,2+2+2>0.
∵2+2+2=+12+1,12≥0,∴对∀∈R,都有2+2+2=≥1>0
可见¬S是真命题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全称量词和存在量词举例
摘要:
1.量词的定义和分类
2.全称量词的定义和举例
3.存在量词的定义和举例
4.全称量词和存在量词的区别与联系
正文:
量词是表示事物数量的词语,它在汉语中起着非常重要的作用。
根据量词的含义和用法,我们可以将其分为全称量词和存在量词两大类。
全称量词是用来表示某类事物的全部个体的量词。
它可以用来描述一个群体、类别或集合的所有成员。
全称量词在句子中通常与名词连用,表示某个名词所指代的所有个体。
例如:“一只”、“所有的”、“全部的”等。
存在量词则是用来表示某类事物中至少有一个个体存在的量词。
它主要用来描述某个群体、类别或集合中至少有一个成员。
存在量词在句子中通常与动词连用,表示某个动作涉及到的个体数量。
例如:“有一只”、“有一个”、“有一部分”等。
全称量词和存在量词在用法上有明显的区别,但它们之间也存在一定的联系。
全称量词表示一个群体、类别或集合的所有成员,而存在量词表示这个群体、类别或集合中至少有一个成员。
因此,当我们在描述一个群体、类别或集合时,可以根据实际情况选择使用全称量词或存在量词。
总之,全称量词和存在量词是汉语中非常重要的量词类型,它们在描述事
物数量和表达语义方面起着关键作用。