数学知识点苏教版高中数学(选修1-1)1.3《全称量词与存在量词》(量词)word教案-总结

数学知识点苏教版高中数学(选修1-1)1.3《全称量词与存在量词》(量词)word教案-总结
数学知识点苏教版高中数学(选修1-1)1.3《全称量词与存在量词》(量词)word教案-总结

1.3.1量词

(三)教学过程

学生探究过程:1.思考、分析

下列语句是命题吗?假如是命题你能判断它的真假吗?

(1)2x +1是整数;

(2) x >3;

(3) 如果两个三角形全等,那么它们的对应边相等;

(4)平行于同一条直线的两条直线互相平行;

(5)海师附中今年所有高中一年级的学生数学课本都是采用人民教育出版社A 版的教科书;

(6)所有有中国国籍的人都是黄种人;

(7)对所有的x ∈R, x >3;

(8)对任意一个x ∈Z,2x +1是整数。

1. 推理、判断

(让学生自己表述)

(1)、(2)不能判断真假,不是命题。

(3)、(4)是命题且是真命题。

(5)-(8)如果是假,我们只要举出一个反例就行。

注:对于(5)-(8)最好是引导学生将反例用命题的形式写出来。因为这些命题的反例涉及

到“存在量词”“特称命题”“全称命题的否定”这些后续内容。

(5)的真假就看命题:海师附中今年存在个别(部分)高一学生数学课本不是采用人民教育出版社A 版的教科书;这个命题的真假,该命题为真,所以命题(5)为假;

命题(6)是假命题.事实上,存在一个(个别、部分)有中国国籍的人不是黄种人.

命题(7)是假命题.事实上,存在一个(个别、某些)实数(如x =2), x <3.

(至少有一个x ∈R, x ≤3)

命题(8)是真命题。事实上不存在某个x ∈Z,使2x +1不是整数。也可以说命题:存在某个x ∈Z使2x +1不是整数,是假命题.

3.发现、归纳

命题(5)-(8)跟命题(3)、(4)有些不同,它们用到 “所有的”“任意一个” 这样的

词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词,用符号“?”表示,含有全称量词的命题,叫做全称命题。命题(5)-(8)都是全称命题。

通常将含有变量x 的语句用p (x ),q (x ),r (x ),……表示,变量x 的取值范围用M 表示。那么全称命题“对M 中任意一个x ,有p (x )成立”可用符号简记为:?x M , p (x ),读做“对任意x 属于M ,有p (x )成立”。

刚才在判断命题(5)-(8)的真假的时候,我们还得出这样一些命题:

(5),存在个别高一学生数学课本不是采用人民教育出版社A 版的教科书;

(6),存在一个(个别、部分)有中国国籍的人不是黄种人.

(7), 存在一个(个别、某些)实数x (如x =2),使x ≤3.(至少有一个x ∈R, x ≤3)

(8),不存在某个x ∈Z使2x +1不是整数.

这些命题用到了“存在一个”“至少有一个”这样的词语,这些词语都是表示整体的一部分的

词叫做存在量词。并用符号“?”表示。含有存在量词的命题叫做特称命题(或存在命题)命题

(5),-(8),都是特称命题(存在命题).

特称命题:“存在M 中一个x ,使p (x )成立”可以用符号简记为:,()x M p x ?∈。读做

“存在一个x 属于M ,使p (x )成立”.

全称量词相当于日常语言中“凡”,“所有”,“一切”,“任意一个”等;存在量词相当于

日常语言中“存在一个”,“有一个”,“有些”,“至少有一个”,“ 至多有一个”等.

4.巩固练习

(1)下列全称命题中,真命题是:

A. 所有的素数是奇数;

B.

2,(1)0x R x ?∈-; C.1,2x R x x ?∈+≥ D.1(0,),sin 22sin x x x π?∈+≥ (2)下列特称命题中,假命题是:

A.

2,230x R x x ?∈--= B.至少有一个,x Z x ∈能被2和3整除

C. 存在两个相交平面垂直于同一直线

D.{|x x x ?∈是无理数},x 2是有理数.

(3)已知:对1,x R a x x

+?∈+恒成立,则a 的取值范围是 ; 变式:已知:对2,10x R x ax +?∈-+恒成立,则a 的取值范围是 ;

(4)求函数2()cos sin 3f x x x =--+的值域;

变式:已知:对,x R ?∈方程2cos sin 30x x a +-+=有解,求a 的取值范围. 5.课外作业P 29习题1.4A 组1、2题:

6.教学反思:

(1)判断下列全称命题的真假:

①末位是o 的整数,可以被5整除;

②线段的垂直平分线上的点到这条线段两个端点的距离相等;

③负数的平方是正数;

④梯形的对角线相等。

(2)判断下列特称命题的真假:

①有些实数是无限不循环小数;

②有些三角形不是等腰三角形;

③有些菱形是正方形。

(3)探究:

①请课后探究命题(5),-(8),跟命题(5)-(8)分别有什么关系?

②请你自己写出几个全称命题,并试着写出它们的否命题.写出几个特称命题,并试着写出

它们的否命题。

高中数学必修和选修知识点归纳总结

高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用

最全高中数学必修三知识点总结归纳(经典版)

最全高中数学 (经典版) 第一章算法初步 1.1.1 算法的概念 1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. 2. 算法的特点: (1) 有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. (2) 确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.

(3) 顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题. (4) 不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法. (5) 普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决. 1.1.2 程序框图 1、程序框图基本概念: (一) 程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。 一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文 字说明。 学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下: 1、使用标准的图形符号。 2、框图一般按从上到下、从左到右的方向画。 3、除判断框外, 大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。 4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果; 另一类是多分支判断,有几种不同的结果。5、在图形符号内描述的语言要非常简练清楚。(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。 1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下 的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一

高中数学选修4-4知识点清单

高中数学选修4-4 坐标系与参数方程知识点总结 第一讲 一平面直角坐标系 1.平面直角坐标系 (1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系. (2)平面直角坐标系: ①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系; ②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向; ③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y 轴统称为坐标轴; ④坐标原点:它们的公共原点称为直角坐标系的原点; ⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系. (3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的中点为P 2.

设点P(x,y)是平面直角坐标系中的任意一点,在变换φ 点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.二极坐标系 (1)定义:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向. (3)图示 2.极坐标 (1)极坐标的定义:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ). (2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O的极坐标是(0,θ),(θ∈R),若点M的极坐标是M(ρ,θ),则点M的极坐标也可写成M(ρ,θ+2kπ),(k∈Z). 若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系. 3.极坐标与直角坐标的互化公式 如图所示,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位相同,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ). (1)极坐标化直角坐标 =ρcosθ, =ρsinθW. (2)直角坐标化极坐标 2=x2+y2, θ=y x(x≠0). 三简单曲线的极坐标方程 1.曲线的极坐标方程 一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程. 2.圆的极坐标方程 (1)特殊情形如下表:

人教版高中数学必修3知识点汇总(一册全)

人教版高中数学必修三知识点汇总 第一章算法初步 1.1.1算法的概念 1、算法概念: 在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. 2. 算法的特点: (1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. (2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可. (3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题. (4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法. (5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决. 1.1.2程序框图 1、程序框图基本概念: (一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。 一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。(二)构成程序框的图形符号及其作用

学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下: 1、使用标准的图形符号。 2、框图一般按从上到下、从左到右的方向画。 3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。 4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。 5、在图形符号内描述的语言要非常简练清楚。 (三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。 1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。 顺序结构在程序框图中的体现就是用流程线将程序框自上而 框是依次执行的,只有在执行完A框指定的操作后,才能接着执 行B框所指定的操作。 2、条件结构:

人教版高中数学必修3知识点和练习题

人教版高中数学必修3知识点和练习题 第一章算法初步 1.1.1算法的概念 1、算法概念: 在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. 2. 算法的特点: (1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. (2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可. (3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题. (4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法. (5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决. 1.1.2程序框图 1、程序框图基本概念: (一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。 一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用 学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下: 1、使用标准的图形符号。 2、框图一般按从上到下、从左到右的方向画。 3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。 4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。 5、在图形符号内描述的语言要非常简练清楚。 (三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。 1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。 顺序结构在程序框图中的体现就是用流程线将程序框自上而 下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B

高中数学选修-5知识点(最全版)

高中数学选修4-5知识点 1.不等式的基本性质 1.实数大小的比较 (1)数轴上的点与实数之间具有一一对应关系. (2)设a 、b 是两个实数,它们在数轴上所对应的点分别是A 、B .当点A 在点B 的左边时,a b . (3)两个实数的大小与这两个实数差的符号的关系(不等式的意义) ???a >b ?a -b >0 a = b ?a -b =0a ,<,≥,≤共5个. (2)相等关系和不等关系 任意给定两个实数,它们之间要么相等,要么不相等.现实生活中的两个量从严格意义上说相等是特殊的、相对的,不等是普遍的、绝对的,因此绝大多数的量都是以不等关系存在的. (3)不等式的定义:用不等号连接起来的式子叫做不等式. (4)不等关系的表示:用不等式或不等式组表示不等关系. 3.不等式的基本性质 (1)对称性:a >b ?b b ,b >c ?a >c ; (3)可加性:a >b ,c ∈R ?a +c >b +c ; (4)加法法则:a >b ,c >d ?a +c >b +d ; (5)可乘性:a >b ,c >0?ac >bc ;a >b ,c <0?ac b >0,c >d >0?ac >bd ; (7)乘方法则:a >b >0,n ∈N 且n ≥2?a n >b n ; (8)开方法则:a >b >0,n ∈N 且n ≥2?n a >n b . (9)倒数法则,即a >b >0?1a <1b . 2.基本不等式 1.重要不等式 定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式 (1)定理2:如果a ,b >0,那么a b +≥ a +b 2≥ab),当且仅当a =b 时,等号成立. (2)定理2的应用:对两个正实数x ,y , ①如果它们的和S 是定值,则当且仅当x =y 时,它们的积P 取得最大值,

最新高一下册数学必修三知识点

最新高一下册数学必修三知识点 【篇一】 一、集合(jihe)有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋 记作a∈A,相反,a不属于集合A记作a A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x R|x-3>2}或{x|x-3>2} 4、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A 与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ①任何一个集合是它本身的子集。A A ②真子集:如果A B,且A B那就说集合A是集合B的真子集,记作AB(或BA) ③如果A B,B C,那么A C

高中数学苏教版教材目录(必修+选修)

苏教版 -----------------------------------必修1----------------------------------- 第1章集合 1.1集合的含义及其表示 1.2子集、全集、补集 1.3交集、并集 第2章函数 2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法 2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性 2.3映射的概念 第3章指数函数、对数函数和幂函数 3.1指数函数3.1.1分数指数幂3.1.2指数函数 3.2对数函数3.2.1对数3.2.2对数函数 3.3幂函数 3.4函数的应用3. 4.1函数与方程3.4.2函数模型及其应用 -----------------------------------必修2----------------------------------- 第1章立体几何初步 1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球 1.1.3中心投影和平行投影1.1.4直观图画法 1.2点、线、面之间的位置关系1. 2.1平面的基本性质 1.2.2空间两条直线的位置关系1.平行直线2.异面直线 1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直 1.2.4平面与平面的位置关系1.两平面平行2.平面垂直 1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步 2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式 3.一般式 2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离 2.1.6点到直线的距离 2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2. 3.1空间直角坐标系2.3.2空间两点间的距离 -----------------------------------必修3----------------------------------- 第1章算法初步 1.1算法的意义 1.2流程图1. 2.1顺序结构1.2.2选择结构1.2.3循环结构 1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句 1.3.4循环语句 1.4算法案例 第2章统计 2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法 2.1.2系统抽样2.1.3分层抽样 2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图2.3总体特征数的估计2. 3.1平均数及其估计2.3.2方差与标准差 2.4线性回归方程 第3章概率 3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率 3.2古典概型 3.3几何概型 3.4互斥事件 -----------------------------------必修4----------------------------------- 第1章三角函数 1.1任意角、弧度1.1.1任意角1.1.2弧度制 1.2任意角的三角函数1. 2.1任意角的三角函数1.2.2同角三角函数关系 1.2.3三角函数的诱导公式 1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质 1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用 第2章平面向量 2.1向量的概念及表示 2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘 2.3向量的坐标表示2. 3.1平面向量基本定理2.3.2平面向量的坐标运算 2.4向量的数量积 2.5向量的应用 第3章三角恒等变换 3.1两角和与差的三角函数 3.1.1两角和与差的余弦 3.1.2两角和与差的正弦3.1.3两角和与差的正切 3.2二倍角的三角函数 3.3几个三角恒等式 -----------------------------------必修5----------------------------------- 第1章解三角形 1.1正弦定理 1.2余弦定理 1.3正弦定理、余弦定理的应用 第2章数列 2.1数列 2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式 2.2.3等差数列的前n项和 2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式 2.3.3等比数列的前n项和 第3章不等式

必修三数学知识点总结 -#(精选.)

必修5 第一章 解三角形 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R =;③::sin :sin :sin a b c C =A B ; ④ sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . (正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。2、已知两角和一边,求其余的量。) ⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况) 如:在三角形ABC 中,已知a 、b 、A (A 为锐角)求B 。具体的做法是:数形结合思想 画出图:法一:把a 扰着C 点旋转,看所得轨迹以AD 有无交点: 当无交点则B 无解、当有一个交点则B 有一解、当有两个交点则B 法二:是算出CD=bsinA,看a 的情况: 当ab 时,B 有一解 注:当A 为钝角或是直角时以此类推既可。 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB =A ==B . 4、余弦定理:在C ?AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,222 2cos c a b ab C =+-. 5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=. (余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。2、已知三边求角) 6、如何判断三角形的形状:设a 、b 、c 是C ?AB 的角A 、B 、C 2 2 2

高一数学必修三知识点总结及典型例题解析

新课标必修3概率部分知识点总结及典型例题解析 ◆ 事件:随机事件( random event ),确定性事件: 必然事件( certain event )和不 可能事件( impossible event ) ? 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()n m A P ≈ 说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 ② 不可能事件和确定事件可以看成随机事件的极端情况 ③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 ④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果 ⑤ 概率是频率的稳定值,频率是概率的近似值 ? 概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P ② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用③如果事件 ()()()B P A P B A P B A +=+:,则有互斥和 ? 古典概率(Classical probability model ):① 所有基本事件有限个 ② 每个基本事件发生的可能性都相等 满足这两个条件的概率模型成为古典概型 如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n 1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为 ()n m A P = ? 几何概型(geomegtric probability model ):一般地,一个几何区域D 中随机地取一点, 记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为 ()的侧度 的侧度D d A P = ( 这里要求D 的侧度不为0,其中侧度的意义由D 确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 ) 几何概型的基本特点:① 基本事件等可性 ② 基本事件无限多 颜老师说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域D 内随机地取点,指的是该点落在区域D 内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。 互斥事件(exclusive events):不能同时发生的两个事件称为互斥事件

高中数学选修4系列1-4-5知识点总结(全套)

1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系的扩充与复数 选修2—3:计数原理、随机变量及其分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。

高一数学必修三知识点总结

高一数学必修三知识点总结 【篇一】高一数学必修三知识点总结 1.一些基本概念: (1)向量:既有大小,又有方向的量. (2)数量:只有大小,没有方向的量. (3)有向线段的三要素:起点、方向、长度. (4)零向量:长度为0的向量. (5)单位向量:长度等于1个单位的向量. (6)平行向量(共线向量):方向相同或相反的非零向量. ※零向量与任一向量平行. (7)相等向量:长度相等且方向相同的向量. 2.向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点【篇二】高一数学必修三知识点总结 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:

(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 2.集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+整数集Z有理数集Q实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大

高中数学选修1 2知识点总结

知识点总结 1-2知识点总结选修统计案例第一章

.线性回归方程1 ①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系?③线性回归方程:(最小二乘法) ay?bx?n??ynxxy??ii?1?i?b?其中,n2??2nxx?i?1?i? bx?a?y??. 注意:线性回归直线经过定点)y(x,n?)?yx)(y(x?ii.相关系数(判定两个变量线性相关性):21i??r nn??22)y?x)?y((x ii1?i1i?负相关; <0时,变量注: ⑴>0时,变量正相关;y,xyx,rr接近,两个变量的线性相关性越强;② ⑵①越接近于1||r||r时,两个变量之间几乎不存在线性相关关系。0于条件概率3.ABAB发生的概对于任何两个事件和发生的条件下,,在已知BAAAPBPB)|, ) 其公式为|(. 率称为发生时发生的条件概率记为(ABP)(=AP)( 4相互独立事件 AB PABPAPB) ,则,如果_((())(1)一般地,对于两个事件=,AB 相互独立.、称 AAAnPAAA PAPA)(…(2)如果_,),…,=相互独立,则有)(…(n2111 22PA). (n----BBAABAAB也相互独立.(3)如果与,与相互独立,则,与,

:5.独立性检验(分类变量关系)列联表(1)2×2为两个变量,每一个变量设BA,变变量都可以取两个值,;?A,A:AA112量;?BB:B,B112通过观察得到右表所示数据: 列联表.×2并将形如此表的表格称为2 (2)独立性检验B,×2列联表中的数据判断两个变量A根据2 列联表的独立性检验.是否独立的问题叫2×2 的计算公式统计量χ 2(3)2bc n ad)-(2=χ

高中数学必修三知识点归纳

必修3 算法初步 一、算法与程序框图 1.算法的概念 算法通常是指用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. 2.程序框图 (1)程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地 (3)基本算法结构 顺序结构 条件结构(两种) 循环结构 注:各种框图结构的功能及注意事项见下节相应语句. 二、基本算法语句 1.赋值语句 格式:变量=表达式 功能:将表达式的值赋给变量. 说明:①变量名必须以字母开头,可以是单个字母,也可以是一个字母后面跟若干数字当型循环 直到型循环

或字母,不要使用运算符号、特殊符号(如+、-、&等).②每个赋值语句只能给一个变量赋值.③表达式可以是常数或单个变量,也可以是含有常数及变量的算式,还可以使用系统提供的函数.④若表达式中含有左面的变量时(如A=A+1),则用变量当前的值计算后赋给变量,即变量(A)变成表达式的值,原来的值丢失;当左右变量名不同时(如A=B+1),则赋值后右面变量(B)的值不变. 注:①表达式中常用的运算符号有:+(加)、-(减)、*(乘,不能用×或·,更不能省略)、/(除,不能用÷)、∧(乘方)、\(整除,即整数商)、MOD(余数). ②常用的函数有:ABS (X)(即X的绝对值,不用│X│)、SQR (X)(X的算术平方根, .注意函数中的X可以是常数,也可以是表达式,但必须放在括号里. 要修改程序.②只能给变量赋值,不能对表达式赋值,有些资料上有“INPUT x=5”这样的错误用法,注意避免. 3.输出语句 格式:PRINT"提示信息";表达式 功能:计算表达式的值并输出. 说明:①提示信息在程序运行后原样显示在屏幕上,起提示作用;②先计算表达式的值,然后输出在提示信息后面,即输出语句具有计算功能;③每次可输出多个表达式,中间用逗号或分号分开,按原顺序输出;④可以只有提示信息而无表达式,或只有表达式而无提示信息. 注意:①程序中一般要有输出语句;②提示信息要放在英文引号内,即键盘上的“"”,左右相同(课本上的引号是错误的). 4.条件语句 格式1: IF条件THEN 语句1 ELSE 语句2 END IF

高中数学必修三所有知识点总结和常考题型练习精选

高中数学 必修3知识点 第一章 算法初步 一,算法与程序框图 1,算法的概念:按一定规则解决某一类问题的明确和有限的步骤。 2,算法的三个基本特征:明确性,有限性,有序性。 (1)顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。 (2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。 (3)循环结构:直到型循环结构,当型循环结构。一个完整的循环结构,应该包括三个内容:1)循环体;2)循环判断语句;3)与循环判断语句相关的变量。 二,基本算法语句(一定要注意各种算法语句的正确格式) 1,输入语句 2,输出语句 3,赋值语句 注意:“=”的含义是赋值,将右边的值赋予左边的变量 4,条件语句 5,循环语句: 直到型 当型 注意:提示内容用双引号标明,并 与变量用分号隔开。

三,算法案例 1,辗转相除法: 例:求2146与1813的最大公约数 2146=1813×1+333 1813=333×5+148 333=148×2+37 148=37×4+0 ..............余数为0时计算终止。 为最大公约数 2,更相减损术:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。 3,秦九韶算法:将1110()n n n n f x a x a x a x a --=++++ 改写成 1210()(()))n n n f x a x a x a x a x a --=+++++ 再由内及外逐层计算。 4,进位制:注意K 进制与十进制的互化。 1)例:将三进制数(3)10212化为十进制数 10212(3)=2+1×3+2×32+0×33+1×34=104 2)例:将十进制数104化为三进制数 104=3×34+2 ....... 最先出现的余数是三进制数的最右一位 34=3×11+1 11=3×3+2 3=3×1+0 1=3×0+1 ............ 商数为0时计算终止 104=(3)10212 第二章 统计 一,随机抽样 1,简单随机抽样:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本,如果每次抽取时总体内的各个个体被抽取到的机会都相等,就把这种抽样方法叫做简单随机抽样。(关键词)逐个,不放回,机会相等 2,随机数表法的步骤: 1)编号; 2)确定起始数字;3)按一定规则读数(所读数不能大于最大编号,不能重复)。 3,系统抽样的步骤: 1)编号; 2)分段(若样本容量为n ,则分为n 段);分段间隔N k n = ,若N n 不是整数,则剔除余数,再重新分段; 3)在第一段用简单随机抽样确定第一个个体编号; 4)按照 一定的规则在后面每段内各取一个编号,组成整个样本。 4,分层抽样的步骤: 1)确定抽样比; 2)根据个体差异分层,确定每层的抽样个体数(抽样比乘以各层的个体数,如果不是整数,则通过四舍五入取近似值);3)在每一层内抽取样本(个体数少就用简单随机抽样,个体数多则用系统抽样),组成整个样本。 5,三种抽样方法的异同点 直到型和当型循环可以相互演变,循环体相同,条件恰好互补。

高中数学知识点总结选修

第一章计数原理 1.1分类加法计数与分步乘法计数 分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。分类要做到“不重不漏”。 分步乘法计数原理:完成一件事需要两个步骤。做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。分步要做到“步骤完整”。 n元集合A={a1,a2?,a n}的不同子集有2n 个。 1.2排列与组合 1.2.1排列 一般地,从n个不同元素中取出m(m≤n)

个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列(arrangement)。 从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号表示。 排列数公式: n 个元素的全排列数 规定:0!=1 1.2.2 组合 一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取

出m个元素的一个组合(combination)。 从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素 中取出m个元素的组合数,用符号或 表示。 组合数公式: ∴ 规定: 组合数的性质: (“构建组合意义”——“殊途同归”) (杨辉三角) *

1.3 二项式定理 1.3.1 二项式定理(binomial theorem) *注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。 (n∈N *) 其中各项的系数 (k ∈{0,1,2,? ,n})叫做二项式系数(binomial coefficient); 式中的叫做二项展开式的通项,用T k+1 表示通项展开式的第k+1项:

苏教版高中数学必修+选修知识点归纳总结(精编版)

高中数学必修+选修知识点归纳 恒 则成 人生一连串 的奋斗 追求理想要 奋战不懈 坚持到底 有恒则成

引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:三角函数、平面向量、三角恒等变换。必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有3个系列: 选修系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数的引入、框图 选修系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数的引入 选修2—3:计数原理、概率,统计案例。 选修系列4:由4个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、 和、差、倍、半公式、求值、化 简、证明、三角函数的图象与性 质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、 数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式 的证明、不等式的解法、绝对值不 等式、不等式的应用 ⑺直线和圆的方程:直线的方程、两直线的位 置关系、线性规划、圆、 直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直 线与圆锥曲线的位置关系、 轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线 与平面、平面与平面、棱柱、 棱锥、球、空间向量 ⑽排列、组合和概率:排列、组合应用题、二 项式定理及其应用 ⑾概率与统计:概率、分布列、期望、方差、 抽样、正态分布 ⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算

高中数学必修3知识点总结归纳

高一数学必修3公式总结以及例题 文档贡献:smysl §1 算法初步 ◆ 秦九韶算法:通过一次式的反复计算逐步得出高次多项式的值,对于一个n 次多项式,只要作n 次乘法和n 次加法即可。表达式如下: ()()()()1221111......a x a x x a x a x a a x a x a n n n n n n n +++++=+++---- 例 题 : 秦 九 韶 算 法 计 算 多 项 式 , 187654323456++++++x x x x x x , 0.4 x 时当= ?运算需要做几次加法和乘法 答案: 6 , 6 ()()()()()1876543x :++++++x x x x x 即 理解算法的含义:一般而言,对于一类问题的机械的、统一的求解方法称为算法, 其意义具有广泛的含义,如:广播操图解是广播操的算法,歌谱是一首歌的算法,空调说明 书是空调使用的算法… (algorithm ) 1. 描述算法有三种方式:自然语言,流程图,程序设计语言(本书指伪代码). 2. 算法的特征: ①有限性:算法执行的步骤总是有限的,不能无休止的进行下去 ②确定性:算法的每一步操作内容和顺序必须含义确切,而且必须有输出,输出可 以是一个或多个。没有输出的算法是无意义的。 ③可行性:算法的每一步都必须是可执行的,即每一步都可以通过手工或者机器在 一定时间内可以完成,在时间上有一个合理的限度 3. 算法含有两大要素:①操作:算术运算,逻辑运算,函数运算,关系运算等② 控制结构:顺序结构,选择结构,循环结构 ? 流程图:(flow chart ): 是用一些规定的图形、连线及简单的文字说明表示算法及程序结构的一种图形程序,它直观、清晰、易懂,便于检查及修改。 注意:1. 画流程图的时候一定要清晰,用铅笔和直尺画,要养成有开始和结束的好习惯 2. 拿不准的时候可以先根据结构特点画出大致的流程,反过来再检查,比如:遇到判断框时,往往临界的范围或者条件不好确定,就先给出一个临界条件,画好大致流程,然后检查这个条件是否正确,再考虑是否取等号的问题,这时候也就可以有几种书写方法了。 3. 在输出结果时,如果有多个输出,一定要用流程线把所有的输出总结到一起,一起终结到结束框。

相关文档
最新文档